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Abstract
A cost effective and easily applied methodological approach for the identification of the main factors involved in flood gen-
eration mechanisms and the development of rainfall threshold for incorporation in flood early warning systems at regional 
scale is proposed. The methodology was tested at the Pinios upstream flood-prone area in Greece. High frequency monitoring 
rainfall and water level/discharge time-series were investigated statistically. Based on the results, the study area is impacted 
by “long-rain floods” triggered by several days long and low-intensity precipitation events in the mountainous areas, that 
saturate the catchment and cause high flow conditions. Time lag between the peaks of rainfall and water level was 17–25 h. 
The relationship between cumulative rainfall Rsum on the mountainous areas and maximum water level MaxWL of the river 
at the particular river site can be expressed as: MaxWL = 1.55ln(Rsum) − 3.70 and the rainfall threshold estimated for the 
mountainous stations can be expressed as: Rsum = 20.4*D0.3, where D is the duration of the event. The effect of antecedent 
moisture conditions prior each event was limited to the decrease of the time lag between rainfall and water level response. 
The limitations of the specific methodological approach are related to the uncertainties that arise due to the other variables 
contributing to the complex flood generating mechanisms not considered (e.g., the effect of snowmelt and air temperature, 
soil characteristics, the contribution of tributaries, or the inadequate maintenance of river network that may cause debris 
accumulation and river bank failure).

Keywords  Automatic telemetric monitoring stations · Antecedent soil moisture conditions · Time-series statistical 
analysis · Cross-correlation analysis · Support vector machine · Pinios river, Greece

Introduction

Floods have been reported to be one of the most destruc-
tive natural hazards affecting both the natural environ-
ment and infrastructures, especially in the Mediterranean 
area (Petersen 2001; Llasat et al. 2010; Gaume et al. 2016; 
Diakakis et al. 2020). They have often been associated with 
high rates of fatalities and injuries (Menne and Murray 
2013; Diakakis and Deligiannakis 2017) and severe eco-
nomic and social impacts (Petersen 2001; Barredo 2009). 
The implementation of various measures to mitigate flood 
risk on human health, cultural heritage and economic activi-
ties in the context of Flood Directive 2007/60 (European 

Commission Council 2007), may have a negative impact on 
the hydromorphological conditions of surface waterbodies 
and may prevent the achievement of good water status, as 
dictated by Water Framework Directive 2000/60 (European 
Parliament Council of the European Union 2000; Dworak 
and Kampa 2018).

Operational real-time flood forecasting systems focus on 
identifying the flood generating processes in time. Floods 
can be exacerbated by land use change (Hall et al. 2014; 
Mentzafou et al. 2019) and high antecedent soil moisture 
conditions (Norbiato et al. 2009; Montesarchio et al. 2015; 
Grillakis et al. 2016). Apart from structure’s failure and 
rapid snow melt, the most common and important flood 
triggering factor is precipitation (Hong et al. 2013). There-
fore, the determination of rainfall thresholds is of particular 
interest as one of the evolving flood forecasting approaches 
(Golian et al. 2010) and can be used for local and regional 
flood forecasting and flood early warning systems (Norbiato 
et al. 2008; Montesarchio et al. 2009, 2015; Abancó et al. 
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2016). Flood early warning systems are usually based on 
thresholds that assume that there is a physical or statisti-
cal relationship between a variable called “predictor” (e.g. 
rainfall) and a variable called “predictand” (e.g. river dis-
charge or water level) (Martina 2011) and are incorporated 
in decision support systems (Kochilakis et al. 2016). Rainfall 
thresholds can be defined as the cumulated volume of rain-
fall during a specific storm event that occurs over a given 
catchment area, which can result to a critical discharge or 
water level (bankfull flow) at a specific river section (Geor-
gakakos 2006; Martina 2011; Henao Salgado and Zambrano 
Nájera 2022).

Although Greece has been subjected to high flood risk 
since antiquity, an increasing trend of flood events during 
the last decades has been reported (Diakakis et al. 2012; 
Angelakis et al. 2020). Recently, major flood events were 
followed by major adverse consequences on the socioeco-
nomic activity and even fatalities (Papaioannou et al. 2019, 
2021; Giannaros et al. 2020). In Greece, the Ministry of 
Climate Crisis and Civil Protection (MCCCP) (Hellenic 
Republic 2021) operates the Civil Protection Operation 
Centre (CPOC) and is responsible to plan, organize and 
coordinate actions regarding risk assessment; to response 
to natural, technological or other disasters or emergencies; 
to coordinate rehabilitation operation; and to inform the pub-
lic on these issues (Hellenic Republic 2020). The CPOC 
is informed of Emergency Weather Deterioration Bulletins 
(EDEK) and Emergency Severe Weather Forecast Bulletins 
(EDPEKF) produced by the Hellenic National Meteorologi-
cal Service (HNMS) (http://​www.​emy.​gr/​emy/​en/​warni​ng/​
meteo​alarm). HNMS is the official agency of Greece respon-
sible for issuing severe weather alerts, such as heavy rain 
with risk of flooding, and severe thunderstorms (Hellenic 
Republic 1997). Apart from HNMS, many national or Euro-
pean research centers and educational institutions of Greece 
produce similar meteorological products (Kallos et al. 1997; 
Papadopoulos et al. 2002; Smith et al. 2016; Lagouvardos 
et al. 2017; Varlas et al. 2021). Nevertheless, based on the 
recent General Emergency Confrontation and Direct Mitiga-
tion Plan against Flood Events “Dardanos” of MCCCP, these 
products should not be used by the state for the official early 
warning alerts (Administrative Region of Thessaly 2020).

Flood forecasting and effective flood early warning sys-
tems at a specific area premise the understanding of how the 
hydrometeorological processes leading to extreme weather 
events, trigger water overflow at a river reach (Alfieri and 
Thielen 2015). Although the tendency is towards the use of 
physical-based hydrometeorological systems that combines 
atmospheric model with hydrological and hydraulic models 
(Papaioannou et al. 2019), there are still significant problems 
to be overcome to improve flood forecasting accuracy and 
reliability. For example, data errors, including those describ-
ing the physiographic characteristics of the watershed, 

sensitive dependence on the initial conditions, and errors 
introduced because of imperfections in the models’ integra-
tion, may reduce the value of stream forecasting and routing. 
The present study intends to provide a defensible proof-of-
concept when only available measurements are considered 
for issuing a quick flood warning. In particular, it aims to 
fill the gap between atmospheric forcing and severe weather 
alerts, and a river’s response and possible bankfull flow 
using a threshold-based flood warning approach. The final 
task is to propose a simple and cost-effective methodologi-
cal approach for the better understanding of the underlying 
flood generating mechanisms and rainfall thresholds iden-
tification that can be incorporated into a flood forecasting 
and warning system for issuing generalized alerts for flood 
events at regional scale (Fig. 1). The methodology proposed 
was tested at the flood-prone upper part of the Pinios river’s 
catchment in Greece but can be applied to any regional area.

The proposed methodology relies on high frequency 
monitoring time-series (hourly rainfall and water level/
discharge data). Information regarding the antecedent 
moisture conditions (AMC) of the catchment area prior 
each severe weather event was also taken into considera-
tion during the analysis. To identify the severe weather 
events that resulted to a corresponding water level rise of 
the Pinios river, and to determine the time lag between 
the occurrence of the two events, cross-correlation anal-
ysis between rainfall and water level time-series was 
performed. Additionally, linear regression analysis and 
descriptive statistics, frequency histograms, box-plots and 
correlation analysis between the variables of interest were 
performed. The variables examined were related to:

–	 severe weather event: duration of the severe weather 
event, maximum hourly rainfall, cumulative rainfall, 
rainfall intensity;

–	 river’s response: maximum water level, maximum and 
average discharge, and time lag between the peaks of 
rainfall and water level;

–	 antecedent moisture conditions: Soil Water Index 
(SWI) on the date the severe weather event started.

Finally, rainfall thresholds were developed by defining 
the upper limit of conditions of storms that did not lead to 
flooding (Cannon et al. 2008; Diakakis 2012). The iden-
tification of these thresholds was achieved using the sup-
port vector machines (SVM) method. SVM is a supervised 
learning algorithm that can be used to determine the lines 
or boundaries dividing an n-dimensional space into sepa-
rate groups, so that they can be classified as their proper 
categories when new data are given (Cortes and Vapnik 
1995). This approach has been efficiently used in the past 
in similar applications (Nayak and Ghosh 2013; Pan et al. 
2019; Chu et al. 2022).

http://www.emy.gr/emy/en/warning/meteoalarm
http://www.emy.gr/emy/en/warning/meteoalarm
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Materials and methods

Study area—monitoring program

The study area is located at the upstream, western part of the 
Pinios catchment, in Greece (Fig. 2i). The Pinios catchment 
area is about 11,000 km2, while the upstream area of interest 
is about 2250 km2. The Pinios river is located in Thessaly, 
Central Greece, which is the second most productive agri-
cultural area in Greece (about 4150 km2 utilized agricultural 
area for the year 2019 (Hellenic Statistical Authority 2022). 
The climate of the study area is typical Mediterranean, with 
cold winters and moderate precipitation rate, followed by 
relatively hot and dry summers (hot-summer Mediterranean 
climate Csa) (Kottek et al. 2006), and with large temperature 
differences (Mylopoulos et al. 2009) (Fig. 2ii). The rainfall 
of the Pinios catchment exhibits large spatial variability, 
ranging between 360 and 1850 mm, at the eastern-coastal 
and the western-mountainous part of the basin respectively, 
while the average annual precipitation of the entire basin is 
about 780 mm (Mylopoulos et al. 2009). The main course 
of the Pinios river is perennial and is fed mainly by both 
winter rainfalls and spring snowmelt (Bathrellos et al. 2018). 
Rainfall events in the mountainous areas usually take place 
between October and January (Hellenic National Meteoro-
logical Service 2022).

The Pinios river and its tributaries are flood prone since 
the antiquity and several flood protection structures along 
the entire hydrological network have been constructed over 
the last 2500 years (Mimikou and Koutsoyiannis 1995). 
The study area is located in the western part of the Thes-
salian plain, downstream of the city of Trikala, where the 

smooth morphology and low gradient favored the creation 
of a paleo-lake for the period between late Quaternary 
and late Holocene. This was gradually aggregated due to 
sedimentary processes (Migiros et al. 2011; Caputo et al. 
2021); for this reason the study area is associated with 
many flood events (Diakakis et al. 2012; Bathrellos et al. 
2018). Additionally, the western part of Pinios water-
shed has been identified as an Area of Potential Signifi-
cant Flood Risk (code EL08APSFR003) and in the study 
area over 22 flood events have been reported since 1979 
(Ministry of the Environment and Energy of Greece 2020) 
(Fig. 2iii).

For the present study, hourly time series covering the 
period between 01/09/2019 and 31/03/2022 were employed. 
The water level telemetric monitoring station Nomi at the 
Pinios river is part of the automatic monitoring network of 
the Hellenic Centre for Marine Research (HCMR), installed 
through HIMIOFoTS national project (HIMIOFoTS 2020). 
The time series from the Nomi telemetric station are auto-
matically stored on an FTP server. Graphical visualization 
of the dataset is available online in real time, while the alert 
water level is set at 2.0 m empirically (Panagopoulos et al. 
2021) (Table 1).

Hourly rainfall data were available from private mete-
orological stations, part of the weathercloud network. Only 
stations upstream the Nomi water level monitoring station 
and with good data quality were selected for the present 
study. Overall, four meteorological stations meet the cri-
teria mentioned above. Three of these stations are located 
in mountainous areas (Fylakti, Gardiki, and Elati stations), 
while one is located lowland (Trikala station). Finally, 
Gardiki station is located in the neighboring catchment 

Fig. 1   Methodological chart for the investigation of the main factors controlling the flood generating mechanism and the estimation of rainfall 
thresholds at regional scale



	 Environmental Earth Sciences (2023) 82:242

1 3

242  Page 4 of 15

of the Pinios basin, in the west, while Fylakti station is 
near the drainage divide of the Pinios watershed (Fig. 2iii; 
Table 1).

Before proceeding to the statistical analysis of the current 
database, quality assurance and control was conducted fol-
lowing the common practice proposed by the World Mete-
orological Organization (2013). Data screening and process-
ing operations were performed by checking the data against 
specified screening criteria such as the allowable variable 
ranges, historical maxima or minima, allowable rates of 

change, comparison with measurements conducted by dif-
ferent instruments, etc.

2.2. Antecedent moisture conditions (AMC)

Many studies have highlighted the contribution of AMC at 
the beginning of a severe weather events on a catchment’s 
hydrological response and flood generation (Berthet et al. 
2009). Information regarding the AMC of the catchment area 
upstream Nomi water level monitoring station, prior each 

Fig. 2   (i) Orientation map of the study area at the Pinios catchment, 
(ii) Köppen–Geiger climatic types of the Pinios catchment area (Beck 
et al. 2018), and (iii) study area and location of the telemetric moni-
toring stations used in the present study. Delineation of paleo-envi-

ronments of the Pinios watershed during Quaternary after Migiros 
et al. (Migiros et al. 2011). Areas of Potential Significant Flood Risk 
and Historic flood events after the Ministry of the Environment and 
Energy of Greece (2020)

Table 1   Monitoring stations used in the present study

Station name Latitude (°) Longitude (°) Elevation (m) Parameter Owner Website

Nomi 39.5266 21.9383 91.2 Water level-discharge HCMR-IMBRIW https://​hydro-​stati​ons.​hcmr.​gr/​nomi-​stati​
on/

Fylakti 39.3033 21.6789 1031.1 Rainfall Private https://​app.​weath​erclo​ud.​net/​d1475​
583384#​profi​le

Trikala 39.5400 21.7580 113.0 Rainfall Private https://​app.​weath​erclo​ud.​net/​d3209​
014372#​profi​le

Gardiki 39.5427 21.2576 1104.9 Rainfall Private https://​www.​wunde​rgrou​nd.​com/​dashb​
oard/​pws/​ITRIK​ALA2

Elati 39.5012 21.5419 948 Rainfall Private https://​app.​weath​erclo​ud.​net/​d2383​
035657#​profi​le

https://hydro-stations.hcmr.gr/nomi-station/
https://hydro-stations.hcmr.gr/nomi-station/
https://app.weathercloud.net/d1475583384#profile
https://app.weathercloud.net/d1475583384#profile
https://app.weathercloud.net/d3209014372#profile
https://app.weathercloud.net/d3209014372#profile
https://www.wunderground.com/dashboard/pws/ITRIKALA2
https://www.wunderground.com/dashboard/pws/ITRIKALA2
https://app.weathercloud.net/d2383035657#profile
https://app.weathercloud.net/d2383035657#profile
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severe weather event, was retrieved from satellite measure-
ment of Soil Water Index (SWI). The SWI quantifies the 
moisture condition at various depths in the soil and is mainly 
driven by the precipitation via the process of infiltration. For 
the present study, the product used was the Copernicus Global 
Land Service Soil Water Index at 1 km resolution (SWI1km), 
derived using a data fusion approach, named SCATSAR (Scat-
terometer-Synthetic Aperture Radar) algorithm (Bauer-Mar-
schallinger et al. 2018), from microwave radar data observed 
by the MetOp ASCAT and the Sentinel-1 C CSAR satellite 
sensors (Bauer-Marschallinger et al. 2020). The algorithm is 
based on a two-layer water balance model proposed by Wagner 
et al. (1996) to estimate profile soil moisture from Surface Soil 
Moisture (SSM) retrieved from scatterometer data (Eq. 1):

where tn is the observation time of the current measure-
ment, ti are the observation times of the previous measure-
ments and T is the time constant of the filter in days. The 
parameter T characterizes the temporal variation of soil 
moisture within the root-zone profile (Laiolo et al. 2016), 
and is mainly controlled by climatic variables (precipitation 
and evaporation), land cover and runoff signatures, rather 
than soil properties (Wang et al. 2017; Bouaziz et al. 2020), 
and usually ranges between 5 and 100 (Wagner et al. 1996; 
Bauer-Marschallinger et al. 2020). In vegetated areas, T val-
ues are higher than in bare ground (Wang et al. 2017; Loizu 
et al. 2018), while T values are low in areas with high evapo-
rative demand and less frequent but more intense precipita-
tion (Albergel et al. 2008; Bouaziz et al. 2020). Very often 
and especially in cases of soil data deficiency, a T value of 
about 20 days is used in hydrological applications, while 
values between 15 and 30 days provide reasonable results 
(Wagner et al. 1996). Nevertheless, based on literature, in 
agricultural-dominant catchments (Ceballos et al. 2005; 
Brocca et al. 2010) or in forested areas (Brocca et al. 2010) 
a T value of about 50 days have been estimated. Since the 
upstream of Nomi station catchment is mainly covered by 
forests (68%) and secondarily by agricultural areas (28%) 
(Corine CLC 2018) (European Environment Agency 2020), 
a T value of 40 was adopted for the specific application.

SWI gridded data are available to the public (after regis-
tration) through the Copernicus Global Land Service online 
product portal (European Commission-European Environment 
Agency 2022).

Time‑series statistical analysis

In the specific study, the statistical analysis was per-
formed between hourly data series (water level/discharge 
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measurements of Nomi station, and rainfall of four upstream 
meteorological stations-Fylakti, Trikala, Gardiki and Elati). 
The statistical analysis in the present study was based on 
linear regression analysis, descriptive statistics, frequency 
histograms, box-plots and bivariate correlations analysis 
using Pearson correlation coefficient-CC.

Additionally, the statistical tool employed to examine 
firstly the time lag, and secondly the inter-relationship 
between rainfall and water level/discharge of the selected 
monitoring stations of each severe weather event, was cross-
correlation analysis. This approach allows the determination 
of the extent to which two time-series exhibit oscillations, 
differing by a distance of k units in time (Legendre and Leg-
endre 2012). The time lag between lag 0 and the lag of the 
maximum value of the cross-correlation function gives an 
estimation of the response of the system against an unitary 
impulse (Benavente et al. 1985). Cross-correlation coeffi-
cient rxy(k ) can be defined as (Eq 2):

where Cxy(k) is the cross-correlogram, and σx and σy are the 
standard deviations of the time-series. The overbar repre-
sents the temporal mean value of the signal (Larocque et al. 
1998). The higher the rxy(k ), the more prominent is the inter-
relation between the two time-series (Lee and Lee 2000).

To identify the weather events that resulted in a corre-
sponding response of the water level of the river, the fol-
lowing interpretation criteria were used: rxy(k) < 0.1: no 
correlation, 0.1 ≤ rxy(k) < 0.3: weak correlation, 0.3 ≤ rxy(k
) < 0.5: moderate correlation, rxy(k) ≥ 0.5: strong correlation 
(Shi et al. 2018). Only those severe weather events cross-
correlated with river water level resulting to a rxy(k) ≥ 0.3 (at 
least moderate correlation) were further analyzed.

The variables examined were related to:

–	 severe weather event: duration of the severe weather 
event (D, in h), maximum hourly rainfall (Rmax, in mm/h), 
cumulative rainfall (Rsum, in mm), rainfall intensity (Rint, 
in mm/h) recorded at the four meteorological stations;

–	 river’s response: maximum water level (MaxWL, in m), 
maximum (Qmax, in m3/s) and average (Qav, in m3/s) dis-
charge at Nomi water level monitoring station, and time 
lag between the peaks of rainfall and water level (Lag, in 
h);

–	 average SWI (%) of the catchment upstream Nomi station 
on the date the severe weather event started.

Rainfall threshold identification

Rainfall thresholds definition can be achieved by using dif-
ferent methodologies and approaches and by employing 
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different indicators, and predictor variables. Four types of 
methods can be identified: (1) empirical/statistical rainfall 
threshold methods, (2) hydrological/hydrodynamic meth-
ods, (3) probabilistic methods, and (4) compound methods 
(Montesarchio et al. 2015; Henao Salgado and Zambrano 
Nájera 2022). In the specific study, the empirical method 
was adopted, which is also considered to be simple and the 
most widely used (Ramos Filho et al. 2021; Henao Salgado 
and Zambrano Nájera 2022). Additionally, empirical method 
is considered to be a cost effective and short-term solution 
(Bouwens et al. 2018; Young et al. 2021) and is preferable 
in case of data scarcity compared to the other approaches 
(Henao Salgado and Zambrano Nájera 2022). Empirical 
rainfall threshold methods can conform the complex physi-
cal processes in the study area (Reichenbach et al. 1998). 
This simplification can be considered an advantage of this 
approach since it removes the complexities of setting up a 
hydrological model (Ramos Filho et al. 2021; Henao Sal-
gado and Zambrano Nájera 2022); nevertheless, they neglect 
other factors involved in flood generation, such as the litho-
logical and morphological diversity, the different climate 
regimes and weather circumstances, and the heterogeneity 
and the incomplete dataset (rainfall data and floods) used to 
determine thresholds (Montesarchio et al. 2015; Santos and 
Fragoso 2016).

Based on empirical/statistical rainfall threshold method, 
data from historical flood events are employed, and corre-
lation analysis is performed between magnitude and dura-
tion of critical rainfall (Cannon et al. 2008; Norbiato et al. 
2008; Diakakis 2012; Montesarchio et al. 2015). Here, after 
identifying the most effective variables responsible for flood 
triggering in the study area, thresholds were developed by 
defining the upper limit of conditions of storms that did not 
lead to flooding (Cannon et al. 2008; Diakakis 2012). These 
thresholds can be effectively incorporated into a system for 
issuing warnings for events that pose significant hazards to 
life and property (Cannon et al. 2008).

The identification of the rainfall threshold can be accom-
plished using the support vector machine (SVM) technique, 
one of the most popular and efficient supervised statistical 
machine learning algorithms, used mostly for classification 
(Cortes and Vapnik 1995). The transformation of data via a 
mathematical function is accomplished with kernel function. 
SVM can estimate an n-dimensional hyperplane differentiat-
ing the two classes of the training dataset. For the case of 
linear separable data, a hyperplane can be defined as follows:

where w is a coefficient vector that describes the direction 
of the hyperplane in the feature space, b is the offset of the 
hyperplane from the origin, and ξi is the positive slack vari-
able (Cortes and Vapnik 1995). The optimal hyperplane is 

(3)yi
(

w ∗ xi + b
)

≥ 1 − �i,

located where the margin between two classes of interest is 
maximized and the error is minimized. The maximization 
of this margin leads to the following constrained optimiza-
tion problem:

where αi is the Lagrange multiplier, C is the penalty (cost), 
and the slack variable ξi allows penalized constraint viola-
tion. The decision function, which can be used for classify-
ing new data, can then be written as:

In the specific application, SVM analysis was performed 
using package e1071 v 1.7-11 (Meyer et al. 2022) in R 
v.4.1.0 (R Core Team 2021). Linear kernel function was 
used. Additionally, the SVM tuning of C factor was per-
formed to enhance the model performance. For the specific 
task, tune function of e1071 package was used for cross-
validation. By default, tune function performs a k-fold cross 
validation (Geisser 1975), k = 10. Nevertheless, in the spe-
cific study the leave-one-out cross validation was performed 
(Stone 1974) that is a special case of k-fold cross validation 
with k = n, n the sample size of the dataset. Although leave-
one-out cross validation is computationally expensive and 
therefore preferable in cases of small sample size datasets 
(Arlot and Celisse 2010) and may have high variance, it also 
has the lowest bias in estimating regression error (Hastie 
et al. 2009; Jiang and Wang 2017).

The dataset has been transformed to a logarithmic scale 
prior the analysis.

Results

Descriptive statistics

In Table  2, the statistical characteristics of the severe 
weather events per meteorological station investigated in 
the present study are presented. Based on the results, the 
severe weather events that demonstrated rxy(k) ≥ 0.3 (at least 
moderate cross-correlation) between rainfall and water level 
during the period 01/09/2019–31/03/2022 and were further 
analyzed, were 27 in total.

As expected, the cumulative rainfall recorded in moun-
tainous stations (Fylakti, Gardiki, and Elati stations) was 
higher than in lowland (Trikala station). Overall, the 
cumulative rainfall of all the weather events investigated 
for all four stations ranged between 1.5 and 246.4 mm. 
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∑n
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Mean and median values were 78.3 and 60.7 mm respec-
tively, while 75% of the measurements were higher than 
38.6 mm and only 25% higher than 119.4 mm (Fig. 3a). 
Mean and median duration of all the severe weather events 
investigated was 52 and 38 h respectively, while 75% of 
the events had duration higher than 18.5 h (Fig. 3b).

30–50% of the weather events identified, resulted in a 
corresponding water level rise of the river over the empir-
ical water level alert threshold of 2.0 m. The time lag 
between the peaks of rainfall and water level at the Pinios 
river (for all severe weather events and meteorological 
stations investigated) ranged between 2 and 40 h, while 
the mean and median values were 22 and 20 h, respec-
tively. 75% of the measurements were higher than 17 h, 
while only 25% of the measurements were higher than 
25 h (Fig. 3c).

Regarding SWI, values ranged between 41.2% and 
74.4% in all cases investigated. Nevertheless, SWI mean 
and median were very close (65.5% and 66.5%, respec-
tively), while 75% of the measurements were higher than 
58.3% (Fig. 3d).

Correlation analysis

Based on the results (Fig. 4), the duration of the severe 
weather events was positively, moderately to strongly cor-
related (based on the criteria for correlation interpretation 
proposed by Hinkle et al. (Hinkle et al. 2003) to maximum 
discharge Qmax of the river in all cases. The duration of the 
severe weather event was positively correlated with maxi-
mum water level MaxWL of the river for stations Fylakti 
(correlation coefficient CC 0.48), Trikala (CC 0.46), and 
Elati (CC 0.54) (in all cases statistically significant at 0.05 
level).

Additionally, cumulative rainfall Rsum of severe weather 
events investigated was positively, strongly correlated (Hin-
kle et al. 2003) to maximum discharge Qmax of the river 
for the mountainous stations only. Cumulative rainfall Rsum 
was positively, strongly correlated (Hinkle et al. 2003) to 
maximum water level.

Duration D and cumulative rainfall Rsum of the severe 
weather event investigated were positively, moderately to 
strongly correlated (Hinkle et al. 2003) for the mountainous 

Table 2   Statistical characteristics of the severe weather events per meteorological station investigated in the present study

D (h) Rmax (mm/h) Rsum (mm) Rint (mm/h) Max WL (m) Qav (m3/s) Qmax (m3/s) Lag (h) SWI (%)

Fylakti (N = 21)
 Mean 53 7.9 89.2 2.2 2.88 169.7 405.0 23 64.1
 Median 35 7.5 63.0 1.8 3.34 121.7 372.5 21 65.8
 SD 46 3.0 59.7 1.1 1.59 134.8 312.0 7 7.9
 Minimum 5 4.2 19.8 0.9 0.38 37.7 44.2 12 45.3
 Maximum 156 15.6 224.4 4.5 4.99 502.4 961.5 37 74.4

Trikala (N = 20)
 Mean 51 5.9 52.7 1.6 3.13 167.5 401.1 23 62.6
 Median 40 5.0 54.1 1.1 3.60 119.4 420.8 20 63.9
 SD 42 4.7 36.8 2.0 1.59 150.6 305.0 7 9.2
 Minimum 2 0.8 1.5 0.5 0.38 37.0 38.8 12 41.2
 Maximum 124 19.9 137.0 9.8 4.99 547.6 961.5 38 74.4

Gardiki (N = 19)
 Mean 50 8.6 86.2 2.1 2.89 166.2 342.5 22 63.7
 Median 38 8.1 75.5 2.0 3.40 101.8 304.0 22 66.0
 SD 36 3.8 55.8 1.1 1.54 149.2 295.2 8 9.6
 Minimum 10 3.3 17.3 0.7 0.38 37.8 44.2 8 41.2
 Maximum 123 18.3 246.4 4.6 4.98 576.5 960.0 40 74.4

Elati (N = 17)
 Mean 53 7.4 86.0 2.1 2.99 175.3 422.6 21 65.8
 Median 42 7.7 59.7 1.9 3.55 119.1 496.5 20 69.2
 SD 44 2.0 57.1 0.9 1.53 139.5 309.3 8 8.7
 Minimum 4 4.0 14.0 0.4 0.38 37.3 40.1 2 45.3
 Maximum 154 11.1 199.0 3.7 4.99 571.0 960.0 37 74.4
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stations and moderately corelated for the lowland station. 
The most important factor affecting the time lag of water 
level rise of the river after a severe weather event is SWI of 
the upstream area.

3.3. Rainfall threshold

Further investigation of the inter-relation between the flood 
triggering variables that demonstrated the highest correla-
tion (severe weather event duration and cumulative rainfall) 
for the stations also with the highest correlations (Fylakti, 
Gardiki, and Elati—the mountainous stations) resulted to 
the rainfall thresholds identification. The sample size of this 
dataset is 56. In Fig. 5i the SVM tuning results are presented, 
based on which the optimal C (cost) value was 20 (best per-
formance value 0.16). In Fig. 5ii the duration—cumulative 
rainfall plot of the three mountainous meteorological sta-
tions and the threshold (hyperplane) resulted from the SVM 
analysis are presented. Based on the results, the threshold 
can be expressed as:

In Fig. 6i the cumulative rainfall vs maximum water level 
at Nomi station vs duration of the mountainous stations is 
presented. In the cases where severe weather events did not 
lead to water level rise of the river over the empirical thresh-
old of 2.0 m, cumulative rainfall ranged between 14.0 and 
79.7 mm (median 40.8 mm) and the duration ranged between 
4 and 61 h (median 19 h). In the cases where the threshold 
exceedance occurred, cumulative rainfall ranged between 
24.9 and 246.4 mm (median 116.4 mm) and the duration 
ranged between 9 and 156 h (median 55 h) (Fig. 6ii). Finally, 
the relationship between cumulative rainfall (for the stations 
at the mountainous areas) and maximum water level can be 
expressed as (Fig. 6i):

(7)
Rsum = 20.4 ∗ D0.3, 4 < D < 156 (h), 42 < Rsum < 64 (mm),

(8)MaxWL = 1.55 ln
(

Rsum

)

− 3.70,

Fig. 3   Frequency distribution of (i) cumulative rainfall Rsum (mm) of 
all severe weather events investigated, (ii) duration D (h) of all severe 
weather events investigated, (iii) time lag Lag (h) between the peaks 
of rainfall and water level for all meteorological station and all the 

severe weather events investigated, and (iv) SWI (%) prior the 27 
severe weather events investigated (dotted line: 25th percentile, solid 
line: 50th percentile, dashed line: 75th percentile)
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Discussion

In the present study, an investigation of the main factors 
involved in the flood generating mechanisms of the Pinios 
upstream catchment area has been performed so as to test the 
effectiveness of the methodological approach proposed for 
the identification of flood generating mechanism and rainfall 
threshold identification.

Based  on  the  resu l t s ,  dur ing  the  per iod 
01/09/2019–31/03/2022, 27 severe weather events that 
resulted to a corresponding significant rise or overflow of 
water at Nomi station at the Pinios river were identified. 
Based on the results presented in “Descriptive statistics” 

section, water level rise of Nomi monitoring station at the 
Pinios river is affected mainly by weather events taken place 
in the mountainous areas of the watershed, rather than rain-
fall occurring lowland. The severe weather events investi-
gated resulting to a corresponding water level rise at Nomi 
can be characterized by average cumulative rainfall (only 
25% of the events investigated recorded values higher than 
120 mm), with relatively long duration (75% of the events 
lasted longer than 18.5 h), that led to a rather rapid response 
of the river (time lag below 25 h for 75% of the cases), under 
relatively wet soil conditions (values higher than 58.3% for 
75% of the events investigated). These results lead to the 
conclusion that the causative mechanisms responsible for 

Fig. 4   Correlation matrixes of monitoring stations (i) Fylakti, (ii) Trikala, (iii) Gardiki, (iv) and Elati
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most of the significant water level rise, overflow events and 
floods at Nomi wider area are several days long and low-
intensity rainfall events, that saturate the catchment and 
cause high flow conditions. These “long-rain floods” (Merz 
and Bloeschl 2003) are very common in mountainous areas 
during autumn and winter (Raymond et al. 2019). Indeed, 
74% of the 27 severe weather events investigated in the pre-
sent study had taken place during winter and autumn (63% 
and 11%, respectively), and 7 in spring, while none was 
observed in summer.

SWI of the catchment upstream the water level monitor-
ing station of the Pinios river prior a severe weather event 
seems not to contribute to the flood triggering directly and 
there was no conclusive evidence that antecedent moisture 
conditions (AMC) was a decisive factor of flood generating. 
The main effect of SWI to the river’s response to a severe 
weather event, was the decrease of the time lag between rain-
fall and water level response. This can be attributed to the 
fact that in most cases SWI prior the severe weather events 
was relatively high during the period investigated, and prac-
tically none flash flood event triggered by short, high inten-
sity rainfalls under dry conditions was recorded during the 
investigated time period. In mountainous areas “long-rain 
floods” high-magnitude events are triggered mainly by rain-
fall (Raymond et al. 2019). Nevertheless, further research 
on the flood triggering mechanism of the area could provide 
better understanding of the soil moisture contribution, since 
moisture content is a well-established factor in rainfall–run-
off relationship (Diakakis 2012).

As expected, the duration of the severe weather events/
cumulative rainfall and maximum water level/maximum dis-
charge of the river were moderately to strongly correlated 
in all cases. Additionally, duration and cumulative rainfall 
Rsum of the severe weather event investigated were positively, 
moderately to strongly correlated.

The relationship between cumulative rainfall (for the three 
stations at the mountainous areas) and maximum water level 
MaxWL can be expressed as: MaxWL = 1.55ln(Rsum) − 3.70. 
The rainfall threshold estimated for the mountainous stations 
can be expressed as: Rsum = 20.4*D0.3. This threshold, together 
with the 17–25 h time lag between the peaks of rainfall and 
water level at Pinios river resulted from the present study, 
can be incorporated in a flood early warning system of the 
upstream area of the Pinios river. Together with a weather 
forecasting system provide a valuable decision support tool. 
The limitations of the specific methodological approach are 
related to the uncertainties risen due to the numerous, pos-
sibly secondarily variables contributing to the flood generat-
ing mechanisms that cannot be incorporated in the specific 
methodological approach (Ramos Filho et al. 2021). Such 
variables that may be related to flood triggering and have not 
been included to the present study are snowmelt and air tem-
perature (Blöschl et al. 2017; Brunner and Fischer 2022), soil 
characteristics (Gaál et al. 2012), the contribution of tributaries 
(Pattison et al. 2014), and the inadequate maintenance of river 
network that may cause debris accumulation (Mentzafou and 
Dimitriou 2015) and river bank failure (Viero et al. 2013).

Finally, it should be noted that the water level/discharge and 
meteorological monitoring stations have only recently been 
installed in 2019. The dataset is expected to be enriched with 
time and provide the adequate information required for testing 
the rainfall thresholds developed and to evaluate the ability of 
this approach in identifying possible critical discharge/water 
level and flood events at the study area in time.

Fig. 5   (i) Performance result of SVM tuning, and (ii) SVM results of cumulative rainfall thresholds for water level alert at Nomi station, for all 
the mountainous stations together (Fylakti, Gardiki, and Elati)
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Conclusion

This study aims to propose a methodological approach 
for the identification of the main factors involved in flood 

generation mechanisms and the development of rainfall 
threshold for incorporation in flood early warning systems 
at regional scale. The methodology proposed is relied on 
high-frequency monitoring data and statistical tools, and is 

Fig. 6   (i) Maximum water level MaxWL (m) of Nomi water level sta-
tion vs cumulative rainfall Rsum (mm) vs duration D (h), for the three 
mountainous meteorological stations (Fylakti, Gardiki, and Elati), 

and boxplots of (ii) cumulative rainfall Rsum (mm) and (iii) duration 
D (h), for the three mountainous meteorological stations (Fylakti, 
Gardiki, and Elati)
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cost effective, easily applied and can be used in case of data 
scarcity that preclude the development of complex hydrolog-
ical or hydrodynamic models. The methodology proposed 
was tested at the flood-prone upper part of the Pinios river’s 
catchment in Greece. Despite the acknowledged limitations, 
this approach managed to provide an insight of the main 
flood mechanism and to identify the main factors responsible 
for flood triggering in the area. Additionally, rainfall thresh-
olds were developed that can be effectively incorporated into 
a system for issuing warnings for events at regional scale that 
pose significant hazards to life and property. Further investi-
gation, especially regarding the soil moisture contribution to 
flood generation, and validation of the results would reduce 
the uncertainties risen.
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