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Abstract
Groundwater quality (GWQ) monitoring is one of the best environmental objectives due to recent droughts and urban and 
rural development. Therefore, this study aimed to map GWQ in the central plateau of Iran by validating machine learning 
algorithms (MLAs) using game theory (GT). On this basis, chemical parameters related to water quality, including K+, Na+, 
Mg2+, Ca2+, SO4

2−, Cl−, HCO3
−, pH, TDS, and EC, were interpolated at 39 sampling sites. Then, the random forest (RF), 

support vector machine (SVM), Naive Bayes, and K-nearest neighbors (KNN) algorithms were used in the Python program-
ming language, and the map was plotted concerning GWQ. Borda scoring was used to validate the MLAs, and 39 sample 
points were prioritized. Based on the results, among the ML algorithms, the RF algorithm with error statistics MAE = 0.261, 
MSE = 0.111, RMSE = 0.333, and AUC = 0.930 was selected as the most optimal algorithm. Based on the GWQ map cre-
ated with the RF algorithm, 42.71% of the studied area was in poor condition. The proportion of this region in the classes 
with moderate and high GWQ was 18.93% and 38.36%, respectively. The results related to the prioritization of sampling 
sites with the GT algorithm showed a great similarity between the results of this algorithm and the RF model. In addition, 
the analysis of the chemical condition of critical and non-critical points based on the results of RF and GT showed that the 
chemical aspects, carbonate balance, and salinity at critical points were in poor condition. In general, it can be said that 
the simultaneous use of MLA and GT provides a good basis for constructing the GWQ map in the central plateau of Iran.

Keywords  Artificial intelligence · Borda scoring algorithm · Hydrogeochemistry · Ion balance diagram · Optimal decision 
making

Introduction

Water resources management (WRM) is one of the most 
important challenges at the global level (Abu El-Magd 
et al. 2023). Water is considered the most important human 
need for social, economical, and agricultural development 
(Siebert et al. 2010; Singh et al. 2012; Kubicz et al. 2021). 

On the other hand, the quantity and quality of water and 
drinking water consumption sustain lakes and wetlands and 
directly affect biodiversity (Khan et al. 2023). Groundwater 
resources generally provide about 50% of drinking water 
and 40% of industrial needs globally (Udmale et al. 2014). 
Today, groundwater resources face many problems threat-
ening their quantity and quality (Burri et al. 2019; El Asri 
et al. 2019; Houéménou et al. 2020). Therefore, the differ-
ent characteristics of groundwater resources are affected and 
lead to the destruction of these valuable reserves, which have 
become a major crisis in different regions (Eissa et al. 2016; 
Eid et al. 2023).

In Iran, as in other developing countries, groundwater 
quality (GWQ) is seriously threatened by excessive exploita-
tion of groundwater resources, extensive use of chemicals, 
and pesticide intrusion (Panaskar et al. 2016; Akhtar et al. 
2021). On the other hand, industrialization and population 
growth have accelerated groundwater pollution (Kumar et al. 
2019a; Sarker et al. 2021). Thus, industrial and domestic 
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wastewater has entered the water table and caused water 
pollution (Ojekunle et al. 2020). Determining parameters for 
the optimal use of groundwater resources are groundwater's 
chemical composition and biology (Davraz and Oezdemir 
2014; Mallick et al. 2018). Groundwater resources change 
due to climatic and lithological conditions and processes 
caused by human activities (Abbasnia et al. 2019; Jehan 
et al. 2019). The presence of fluoride sulfate, nitrate, and 
the presence of metals such as calcium, magnesium, sodium, 
manganese, cadmium, nickel, chromium, and arsenic in 
water above the permissible limit causes problems for vari-
ous uses, including drinking water supply and agriculture 
(Rashid et al. 2020; Tyagi and Sarma 2020).

Traditional methods of GWQ assessment are often 
expensive and time-consuming. Meanwhile, implementing 
machine learning algorithms (MLAs) can help adopt long-
term strategies regarding the GWQ and how to use it by 
predicting and evaluating water quality indicators (Masoud 
et al. 2022; Noori et al. 2022). In some studies, several 
approaches such as machine learning algorithms (MLAs) 
and water quality index (WQI) have been used to evalu-
ate water quality (Mohamed et al. 2014; Ramadan 2016; 
Adimalla et al. 2018; Hamlat and Guidoum 2018; Ahmed 
et al. 2020; Badeenezhad et al. 2020; Suvarna et al. 2020; 
El-Magd et al. 2021, 2022).

Among the parameters that help to evaluate the GWQ 
are total dissolved solids (TDS), Mg2+, Na+, HCO3

−, and 
sodium absorption ratio (SAR) (Abu El-Magd et al. 2023). 
Some studies have evaluated the effect of human manipu-
lation on groundwater pollution (Safa et al. 2020; Ravish 
et al. 2021). New and more popular models and techniques 
have been proposed for GWQ assessment. These methods 
are data-oriented and have higher accuracy. These methods 
have been used in several studies, such as support vector 
machines (SVM) and artificial neural networks (ANN) (Pei-
Yue et al. 2011; El-Magd et al. 2020). Some studies based 
on MLAs, such as adaptive neuro-fuzzy inference system 
(ANFIS) and SVM, have evaluated the GWQ (Elsayed et al. 
2021; Tao et al. 2022; Eid et al. 2023; Sahour et al. 2023).

The investigation of the research background showed that 
the GWQ had been investigated using different tools and 
models. In addition, WQI and sometimes MLAs have been 
widely used to investigate groundwater resources and GWQ. 
Although in many studies, only the modeling of GWQ has 
been addressed, and the validation of the methods and mod-
els used has not been widely investigated. Therefore, the 
study sought to complete the current research deficiency and 
validated MLAs using the GT algorithm. Game theory is 

one of the most important optimal methods of multi-criteria 
decision-making, which has low uncertainty in choosing the 
best criteria and alternatives compared to other multi-criteria 
decision-making methods. In addition, this study investi-
gated and comprehensively analyzed the chemical status and 
important ions related to critical points in terms of GWQ 
that MLA and GT identified.

One of the main reasons for choosing the province of 
Chaharmahal and Bakhtiari was the heavy use of ground-
water in the form of wells and springs in this region. Mean-
while, it was necessary to study the groundwater resources 
in this region, which account for a significant proportion of 
water resources and require optimal and integrated manage-
ment. Therefore, this study aimed to map GWQ in the cen-
tral plateau of Iran by validating MLAs, including random 
forest (RF), SVM, Naive Bayes, and K-nearest neighbors 
(KNN) algorithms using Borda scoring algorithm based on 
GT.

Materials and methods

Description of the study area

Chaharmahal and Bakhtiari province, with an area of 18,122 
km2, is a highland covering the central plateau of Iran. Cha-
harmahal and Bakhtiari province is a region where almost 
80% of the city is covered by mountains and hills (Rahimi 
2012; Zamani-Ahmadmahmoodi et al. 2019). These moun-
tains have 16 peaks with an altitude of more than 3500 m. 
The morphology of the province includes a regular alterna-
tion of northwestern and southeastern elevations separated 
by plains with the same trend. The average slope of the prov-
ince is 42%, and more than 58% of the area has a slope of 
30% or more. Precipitation in the region is often influenced 
by Mediterranean atmospheric currents and low Sudanese 
atmospheric pressure (Lashkari et al. 2021).

The average annual rainfall of the province is 560 mm 
(Arab Amiri and Mesgari 2019). Chaharmahal and Bakhtiari 
provinces have about 10% of the country's water resources. 
The country’s two major and strategic rivers, the Karon and 
the Zainderud, originate here. One of the main problems 
of this province is that a high percentage of groundwater is 
used for agriculture. In addition, a large percentage of drink-
ing water is obtained from aquifers (Heshmati and Beigi 
2012). The geographical location and sampling points are 
shown in Fig. 1.



Environmental Earth Sciences (2023) 82:395	

1 3

Page 3 of 18  395

Fig. 1   A view of the studied area in the central plateau of Iran (Sentinel-2; 2022)

Table 1   Some characteristics of sampling points are Chaharmahal 
and Bakhtiari Province, Iran

Sampling points X UTM Y UTM Elevation (m)

1 514,535 3,562,592 2212
2 517,037 3,553,338 2113
3 490,785 3,575,910 2067
4 489,226 3,568,569 2040
5 479,360 3,565,561 2046
6 514,195 3,551,645 2139
7 478,661 3,550,326 2012
8 512,004 3,545,626 2129
9 486,246 3,567,346 2043
10 499,023 3,571,760 2120
11 480,855 3,544,428 2028
12 509,209 3,545,787 2120
13 478,000 3,563,362 2085
14 498,003 3,548,407 2060
15 513,253 3,548,415 2142
16 492,813 3,551,065 2020
17 482,678 3,547,274 2016
18 482,324 3,572,362 2059
19 501,899 3,551,483 2087

Sampling points X UTM Y UTM Elevation (m)

20 486,477 3,543,356 2056
21 497,755 3,557,717 2164
22 495,290 3,556,864 2128
23 484,985 3,552,032 1998
24 514,381 3,560,073 2205
25 497,727 3,567,040 2145
26 477,526 3,573,127 2182
27 499,499 3,569,768 2152
28 510,588 3,563,785 2375
29 498,056 3,553,523 2067
30 488,564 3,573,404 2046
31 489,841 3,553,251 2021
32 493,782 3,572,511 2059
33 483,319 3,542,985 2025
34 485,185 3,557,220 2014
35 515,983 3,547,591 2136
36 503,233 3,545,981 2219
37 502,309 3,573,096 2158
38 485,205 3,562,129 2060
39 503,421 3,571,452 2177

Table1   (continued)
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Data sources and analyses

GWQ data are for 39 sampling sites in Chaharmahal and 
Bakhtiari, Iran. Water quality parameters included K+, Na+, 
Mg2+, Ca2+, SO42−, Cl−, HCO3

−, pH, TDS, and EC (Asghari 
et al. 2018; Iqbal et al. 2018). These data were provided by 

Iran Water Resources Management Company (IWRMC). 
Some characteristics of the sampling sites are shown in 
Table 1. Table 2 also contains the values of quality factors 
at each point. Sentinel 2 satellite imagery, digital elevation 
models (DEM), and shapefiles for the sampling points were 
used to monitor the studied area.

Table 2   Quantitative values 
of groundwater quality 
conditioning factors, 
Chaharmahal and Bakhtiari 
Province, Iran

a K, Na, Mg, Ca, SO4, Cl, HCO3, TDS (Mg L−1); EC (μS cm−1)

Sampling 
points

Ka Naa Mga Caa SO4
a Cla HCO3

a pH TDSa EC

1 0.02 0.64 1.70 2.35 1.02 0.51 3.11 8.11 300.07 462.64
2 0.02 1.31 1.57 2.17 1.47 1.00 2.49 8.15 331.53 510.21
3 0.02 0.91 1.06 2.29 0.75 0.41 3.07 7.91 276.55 428.64
4 0.03 1.11 1.86 2.52 0.86 1.01 3.61 7.83 347.35 534.47
5 0.02 0.18 1.04 2.57 0.32 0.29 3.14 7.87 238.07 366.55
6 0.03 0.63 1.74 2.45 0.75 0.81 3.24 8.11 311.12 478.86
7 0.03 0.37 2.03 2.82 0.37 0.36 4.52 7.84 327.93 505.03
8 0.03 1.62 2.54 3.50 1.07 1.95 4.65 7.81 494.14 759.77
9 0.03 1.53 3.02 3.46 2.16 2.16 3.66 7.90 510.53 787.50
10 0.02 0.59 1.35 2.85 0.86 0.47 3.45 7.88 303.21 466.93
11 0.02 0.17 0.82 2.68 0.22 0.25 3.21 8.00 234.40 360.42
12 0.02 0.38 0.88 2.64 0.34 0.48 3.07 7.85 247.96 381.65
13 0.02 0.10 0.76 2.46 0.21 0.20 2.86 7.85 207.38 319.14
14 0.02 0.20 1.11 2.69 0.25 0.29 3.44 7.90 250.90 386.40
15 0.03 1.95 1.93 3.38 0.59 3.77 2.92 8.01 477.25 734.17
16 0.03 0.95 2.17 3.22 0.82 1.15 4.35 7.84 404.39 622.17
17 0.04 0.26 1.78 2.52 0.35 0.39 3.85 7.91 287.13 441.77
18 0.03 1.01 1.90 2.96 1.06 0.96 3.82 8.03 371.94 588.19
19 0.02 0.26 1.74 2.54 0.36 0.32 3.80 8.08 288.32 444.21
20 0.02 0.39 1.74 2.06 0.54 0.31 3.27 8.09 265.75 408.57
21 0.03 0.69 2.08 3.72 1.00 0.70 4.81 7.90 417.62 637.69
22 0.03 1.05 1.50 2.49 0.65 1.49 2.90 7.90 318.48 488.06
23 0.03 0.47 2.38 3.15 0.73 0.83 4.46 7.88 376.43 579.29
24 0.03 0.81 1.50 2.48 0.94 0.77 3.03 8.07 315.04 479.00
25 0.03 1.53 1.99 3.02 1.30 1.89 3.32 7.86 416.00 640.18
26 0.03 0.55 1.93 2.52 0.59 1.02 3.39 7.91 317.54 489.08
27 0.02 0.40 1.07 2.93 0.58 0.39 3.44 7.85 278.42 428.56
28 0.02 0.23 0.97 1.92 0.38 0.32 2.38 8.03 196.94 303.01
29 0.03 0.77 1.95 2.98 0.88 1.22 3.58 7.85 363.81 559.83
30 0.02 0.66 1.82 3.14 0.78 0.52 4.34 7.86 353.81 544.52
31 0.03 0.68 2.35 2.90 0.81 0.75 4.32 7.83 372.99 572.55
32 0.02 0.79 1.40 2.70 0.89 0.51 3.47 7.90 311.44 478.97
33 0.03 0.34 1.84 3.24 0.57 0.45 4.38 7.88 342.50 526.27
34 0.02 0.27 1.43 2.75 0.21 0.31 3.90 7.83 279.00 427.89
35 0.03 2.17 3.27 4.26 1.17 5.33 3.17 8.03 646.25 990.07
36 0.02 0.15 0.85 2.67 0.22 0.25 3.17 7.84 229.09 351.31
37 0.02 0.53 1.32 2.84 0.70 0.45 3.51 7.86 293.82 452.97
38 0.04 3.02 3.07 4.17 1.55 4.65 4.07 7.96 659.09 1014.11
39 0.02 0.50 1.58 2.51 0.86 0.38 3.31 7.97 291.59 448.56
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Research methodology

Based on the flow chart (Fig. 2), groundwater quality param-
eters were quantified at each sampling point to conduct this 
study. Then, in ArcGIS 10.8 software, the values of each 
parameter were interpolated using the Kriging method, 
and all ten parameters were converted into grids (Ali and 
Ahmad 2020). These maps related to GWQ conditioning 
factors were shown in Fig. 3. Then, MLAs including RF, 
SVM, Naive Bayes, and KNN were used to construct the 
GWQ map (Leong et al. 2021; Ramadhani et al. 2021; Wang 
et al. 2021; Ilić et al. 2022). These models were coded and 
implemented based on Python (Lee et al. 2020). In this way, 
70% of the data set was used for training and 30% for valida-
tion. Finally, the most optimal model was selected based on 
the error statistics, including mean absolute error (MAE), 
MSE (mean square error), root mean square error (RMSE), 
and receiver operating characteristics (ROC) (Koranga et al. 
2022; Rasool et al. 2022).

To compare MLA results, the GT algorithm was used 
(Padarian et al. 2020). According to the Borda scoring algo-
rithm (Khiavi et al. 2022), ten studied parameters (K+, Na+, 
Mg2+, Ca2+, SO4

2−, Cl−, HCO3
−, pH, TDS, and EC) were 

prioritized at 39 sampling sites. The most critical points 
were selected in terms of GWQ. Finally, after selecting 
the high, medium, and low-quality points based on GWQ, 
AqQA software (Wu et al. 2017) was used, and the status 
of the points with the highest and lowest critical conditions 
in terms of water type, density, CO2 content, carbonate bal-
ance, and irrigation water was examined. Explanations of the 

application of MLA, GT, and the software used are provided 
below:

Machine learning algorithms

MLA algorithms have been used to predict continuous 
numerical outputs (Fernández-Delgado et al. 2019). MLA 
is divided into three categories: supervised MLA, unsuper-
vised MLA, and reinforcing MLA (Vafakhah et al. 2022). 
This study used RF, SVM, Naive Bayes, and KNN.

RF algorithm  This method is a non-parametric algorithm 
(Noi et al. 2017; Zhou et al. 2019). It is one of the most opti-
mal ML methods for decision-making and in a supervised 
manner (Breiman 2001; Vorpahl et al. 2012). This method 
consists of three parts: the number of parameters used in 
each tree, the number of trees, and the number of nodes 
(Peters et al. 2008).

In this model, the random vector �k , which is inde-
pendent of the random vectors �1 … .�k−1 , is generated 
for the K tree. Also, all vectors have the same distribu-
tion. The regression tree grows using training data and 
�k . The set of k trees is equal to 

{
h1(x), h2(x)… hk(x)

}
 , 

which is 
{
hk(x) = h

(
x, �k

)
, x =

{
x1, x2,… xp

}}
 here. These 

vectors are the next P input vector that makes up a for-
est. Generated K outputs correspond to each tree equal to 
ŷ1 = h1(x), ŷ2 = h2(x),… ŷk=hk(x) , where ŷk is the output of 
the K tree. The average of all tree predictions is calculated 
to obtain the final output.

Fig. 2   Flowchart of research 
methodology
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Fig. 3   Groundwater quality conditioning factors, Chaharmahal and Bakhtiari Province, Iran
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SVM algorithm  This algorithm was developed 1995 as a 
decision model (Cortes and Vapnik 1995). It belongs to 
the supervised learning methods used for classification and 
regression. The basis of SVM is a linear classification of 
data. In this algorithm, we try to choose the line with the 
most reliable margin (BOTSIS et  al. 2011). In machine 
learning, support vector machines with associated learning 
methods have been supervised to analyze the data for opti-
mal decisions (Sharifi Garmdareh et al. 2018; Vafakhah and 
Khosrobeigi Bozchaloei 2020).

Suppose N samples of the population are given by 
X ∈ Rm,

{
XK , YK

}N

K=1
, Y ∈ R , then Eq. (1) can be a regres-

sion function as below:

where ∅ represents the kernel functions, X is an input factor 
with m elements, Y is the output parameter, W is a weight 
vector, and b represents an error (Shabani et al. 2016). Cor-
tes and Vapnik (1995) showed optimization of the following 

(1)f (x) = W∅(X) + b,

Fig. 3   (continued)
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Eq. (2) where �k and �∗
k
 are parameters to reduce training 

bias based on Eq. (3) (Xie et al. 2012; Shabani et al. 2016):

Naive Bayes  This algorithm is a supervised method that 
uses Bayes’ theorem. This means that the method only 
assumes that each input variable is independent. This model 
works well despite insufficient or inappropriate data (Osi-
sanwo et  al. 2017). Depending on the data type of each 
characteristic, a different method is required. More specifi-
cally, the data estimate parameters from one of three stand-
ard probability distributions (Frank et al. 2000; Ren et al. 
2009). A polynomial distribution can be used for categori-
cal variables such as numbers or labels. If the variables are 
binary, the binomial distribution can be used. The Gauss-
ian distribution is often used for a numeric variable, such as 
a measurement. This classification algorithm requires less 
data volume and is more efficient than others (Tsangaratos 
and Ilia 2016).

KNN algorithm  This algorithm is used for the classifi-
cation of unknown problems assuming the presence of 
certain features (X) and a certain value (Y) (Avand et al. 
2019). The KNN is a non-parametric model. To calcu-
late the actual value to the nearest points, the maximum 
number of K in each neighbor and each selected point is 
used (Betrie et al. 2013). This algorithm assumes that the 
neighboring cells are classified into the same class based 
on the density function and the target matrix.

The basis of this model is to calculate the proxim-
ity of the real-time prediction value X_r = {x_1n, x_2n, 
x_3n, …, x_mr} to the forecast value in each observa-
tion X_t = {x_1b, x_2b, x_3b, …, x_mr} and based on the 
Euclidean distance function (Drt) (Naghibi et al. 2020):

where wi (i = 1, 2,..., m) is the weight of predictors whose 
sum is equal to one.

(2)1

2
‖W‖2 + C

k=N�
k=1

(�k − �
∗
k
)

(3)

subjectto

⎧
⎪⎨⎪⎩

Yk −WT∅
�
Xk

�
− b ≤ � + �k

WT∅(Xk + b − Yk ≤ � + �∗
k
)

�k�
∗
k
≥ 0

⎫
⎪⎬⎪⎭
k = 1, 2,… ,N

(4)Drt =

√√√√ m∑
i=1

wi(xir − xit)
2
, t = 1, 2,… , n,

Borda scoring algorithm

After quantifying the GWQ parameters, this algorithm 
was applied to weigh the parameters and identify areas 
at risk. For this purpose, the quantitative values of each 
parameter at each sampling site were calculated. Then, 
the output matrix of the GT algorithm was created 
(Fig. 4). Finally, the sampling sites were classified into 
three categories high, medium, and low quality based on 
the game theoretic algorithm. The Borda scoring algo-
rithm was a prioritization method for group decisions to 
evaluate parameters. The Borda score was determined for 
each candidate. It was the sum of the individual scores 
for each parameter (Avand et al. 2021). For every n rep-
resentative, there are n ranks. Accordingly, n − 1 points 
were assigned to the representative with the first rank and 
n − 2 with the second rank, and so on (Khiavi et al. 2022). 
The weight of each candidate was denoted by BS (A) and 
noted as (Eqs. 5–8):

(5)BS(A) = (n − 1) ∗ #{i|iranksAf irst} + (n − 2)

(6)∗ #{i|iranksAsecond} +⋯ + 1

(7)∗ #{i|iranksAsecondtolast} + 0

Fig. 4   Simple schematic of the GT algorithm (Source: Avand et  al. 
2021)
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where #{…} is the number of parameters (Balinski and 
Laraki 2007; Adhami and Sadeghi 2016).

Application of AqQA software

Water chemists have written AqQA for water chemists. The 
AqQA software can perform six data homogeneity tests 
based on AWWA-1030-E standard methods. The AqQa 
tools can easily create 11 diagrams, including time series, 
Schoeller diagrams, ion balance, Durov, Piper, and Stiff. The 
main advantages of this software were mixing the sample 
during the simulation process, determining the equilib-
rium of anions and cations using the ion balance diagram, 
determining the chemical properties of water, determining 
the type of water, and calculating the main properties of 
liquids (dissolved solids measurement, density measure-
ment, and others) (Ebrahime Moghadam and Abbasnejad 
2020). In addition, carbon balance calculations, TDS, EC, 
and organic, inorganic, biological, isotopic, and radioactive 
analyzes make the AqQA platform a suitable tool for water 
quality data analysis (Salehi et al. 2016; Gholamrazai 2020).

To summarize the research methodology, a GWQ map 
was first created based on chemical parameters and using 
MLA in Python. Then, using different error statistics, the 
best model was selected. Then, Borda scoring was applied 
to identify critical points related to GWQ. Finally, AqQA 
software analyzed water quality conditions at critical and 
non-critical points. GWQ conditions were analyzed chemi-
cally and qualitatively.

Results

Results of machine learning algorithms (MLAs)

The results related to the error statistics for determining the 
best MLA are shown in Table 3. In addiiton, the receiver 
operating characteristics for evaluating the GWQ maps at 

(8)∗ #{i|iranksAlast}, each sampling point based on machine learning are shown 
in Fig. 5.

The significant percentage of GWQ conditioning factors 
(K+, Na+, Mg2+, Ca2+, SO4

2−, Cl−, HCO3
−, pH, TDS, and 

EC) based on the fit of the best model (RF algorithm) is 
shown in Fig. 6. Figure 7 also shows the GWQ map based on 
the RF algorithm (with the lowest error and highest AUC).

Results of the GT algorithm

After creating the decision matrix for an optimal MCDM, 
the Borda scoring algorithm based on GT was used, and the 
GWQ conditioning factors were prioritized based on sample 
points. In this algorithm, the criteria, GWQ conditioning 
factors, and alternatives were sample points, and the pri-
oritization results are included in Table 4. To compare the 
prioritization and identification of critical sampling points 
based on GWQ in three classes, Table 5 was used. The pri-
oritization results were presented using the Borda scoring 
algorithm based on GT and the most optimal MLA (RF algo-
rithm) (Table 5).

Results of the chemical properties of the fluid

The results of the analysis of chemical parameters (K+, 
Na+, Mg2+, Ca2+, SO4

2−, Cl−, HCO3
−, pH, TDS, and EC) 

affecting GWQ were determined using AqQA software at 
critical and non-critical sampling points (the highest and 
lowest scores based on the RF algorithm and the Game the-
oric Borda scoring algorithm) and presented in Table 6. The 
results of the ratio of important ions, including Na+/Cl−, 
Ca2+ + Mg2+/HCO3

− + SO4
−, Ca2+/HCO3

−, Mg2+/HCO3
−, 

Ca2+/SO4
− and SO4

−/HCO3
−, were shown in Fig. 8. The 

ion balance diagram for critical and non-critical points (the 
highest and lowest scores based on RF algorithm and Game 
theoric Borda scoring algorithm) in the study area, Iran, is 
shown in Fig. 9.

Discussion

The change in GWQ, usually caused by mismanagement of 
water harvesting, chemical fertilizers, and similar factors, 
has become a prelude to destroying other resources, directly 
or indirectly (Li et al. 2018; Kumar et al. 2019b). In many 
countries, including Iran, groundwater is one of the most 
important water sources for drinking, industry, and agri-
culture. Utilizing these sources and surface water contain-
ment has always been considered an option. In many parts 
of Iran, groundwater is essential for drinking, agricultural, 
and industrial water supply due to a lack of access to surface 

Table 3   Predictive capability of groundwater quality modeling using 
MLA

Models Criteria

MAE MSE RMSE AUC​

RF 0.261 0.111 0.333 0.930
SVM 0.375 0.370 0.612 0.620
Naive Bayes 0.25 0.25 0.5 0.770
KNN 0.458 0.450 0.677 0.610
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water (Mirzaei et al. 2019; Maghrebi et al. 2020). Applying 
appropriate management methods in using existing water 
resources and reducing the high cost of their development 
and use can also optimize the scale of use of these resources. 
In this study, MLA and GT were combined to investigate 
GWQ in the central plateau of Iran.

According to Table 3 and Fig. 5, among the MLA, includ-
ing RF, SVM, Naive Bayes, and KNN, the RF algorithm with 
error values of MAE = 0.261, MSE = 0.111, RMSE = 0.333, 
and AUC = 0.930 was selected as the most optimal algo-
rithm in GWQ mapping (Tesoriero et al. 2017; Norouzi and 
Moghaddam 2020; Nafouanti et al. 2021; He et al. 2022). In 
addition, the RF algorithm confirmed several fields (Lianjun 

Fig. 5   ROC curve for groundwater quality mapping: a RF, b SVM, c Naive Bayes, d KNN
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2016; Pham et al. 2021; Vafakhah et al. 2022). In addition, 
many studies highlighted the use of MLA for WRM (Star-
zyk 2010), landslides (Hong et al. 2015), erosion (Tien Bui 
et al. 2019), and urban water management (Rozos 2019). 
The main advantage of this algorithm over other MLAs is 
that this algorithm uses the best variables randomly selected 
from the input variables to build a tree (Demir and Sahin 
2022; Vafakhah et al. 2022). This procedure reduces the 
overall error of the model. Another advantage of this algo-
rithm is that it avoids model fitting. This algorithm’s insensi-
tivity to the data's normality is another important advantage. 
On the other hand, it provides suitable results for classified 
data types and generally has a reasonable application speed 
compared to other MLAs (Kotsiantis and Pintelas 2004; 
Rahman et al. 2020).

Among the factors affecting GWQ and based on the 
importance of these factors, chlorine ions (Rao et al. 2012; 
Krishna Kumar et al. 2015) with 25% and sulfate ions 
(Subramani et al. 2005; Sharma and Kumar 2020) with 
2.5% had the greatest and least influence on GWQ in the 
central plateau of Iran, respectively (Fig. 6). Based on 
the GWQ map using the algorithm RF (Fig. 7), 42.71% 
(558.12 ha) of the studied area in the central plateau of 
Iran was in poor condition. The percentage of classes 
with moderate and high GWQ in this region was 18.93% 
(247.35 ha) and 38.36% (501.33 ha), respectively (Ahank-
oub et al. 2022). In general, the results of the RF algorithm 
showed that parts of the central plateau of Iran were in a 

critical condition in terms of GWQ (Bhunia et al. 2018; 
Jamshidzadeh and Barzi 2018; Esfandiari et  al. 2019; 
Talebiniya et al. 2019). In this context, (Mousavi et al. 
2020) investigated the spatial and temporal changes of 
GWQ parameters based on drinking water and agricul-
ture in the Lordegan Plain of Chaharmahal and Bakh-
tiari provinces, Iran. The results showed that TH and the 
TDS parameters were more beneficial for drinking water 
consumption. In addition, for agriculture, SAR and EC 
parameters were very good in the whole plain during the 
statistical period.

After mapping GWQ based on chemical parameters using 
MLAs, the GT algorithm was used to validate the RF algo-
rithm to measure the accuracy of ML in identifying critical 
areas (Table 4). Based on the results of GT, sampling point 
30, with a score of 356, was selected as the most critical 
point in terms of GWQ. In addition, point number 38, with 
a score of 20, was selected as the most non-critical area in 
the central plateau of Iran. Based on the ML results, these 
two sampling points gave similar results to the algorithm 
GT (Table 5). The results of GT showed that using differ-
ent parameters was very important for checking GWQ and 
proved the necessity of MCDM methods (Srdjevic et al. 
2012). According to Madani (2010), game-theoretic algo-
rithms are one of the best methods to evaluate the decision-
making of stakeholders and policymakers in a region. The 
Borda scoring algorithm considers majority opinion to deter-
mine the degree of importance (Elkind et al. 2011; Mah-
jouri and Bizhani-Manzar 2013). This algorithm was easy 
to use, which increased its popularity. Adhami and Sadeghi 
(2016) and Mahjouri and Bizhani-Manzar, (2013) found this 
method suitable for studies in which the priorities of the 
majority of voters are considered. Of course, GT had many 
advantages, but one of the main problems of this method was 
its semi-distribution, which was not pixel-oriented, unlike 
MLA (Avand et al. 2021).

After determining the most critical and non-critical points 
using various methods, the chemical conditions of these 
areas were examined using GWQ. The results presented in 
Table 6 confirm the results of RF and Borda scoring based 
on GT. Thus, the water quality condition at sampling site 
30, the most critical area, was unfavorable. Thus, at this 
site, Mg-Cl (Zakaria et al. 2021) and the TH and TDS (Sar-
ath Prasanth et al. 2012; Tiwari and Singh 2014; Aryafar 
et al. 2019; Karthik et al. 2019) were about 53% higher than 
at point number 38 (the most uncritical site, based on the 
results of RF and Borda scoring algorithm). On the other 
hand, carbonate balance also exhibited high variability 
(Morgenstern and Daughney 2012; Singh et al. 2013). In 
addition, the evaluation of GWQ about irrigation showed 

Fig. 7   Groundwater quality mapping based on the RF model, Chaha-
rmahal and Bakhtiari Province, Iran
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that the salinity risk at point number 30 was much higher 
than in other areas, and the sodium absorption ratio (SAR) 
was also in an inappropriate condition (Rawat et al. 2018) 
(Table 6). In this context, (Gharechaee et al. 2022) evaluated 
the vulnerability of groundwater to salinity in the southern 

plains of the Bakhtegan watershed in central Iran and con-
cluded that a large part of the studied area was vulnerable 
to high salinity. The ion ratio between sampling sites also 
showed a high correlation between the values of sodium and 
chlorine ions, about 0.83. In China, (Zhang et al. 2021) also 

Table 4   Weighted scores 
of sampling points based 
on groundwater quality 
conditioning factors, Borda 
algorithm

Sampling 
points

Groundwater quality conditioning factors

K+ Na+ Mg2+ Ca2+ SO4
− Cl− HCO3

− pH TDS EC Total

1 25 10 30 21 9 9 36 5 22 22 189
2 12 7 19 13 8 8 26 34 12 12 151
3 36 33 36 34 38 35 25 20 36 36 329
4 8 12 20 1 11 6 14 35 7 7 121
5 32 14 34 30 18 25 35 16 30 29 263
6 31 30 13 8 16 32 3 19 21 20 193
7 11 4 8 18 4 3 18 21 6 6 99
8 27 24 28 27 27 31 23 10 27 27 251
9 24 23 31 36 30 21 38 18 33 32 286
10 35 35 35 35 33 34 37 0 35 35 314
11 10 11 3 15 6 17 7 8 5 5 87
12 22 22 33 24 22 22 31 3 29 28 236
13 34 36 26 33 14 36 4 29 34 34 280
14 21 26 14 7 29 23 5 33 19 19 196
15 30 37 38 38 34 38 11 32 37 37 332
16 13 20 17 4 31 19 8 37 15 15 179
17 7 32 15 2 36 27 1 38 23 23 204
18 23 19 18 5 20 24 13 36 17 17 192
19 5 5 4 0 10 7 0 30 0 0 61
20 6 1 2 16 2 1 10 4 2 2 46
21 4 2 1 17 3 2 12 28 3 3 75
22 37 6 21 12 7 12 28 25 11 11 170
23 19 9 23 32 12 14 34 15 24 24 206
24 16 8 12 20 0 5 29 2 10 8 110
25 18 25 11 19 28 18 21 22 18 18 198
26 3 27 6 3 19 13 6 23 8 10 118
27 29 17 27 10 15 29 17 24 20 21 209
28 28 31 24 11 26 28 24 1 25 25 223
29 17 21 22 29 21 20 32 11 26 26 225
30 38 38 37 37 37 37 30 26 38 38 356
31 1 15 16 9 24 10 15 27 13 13 143
32 15 16 9 22 17 15 22 13 14 14 157
33 33 34 29 28 35 33 16 12 32 33 285
34 9 13 7 25 13 11 19 7 9 9 122
35 14 18 10 23 25 16 20 17 16 16 175
36 20 29 25 26 32 26 27 31 28 30 274
37 26 28 32 31 23 30 33 6 31 31 271
38 0 0 0 6 1 0 2 9 1 1 20
39 2 3 5 14 5 4 9 14 4 4 64
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concluded that there was a high correlation between Na and 
Cl ions to study GWQ and ion ratios. This was although no 
significant trend was observed for the other ratios (Fig. 8). 
the ion balance diagram also showed that the number of ions 
affecting water quality was very high at the critical sampling 
point compared to other areas.

Conclusion

Increasing pollution due to population growth, urban waste-
water discharge, industrial and agricultural wastewater dis-
posal, and landfills have contributed to the spread of pollu-
tion and the degradation of water resources. Therefore, this 
study aimed to map the GWQ in the central plateau of Iran 
by validating the MLAs using GT algorithms. On this basis, 
chemical parameters related to water quality, including K+, 
Na+, Mg2+, Ca2+, SO4

2−, Cl−, HCO3
−, pH, TDS, and EC, 

were interpolated at 39 sampling sites. Then the algorithms 
RF, SVM, Naive Bayes, and KNN in Python were used. 
The map in terms of GWQ was presented in three classes 
(high, moderate, and low quality). The Borda scoring algo-
rithm was used to validate the MLA, and 39 sample points 
were prioritized. Finally, AqQA software was used, and 
the critical and non-critical points were analyzed based on 
the results of MLA and GT according to chemical aspects, 
carbonate balance, ionic ratios, and salinity. Based on the 
results, the RF algorithm was selected as the most optimal 
algorithm for GWQ mapping among the MLA algorithms. 
The results of the RF algorithm showed that parts of the 
central plateau of Iran are in a critical condition concerning 
GWQ. The results of GT showed that using different param-
eters was very important for checking GWQ and proved the 
necessity of MCDM methods.

The results related to the prioritization of sampling sites 
using the GT algorithm showed a high similarity between 
the results of this algorithm and the RF model in GWQ 
mapping. In addition, the analysis of the chemical status of 
the critical and non-critical points in terms of water quality 
based on the results of RF and GT showed that the chemi-
cal aspects, carbonate balance, SAR, HCO3- content, and 
salinity hazard at the critical points (based on two methods 
of MLA and GT) were in poor condition. In addition, the 
ion ratio between sampling points showed a high corre-
lation between the values of sodium and chlorine ions. 
In general, it can be said that the combined application 
of MLA and GT based on the results of this study pro-
vides a good basis for the construction of the GWQ map 
in the central plateau of Iran. Due to human intervention, 
the development of unauthorized wells, and change in 
climatic components, groundwater quantity, and quality 
have decreased in Chaharmahal and Bakhtiari provinces of 
Iran. The results of this study can also help policymakers 
in managing groundwater resources. For future studies, 
it is suggested to use new deep learning algorithms and 
optimal MCDM methods, such as the best–worst method 
(BWM). With more complete and comprehensive data, 
GWQ should be studied in other parts of the central pla-
teau of Iran.

Table 5   Comparative results of prioritizing sampling points based on 
GTA and RF

Sampling points Borda algorithm RF model

1 Low quality Low quality
2 Low quality Low quality
3 Low quality Low quality
4 Moderate Low quality
5 Low quality Low quality
6 Low quality Moderate
7 Moderate Low quality
8 Low quality Low quality
9 Low quality Low quality
10 Low quality Low quality
11 Moderate Low quality
12 Low quality Low quality
13 Low quality Low quality
14 Low quality Low quality
15 Low quality Low quality
16 Low quality Low quality
17 Low quality Low quality
18 Low quality Low quality
19 Moderate Low quality
20 High quality Low quality
21 Moderate Low quality
22 Low quality Lowquality
23 Low quality Low quality
24 Moderate Low quality
25 Low quality Low quality
26 Moderate Moderate
27 Low quality Low quality
28 Low quality Low quality
29 Low quality Low quality
30 Low quality Low quality
31 Moderate Low quality
32 Low quality Low quality
33 Low quality Moderate
34 Moderate Low quality
35 Low quality Low quality
36 Low quality Moderate
37 Low quality Low quality
38 High quality High quality
39 Moderate Low quality
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Table 6   Analysis of different 
parameters of GWQ in critical 
and non-critical points based on 
Borda scoring algorithm based 
on GT

Data analysis WQP Number of sampling points

Sample 30 Sample 38

Fluid properties Water type Mg-Cl Ca-HCO3

TDS 529 mg/l 208 mg/kg
Density 0.99743 g/cm3 0.99719 g/cm3
EC 815 µmho/cm 320 µmho/cm
TH (as CaCO3) 18.846 mg/l 9.5369 mg/kg

Carbonate equilibrium CO3 237.1 × 10−6 mmolal 173.1 × 10–6 mmolal
HCO3 0.04001 0.04758
CO2 748.8 × 10−6 0.001424
Partial Pressure of CO2 20.41 × 10−6 atm 38.81 × 10−6 atm

Irrigation waters Salinity hazard High Medium
Sodium Adsorption Ratio 230 × 10−3 8.44 × 10−3

Fig. 8   Ionic ratio plots of the 
major ions: a Na/Cl, b Ca + Mg/
HCO3 + SO4, c Ca/HCO3, d Mg/
HCO3, e Ca/SO4, f SO4/HCO3
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