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Abstract
Functions and services provided by soils play an important role for numerous sustainable development goals involving mainly 
food supply and environmental health. In many regions of the Earth, water erosion is a major threat to soil functions and is 
mostly related to land-use change or poor agricultural management. Selecting proper soil management practices requires 
site-specific indicators such as water erosion, which follow a spatio-temporal variation. The aim of this study was to develop 
monthly soil erosion risk maps for the data-scarce catchment of Ruiru drinking water reservoir located in Kenya. Therefore, 
the Revised Universal Soil Loss Equation complemented with the cubist–kriging interpolation method was applied. The 
erodibility map created with digital soil mapping methods (R2 = 0.63) revealed that 46% of the soils in the catchment have 
medium to high erodibility. The monthly erosion rates showed two distinct potential peaks of soil loss over the course of 
the year, which are consistent with the bimodal rainy season experienced in central Kenya. A higher soil loss of 2.24 t/ha 
was estimated for long rains (March–May) as compared to 1.68 t/ha for short rains (October–December). Bare land and 
cropland are the major contributors to soil loss. Furthermore, spatial maps reveal that areas around the indigenous forest on 
the western and southern parts of the catchment have the highest erosion risk. These detected erosion risks give the potential 
to develop efficient and timely soil management strategies, thus allowing continued multi-functional use of land within the 
soil–food–water nexus.
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Introduction

Soils form a critical component influencing the hydrologi-
cal cycle and are crucial in supporting and protecting food 
and energy production. Several sustainable development 
goals (SDGs) defined by the United Nations (Goals 1–3, 
6–7, 11 and 13) are linked to soil health (United Nations 
2015). Soil health must therefore be maintained as they 
are critical elements of the water–energy–food nexus (Lal 
et al. 2017). However, the ability of soils to provide their 
functions is under threat due to degradation mainly through 
accelerated water erosion. Most soils today can be regarded 
as being in a state of fair, poor or very poor condition (FAO 
ITPS 2015). This is the result of human activities such as 
deforestation, overgrazing, intensive tillage on steep terrain, 
over-cropping and poor soil management practices (Borrelli 
et al. 2017; Ebabu et al. 2019). While onsite effects of ero-
sion include land degradation and the loss of soil fertility 
(Kidane et al. 2019; Lambin et al. 2003), off-site effects 
include siltation, sedimentation, eutrophication of surface 
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water bodies and even induced flooding (Borrelli et al. 
2017; Ozsoy et al. 2012). Borrelli et al. (2017) rated Afri-
can countries around the equator as erosion hotspots. Due 
to high population growth compounded by an agriculture-
based economy, existing forests are subjected to increasing 
pressure. This has resulted in deforestation to pave way for 
other competing land uses such as settlement and agricul-
ture (Carr 2004; Mulinge et al. 2016). Deforestation coupled 
with high rainfall and fragile terrains with exposed soils has 
led to severe soil erosion. Maloi et al. (2016) showed that a 
shift in land use, primarily from forests to cultivation, has 
increased siltation in the Ruiru Reservoir (Kenya), thereby 
decreasing its storage capacity by 11–14% in 65 years. There 
is an urgent need to identify areas with high susceptibility to 
erosion to implement strategies to mitigate erosion to main-
tain soil health and prevent impairment of water quality of 
surface water bodies such as rivers, lakes, and reservoirs. 
Patil (2018) suggested that the assessment of the soil ero-
sion risks can assist in watershed assessment in areas where 
erosion is a major threat. Moreover, the processes involved 
in soil loss by water underlie a high spatio-temporal variabil-
ity which should be taken into account in integrated water 
resource management (IWRM). IWRM refers to “a process 
which promotes the coordinated development and manage-
ment of water, land and land related resources, in order to 
maximise the resultant economic and social welfare in an 
equitable manner” (GWP 2000). This denotes that water and 
land/soil are interrelated (Calder 2006). Problems concern-
ing water quality and quantity cannot be treated in isolation 
and a “system thinking approach” between the water–soil 
nexus needs to be adopted. Using average erosion soil rates 
can camouflage erosion occurring at smaller scales (Hatfield 
et al. 2017). Furthermore, extreme events in precipitation 
as a result of climate change have increased the potential 
for soil erosion in ways that are not well understood and 
assessed. Hence, proper spatio-temporal analysis could pro-
vide a better understanding of the climate variability and 
soil ecosystem services intersection. Based on such infor-
mation, decision-makers and land resource managers can 
develop more timely and targeted cost-effective measures in 
the frame of IWRM (Mwangi et al. 2016a, b).

Different studies have been undertaken to quantify soil 
erosion. The most accurate and ideal methods involve con-
ducting field experiments using erosion plots. Here, ero-
sion measurements are carried out under natural conditions 
(Ampofo et al. 2002; Boardman and Evans 2019). Alterna-
tively, the rain events can be simulated, where parameters 
such as rainfall intensity, drop size and spatial variability 
can be adjusted (Duiker et al. 2001; Stroosnijder 2005; Ries 
et al. 2013; Iserloh et al. 2013). Other methods include the 
use of radionuclide tracers (Maina et al. 2018). Nevertheless, 
direct erosion measurements are expensive, unstandardised, 
time-consuming and limited in terms of spatial and temporal 

variation (Lal 2001; Stroosnijder 2005; Ries et al. 2013). The 
setbacks faced by direct measurements have resulted in the 
use of models to predict soil erosion. These models are pri-
marily classified into three (physical, conceptual and empiri-
cal) depending on model input and the extent of the under-
lying theoretical principles (Igwe et al. 2017; Patil 2018). 
Physical models take the individual components affecting 
soil erosion into account, e.g., spatial and temporal variabil-
ity. Such models include the European Soil Erosion Model 
(EUROSEM) (Morgan et al. 1998). Conceptual models like 
the Soil and Water Integrated Model (SWIM) (Krysanova 
et al. 1998) represent processes in terms of fluxes at different 
spatial and temporal resolutions. Empirical models are the 
least data intense and focus primarily on observed data and 
their responses. These include the Universal Soil Loss Equa-
tion (USLE) (Wischmeier and Smith 1978) and its revised 
version, the Revised Universal Soil Loss Equation (RUSLE) 
(Renard et al. 2017), which are conventionally applied to 
quantify long-term average soil loss (Alewell et al. 2019). 
They are used to calculate the annual erosion rate using fac-
tors which include rainfall erosivity (R-factor), soil erodibil-
ity (K-factor), slope steepness and length (LS-factor), cover 
management (C-factor) and support practices (P-factor). The 
R-factor highly correlates with rainfall amount and intensity 
(Schmidt et al. 2016). Hence, it is expected that there will be 
an inter-annual and seasonal variation of this factor where-
from dynamic soil erosion risks can be identified. Recent 
studies on the temporal variability of the R-factor revealed 
a distinct seasonality influenced by intense rainfall events 
in Switzerland (Schmidt et al. 2016). The K-factor, defined 
as soil loss rate per erosion index, expresses the susceptibil-
ity of a soil to be detached and transported by rainfall and 
runoff (Renard et al. 2017). Direct measurements of this 
factor require long-term soil erosion studies or the use of 
soil property data (Wischmeier and Smith 1958). Although 
there exists a dataset on soil erodibility at higher resolution 
(up to 500 m) for some developed regions such as Europe 
(Panagos et al. 2014), only coarse estimates are available 
for Africa (Borrelli et al. 2017). Since the K-factor is a sig-
nificant parameter in the soil erosion process, its spatial 
variability across different landscapes should be considered 
(Zhu et al. 2010). The spatial variability of the K-factor has 
been mapped through interpolation methods (Addis and Klik 
2015; Avalos et al. 2018) and machine learning algorithms 
such as the cubist method (Panagos et al. 2014). The LS-
factor accounts for the effects of slope steepness and length 
on erosion (Alexandridis et al. 2015). The C-factor repre-
sents the effect of plants as well as soil cover, biomass and 
disturbing activities on erosion. Schmidt et al. (2018) identi-
fied crop cover as one of the main triggers of soil erosion as 
it is highly dependent on their seasonal dynamics and growth 
curve. The P-factor includes erosion control measures such 
as contour cropping, terracing, grass strips and all other 
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enhancements that reduce slope length, thereby reducing the 
amount and rate at which the soil is lost (Renard et al. 2017).

The RUSLE has been reported to generate quantitative 
estimates of soil loss in ungauged catchments that have 
been applied in designing sound conservation measures 
(Asis and Omasa 2007). Moreover, recent applications of 
soil loss models such as RUSLE have been complemented 
by the application of GIS and remote sensing technolo-
gies. Such technologies include the use of satellite images 
and geospatial algorithms such as interpolation distance 
weighing (IDW) (Angulo-Martínez et al. 2009; Gaubi 
et al. 2017), kriging (Wang et al. 2002; Kouli et al. 2009), 
regression equations (Panagos et al. 2014) and machine 
learning available through digital soil mapping (DSM) 
(Avalos et al. 2018; Taghizadeh-Mehrjardi et al. 2019). 
Jenny (1941) established that soil physical and chemical 
properties are influenced by five soil-forming factors, 
namely, climate, organisms, topography, parent mate-
rial and time. This can be exploited with DSM which 
assumes that a relationship exists between environmental 
conditions and soil properties (McBratney et al. 2003). 
By using prediction algorithms, a suite of environmental 
covariates and measured soil properties, this relationship 
can be obtained and extended to areas without observa-
tions. This means that soil properties such as soil erod-
ibility can be mapped at much lower costs and effort. 
With access to both geospatial algorithms and higher 
quality input data, models such as RUSLE can be applied 
at higher temporal and spatial scales (Uddin et al. 2016; 
Schmidt et al. 2019; Wang et al. 2019). Schmidt et al. 
(2016) demonstrated that it is possible to predict soil loss 
dynamics by modelling the intra-annual variability of the 
R-factor and C-factor within the RUSLE. By applying the 
RUSLE equation on Swiss grassland with a sub-annual 
resolution at a national scale, the authors showed that 
the mean monthly soil loss by water was 48 times higher 
in summer as compared to winter. However, the effec-
tiveness of the application of RUSLE depends on the 
availability of datasets. For developing countries, global 
datasets are sometimes the only data available. Although 
providing valuable data, this may still be considered too 
coarse for effective application. But by undertaking pur-
posive soil sampling and applying digital soil mapping, 
time and spatial variability of soil properties and vul-
nerabilities can effectively be determined in data-scarce 
areas such as Africa (Kamamia et al. 2021). In the pre-
sented study, we applied a combination of DSM with the 
RUSLE to estimate erosion loss on monthly time steps for 
a data-scarce watershed in Kenya, East Africa. We addi-
tionally compared the predicted monthly soil loss with 

estimates from a global soil loss dataset for this region. 
With the application of the temporally and spatially vari-
able RUSLE prediction, we wanted to address the follow-
ing questions. (1) What is the impact of rainy periods on 
erosion and soil loss in the study area? (2) What is the 
contribution of the different land-use classes (LULC) to 
sediment yields in the catchment? (3) Can the assess-
ment of spatio-dynamic erosion inform the planning of 
soil conservation measures to mitigate soil erosion?

This paper is organised into five sections. “Ruiru Reser-
voir catchment” (following the introduction) describes the 
study area. “Methodology” summarises the site selection 
procedure, data collection phase and laboratory analysis. 
It further presents a step-by-step methodological approach 
adopted including the plausibility check. “Results and dis-
cussion” discusses the spatio-temporal analysis and links 
this to the major land uses. Final section concludes the 
impact of the major findings on the soil–water nexus.

Ruiru Reservoir catchment

The Ruiru Reservoir catchment (Fig.  1a) is located in 
Kiambu County, Kenya. The catchment covers 51  km2 from 
the uplands close to the Rift Valley escarpments to the Ruiru 
Reservoir at the catchment’s outlet. A humid highland sub-
tropical climate with wet and dry seasons characterises the 
local climate. An average annual rainfall of 1300–1500 mm 
is received in the catchment. Long rains are experienced 
between March and May, while short rains are experienced 
between October and December. Daily temperatures range 
between 13.0 and 24.9 °C. Temperatures are highest from 
January to March and lowest in July–August (Nyakundi et al. 
2017). Nitisols are the dominating soils in the catchment, 
whereas a small portion of Andosols can be found in the 
upper part of the catchment (Fig. 1a). These soils are influ-
enced by pyroclastic and igneous volcanic parent material. 
The region belongs to the tea–dairy zone and subsistence 
farming is characterised by low-input low-output production 
(Kamamia et al. 2021). The Ruiru Reservoir in which the 
Ruiru River drains, located in the lowest part of the catch-
ment, was designed to supply 23,000  m3/day of water to the 
residents of Nairobi, the capital city of Kenya. Maloi et al. 
(2016) reported that land-use change, majorly from forest to 
agriculture, has increased sediments in runoff into the reser-
voir especially during the rainy seasons, thus increasing the 
treatment costs. Hence, land-use management must address 
the water insecurities in the catchment to ensure sustainable 
supply of good quality water (Calder 2006).
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Methodology

Figure 2 presents a flowchart of the approach followed in 
the spatio-temporal analysis. The first step involved the 

collection and synthesis of raw data. In the second step, 
the individual RUSLE factors were determined. These fac-
tors were then integrated and compared to the Global Soil 
Erosion Model (GloSEM) in the third step.

Fig. 1  The Ruiru Reservoir 
catchment: a location, soils, 
geology and location, b eleva-
tion, main rivers and location of 
the Ruiru Reservoir
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Step 1: creation of land‑use land cover map, data 
collection and synthesis

Supervised classification of the major land uses in the Ruiru 
catchment

A Landsat 8 image Operational Land Imager (OLI) for 
August was downloaded from the Earth explorer (EarthEx-
plorer, USGS 2019) and was used in combination with the 
semi-automatic classification plugin in QGIS 3.4 (QGIS.org 
2019). All the bands were then clipped to the study area size 
and converted to reflectance (Young et al. 2017). A band set 

with Band5, Band4 and Band3 (Bands 5–4–3), which rep-
resents a temporary virtual raster that allows for the display 
of composite colours, was created (NASA 2013). Next, the 
training sites were defined by creating regions of interest 
(ROI). In addition to georeferenced points obtained during 
the field campaign, Google Earth was used to increase the 
number of ROIs. The main defined land-use classes were 
water (WTR), bare land (BARE), cropland (AG), tea (TEA), 
grassland and shrubland (GR/SH), built-up (BLD) and for-
ests (FOR). The classification was carried out by using the 
maximum likelihood algorithm (MLA) (Benediktsson et al. 
1990). The MLA is a rule-based algorithm that is based on 

Fig. 2  Flowchart of the applica-
tion of RUSLE equation and 
plausibility check; digital eleva-
tion model (DEM), rainfall ero-
sivity (R-factor), soil erodibility 
(K-factor), slope steepness and 
length factor (LS-factor), cover 
management factor (C-factor), 
support practices factor 
(P-factor) and Global Soil Ero-
sion Model (GloSEM) (Borrelli 
et al. 2017)
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the probability that a given pixel belongs to a particular 
class. MLA was applied iteratively and with the Band 5–4–3 
(see description in Table 1) band combination.

Each time the classification was done, the spectral signa-
tures (reflectance as a function of the shortwave and different 
objects have unique signatures which can be used for clas-
sification) (NASA 1999) were assessed. However, during 

classification similar spectral signatures may be recorded for 
different materials which could lead to misclassification. To 
overcome this, more training sites were delineated to allow 
MLA to discriminate between the various vegetation cover 
and between bare land and built-up areas. The post-process-
ing step included the removal of raster polygons smaller than 
the minimum mapping unit (MMU), which was set at 25. 
As the GR/SH vegetation was limited, a new class "Natural 
Vegetation (NV)" was created by aggregating the grasslands, 
shrublands and forests. A final land-use map with an accu-
racy of 71% obtained from the confusion matrix was created 
(Fig. 3). The distribution of the main LULC for determining 
soil loss was BARE (4.8%), AG (38.3%), TEA (34.8%), NV 
(16.6%). The remaining distribution represented built-up 
areas and the Ruiru Reservoir.

Selection of sampling sites

A 30 m sink-filled digital elevation model (DEM) (Earth 
Explorer, USGS 2019) was used to extract derivatives 
using the System for Automated Geoscientific Analyses 
(SAGA-GIS) (Conrad et al. 2015). From the DEM, slope, 
aspect, plan curvature, profile curvature, relief, elevation, 

Table 1  Landsat 8 band description and combination

Source: https:// lands at. gsfc. nasa. gov/ lands at-8/ lands at-8- bands/

Band number Description

Band 1 Coastal
Band 2–4 Visible blue, green, red
Band 5–7 Infrared (near, short-

wave (1.56–1.66 µm), 
shortwave (2.10–
2.30 µm)

Band 8 Panchromatic
Band 9 Cirrus
Band 10–11 Infrared (longwave 

(10–11.3 µm), long-
wave (11.5–12.5 µm)

Fig. 3  Land-use land cover of Ruiru catchment obtained from supervised classification using Landsat 8 image Operational Land Imager (OLI) 
downloaded from the Earth explorer (EarthExplorer—USGS 2019)

https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/
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Topographic Wetness Index (TWI) and hill shading deriva-
tives were extracted. Additional data acquired include a Soil 
map at a scale 1:250,000 from the Soil and Terrain (SOTER) 
database of the International Soil Reference and Information 
Centre (ISCRIC) (Batjes 2008) and a geology map from the 
Survey of Kenya (SOK).

All DEM derivatives and additional data were stacked 
together and split into 30-m segments in ArcGIS (ArcMap 
version 10.2). This means that each segment was represented 
by a series of a different set of covariates which included 
the DEM derivatives, geology, soil, and land-use values. 
The sampling distribution was determined by using the 
conditioned Latin hypercube sampling algorithm (cLHS) 
(Minasny and McBratney 2006) included in the cLHS pack-
age (Roudier et al. 2012) of the R statistical software, ver-
sion 3.5.1 (R Core Team 2019). 90 soil sampling sites whose 
distribution is presented in the supplementary information 
(Online Resource 1) were selected for this study. Similarity 
sites within a 500-m radius for each site were determined. 
These were set as alternative sampling sites to the originally 
selected sampling sites. For example, the sites would act as 
substitute sites where permission to access private land was 
not granted or where accessibility was constrained due to 
geographical barriers or safety reasons.

Fieldwork and laboratory analysis

The soil sampling sites were located in the field with the aid 
of a GPS. Caution was exercised to ensure that samples were 
collected from the exact coordinates obtained from the selec-
tion process. At each site, undisturbed soil samples from 
the top 0–30 cm were collected by using soil cores for the 
determination of bulk density, texture and organic carbon 
content (Kamamia et al. 2021).

For soil texture analysis, the combined wet sieving and 
sedimentation method was applied. The sand fraction was 
determined using wet sieving, while the silt and clay frac-
tions were analysed using sedimentation analysis using the 
Sedimat 4–12 equipment (Umwelt-Geräte-Technik—UGT 
GmbH, Müncheberg, Germany). The organic carbon content 
 (Corg) was determined by dry combustion using the Vario 
TOC Cube (Elementar Analysensysteme GmbH, Lan-
genselbold, Germany). A summary of this data is presented 
as supplementary information (Online Resource 2).

STEP 2: calculating the individual RUSLE factors

Soil loss was calculated with RUSLE (Renard et al. 2017) 
by multiplying all factors represented below:

(1)A = R ∗ K ∗ L ∗ S ∗ C ∗ P

This equation was modified to calculate the monthly soil 
loss based on Schmidt et al. (2019) (Eq. 1).

The data sources and derivation of the RUSLE factors 
are given in Table 2.

R‑factor

The required daily rainfall data for the determination of 
Rmonth for the years between 2011 and 2017 was obtained 
from the Kenya Forest Service (KFS) for the Upland Station 
located in the western part of the Ruiru Reservoir catchment. 
This is the only existing station in the catchment. These data 
were complemented with gridded daily rainfall of the Cli-
mate Hazard Group Infrared Precipitation (CHIRPS) (Cli-
mate Hazards Center—UC Santa Barbara 2020) (Funk et al. 
2015). This freely available high-resolution data combines 
0.05° resolution satellite imagery with in situ station data 
to create gridded time series data starting 1981 to near-pre-
sent. CHIRPS daily precipitation data for the period corre-
sponding to that of the observed daily rainfall was extracted 
and used to fill any gaps present in the observed data. The 
extracted Modified Fournier Index (MFI) (Arnoldus 1977) 
and consequently the Rmonth factor were determined using 
Eq. 3 (Table 2). For each month, Rmonth was assumed to be 
spatially static. It was deemed adequate, as the area of the 
river catchment is 51  km2 and does not experience a large 
monthly rainfall variation.

K‑factor

Soil texture, permeability and organic matter content of the 
topsoil were used to determine the K-factor for the 90 sam-
pled points using the Schwertmann et al. (1987) approach 
(Eq. 4). The cubist method (Quinlan 1992) combined with 

whereA is the annual soil loss in t ha−1yr−1

R is the rainfall erosivity
(

MJmmha−1h year
)

K is the soil erodibility factor
(

t ha−1Runit−1
)

LS is the topographic factor (dimensionless)

C is the croppingmanagement factor (dimensionless)

P is the practice support factor (dimensionless)

(2)Amonthly = Rmonth ∗ K ∗ L ∗ S∗ Cmonth ∗ P,

whereAmonth is themonthly soil loss in t ha−1month−1
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regression kriging (Malone et al. 2017) and selected covari-
ates (Table 3) was applied as DSM to create a continuous 
map of soil erodibility.

The cubist model divides data into partitions based on 
rules associated with covariates and fits a regression equa-
tion to each subset. Predictions are then determined based 
on the relative importance of the covariates. Moreover, three 
parameters must be established: rules—maximum number 
of partitions allowed, committees—maximum number of 
boosting iterations, and extrapolation—model constraints 

(Malone et al. 2017). On the other hand, regression kriging 
is a spatial interpolation technique that uses a semi-vario-
gram to quantify the spatial structure of residuals (difference 
between the predicted and observed values) (Ma et al. 2017). 
In this study, soil erodibility data from the 90 sampling sites 
were split into two segments representing the training and 
testing data (∼ 70% and ∼ 30%, respectively). First, the Cub-
ist model was applied where the data was partitioned based 
on the most relevant covariates present. This represented 
the deterministic component of the predictions. Regres-
sion kriging, representing the stochastic component, was 
then undertaken. Finally, these two components were added 
together to arrive at the final prediction. A leave-one-out 
cross-validation scheme was applied to assess the accuracy 
of the predictions, which were represented using the coef-
ficient of determination  R2. A detailed description can be 
found in Malone et al. (2017).

C‑factor

The monthly C-factors were adjusted based on the normal-
ised difference vegetation index (NDVI) (Jong 1994), which 
was calculated from Landsat 8 images for the year 2017. The 
NDVI values range between −1, for almost bare surfaces 
and water bodies, to 1 for densely vegetated surfaces. The 
values for NDVIs were afterward converted to the C-factor 
using Eq. 6 (Almagro et al. 2019), by applying the Raster 
Calculator tool in ArcGIS (ArcMap version 10.2).

Table 2  Overview of the individual risk factors, datasets and formulae used as input to RUSLE

Erosion factor Data source Calculation

Rainfall erosivity (monthly),
Rmonth factor

Rainfall station data MFI =
Pi2

P

R = 1.735 ∗ 10(1.5∗LogMFI−0.8188)  (Tiwari et al. 2016), (3)
MFI represents the Modified Fournier Index (Arnoldus 1977)
pi is themonthly rainfall

P is the annual rainfall

Soil erodibility, K-factor Measured soil texture, soil 
organic matter, soil perme-
ability

K = 2.77 ∗ 10−6 ∗ M1.14 ∗ (12 − OM)
+ 0.043 ∗ (A − 2) + 0.033 ∗ (4 − D) (4)

with:
M = (%silt + %f ine sand) ∗ (%silt + %sand(f ine sand excluded))

OM = %Organicmatter

A = aggregate stability class

D = permeability class

Cover and management (monthly), Cmonth factor Landsat 8 + (monthly) NDVI =
NIR−IR

NIR+IR
 (5)

whereNIR is the near infrared

IR is the reflection in the visible spectrum

C = 0.1
(

−NDVI+1

2

)

 (6)

Slope length and slope steepness, LS-factor Digital elevation model
LS =

(

X

22.13

)n

(0.0065 + 0.045s + 0.0065s2) (7)

whereX is slope length inmeters

s is the slope gradient%

n is the exponent according to the angle of slope

Table 3  Overview of the terrain and spectral covariate data used for 
cubist–kriging DSM

Covariate type Description

Terrain data Slope, aspect, elevation, topographic wetness 
index (TWI), profile curvature, plan curvature, 
longitudinal curvature, hill shading, catchment 
area, flow accumulation, multiresolution ridge 
top flatness (MrRTF), multiresolution valley 
bottom flatness (MrVBF), upslope length 
factor,

Software: SAGA GIS (version 2.3.2) Requires: 
Sink-filled DEM (https:// earth explo rer. usgs. 
gov/)

Spectral data Blue, green, red, near-infrared, Normalised Dif-
ference Vegetation Index (NDVI) wet (ndvid) 
and dry season (ndviw), Green Vegetation 
Index (GVI)

Software: ArcMap version 10.2

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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In the months where cloud cover was ≥ 10% (April, May, 
November), the C-factor values were obtained from spline 
interpolation. The spline interpolation method is a mini-
mum curvature function that passes through the data with 
the accuracy of their mean errors. In this method, all the 
data points influence the value of the interpolated point, with 
those closest to the main station having the greatest impact 
on the value of the interpolated point (Niedzielski 2015). 
Using the polynomials, the first and second derivatives can 
easily be derived, making them applicable in biological 
modelling such as developing plant growth curves (Quero 
et al. 2015).

LS‑factor and P‑factor

Using the DEM as an input, the LS-factor was determined 
by using Eq. 7 in Table 2 in ArcGIS (ArcMap version 
10.2). Only sporadic conservation practices were observed 
in the Ruiru Reservoir catchment. This included 'fanya 
juu' terraces (Mati 2005) on steep agricultural lands and 
grass strips along the riparian region. To account for this 
traditional land management practice, a threshold of 25% 
slope was set for agricultural lands. This means that this 
conservation measure would be implemented in areas with 
a slope above 25%. As not all farmers have adopted this 

conservation measure, 10% of all the possible pixels were 
randomly selected. Using the dply package in R statisti-
cal software version 3.5.1 (R core Team 2019), all pixels 
were loaded and the first filter according to the slope was 
implemented. The 10% of remaining pixels were selected 
using random sampling and a value of 0.7 was assigned 
according to Angima et al. (2003). Furthermore, the P-fac-
tor value for all pixels within 30 m of the Ruiru River was 
adjusted to 0.9 following Mwangi et al. (2015) to account 
for grass strips. These have been developed along the 
Ruiru River as part of an integrated water resource protec-
tion initiative by Water Rural User Association (WRUA) 
(Kamamia et al. 2021). For all other LULC, the P-Factor 
was set to 1.

STEP 3: plausibility check with GloSEM data

As a plausibility check, the monthly soil loss values 
(REG_SL) were compared with annual soil loss estimates 
from GloSEM (Borrelli et al. 2017). As presented in the 
flowchart (Fig. 2), the individual RUSLE factors were 
overlaid and multiplied with each other using the Raster 
Calculator tool in ArcGIS (ArcMap version 10.2). The 
K-factor, LS-factor and P-factors remained static, while 
the R-factor and C-factor were substituted for each month. 

Fig. 4  Map of soil erodibility of 
the Ruiru Reservoir catchment
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Monthly soil loss was then compared for the different 
LULC by using the land-use map created from Landsat 
8 + data.

Results and discussion

Map of soil erodibility

A spatial soil erodibility map with an R2 of 0.63 for the 
validation dataset was obtained from the DSM analysis 
(Fig. 4). The most important predictors were slope, ele-
vation, MrRTF, Band5d, ndvid and GVI. Given that no 
comprehensive model evaluation guideline was found on 
the model output, these results were compared with other 
published works. Avalos et al. (2018) reported R2 values of 
0.31 for DSM by using only terrain attributes and obtained 
a significant linear relationship between slope and erod-
ibility. Taghizadeh-Mehrjardi et al. (2019) reported R2 val-
ues of 0.71. Panagos et al. (2014) reported an R2 of 0.74 
on cross-validation when applying the cubist method with 
the multi-level B splines interpolation technique with both 
spectral and terrain attributes. Although the combined use 
of these covariates improved the predictions, latitude and 
elevation covariates were ranked as the most important 
predictors.

The importance of terrain factors may be attributed 
to the information they contain on landscape position-
ing. These covariates can discriminate between hillslopes 
which are dominated by erosion and transport processes 
and consequently high erodibility (Gallant and Dowling 
2003; Jones et al. 2020). Noteworthy is the preference for 
MrRTF over MrVTF as a predictor. In general, the RUSLE 
equation does not account for depositional areas such as 
valley bottoms represented using the MrVFT (Alewell 

et al. 2019). The importance of spectral data may be attrib-
uted to the information they contain on vegetation devel-
opment, which is an input source of soil organic matter. 
Taghizadeh-Mehrjardi et al. (2019) found a strong nega-
tive correlation between the K-factor and soil organic mat-
ter. Zhao et al. (2018) and Addis and Klik (2015) reported 
that soil erodibility has an indirect relationship with veg-
etation type, which influences the soil organic matter and 
soil particle distribution. This means that soil erodibility 
is a dynamic property that can be highly influenced by 
anthropogenic activities such as changes in land-use or 
land management (Lal 2001).

According to Schwertmann et  al. (1987), erod-
ibility can be classified as follows: K < 0.1—‘very 
low’, 0.1 < K < 0.2—‘low’, 0.2 < K < 0.3—‘medium’, 
0.3 < K < 0.5—‘high’ and K > 0.5—‘very high’. Hence, 
46% of the catchment can be ranked as either having 
medium or high erodibility (Fig. 4). The highest erodibility 
is observed in areas surrounding the indigenous forest on 
the western part of the catchment and in the northern and 
southern extremes (see Fig. 3). Moreover, steeper slopes 
are classified as having higher erodibility as compared to 
lower slopes. For the different LULCs (Fig. 5), the highest 
K-factors were recorded under cropland and bare land. The 
lowest K-factors were predicted under some tea planta-
tions and not under the indigenous forest as expected. The 
K-factor is affected by the complex interaction between 
the different environmental factors, which vary within the 
different LULC. For the silt-dominated soils of the Loess 
Plateau of China, Zhao et al. (2018) reported that for the 
native vegetation, soil properties and topography were 
the dominant factors which influence soil erodibility. 
For managed and restored vegetation, soil organic matter 
highly influenced erodibility (Zhao et al. 2018). Terrain 
factors such as slope and elevation influence the physical 

Fig. 5  K-factor for the different 
land-use and land cover classes 
(LULC) in the Ruiru Reservoir 
catchment cropland (AG), bare 
land (BARE), natural vegetation 
(NV) and tea plantation (TEA)
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and chemical properties of soils leading to changes in soil 
particle composition and soil erodibility. Higher eleva-
tions were associated with higher erosion of silt material, 
which is then deposited in the lower elevation (Zhao et al. 
2018). Against this background, the presence of andosol 

(high content of silt and organic matter) in the high eleva-
tion could have recorded lower K-factor values due to the 
effect of long-term erosion. Conversely, the use of high 
organic amendments such as mulch from pruned residues 
could explain the low erodibility observed under some 
tea plantations. The use of mulch protects the soil against 

Fig. 6  a Water erosion risk maps for the Ruiru Reservoir catchment for January–June. b Water erosion risk maps for the Ruiru Reservoir catch-
ment for July–December
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the impact of raindrops and increases soil organic matter, 
which stabilises the soil aggregates and making them less 
prone to erosion (Ni et al. 2016; Xianchen et al. 2020).

Temporal and spatial soil erosion dynamics

An overview of the spatial monthly soil erosion (Fig. 6a 
and b) shows that most of the soil loss occurs within two 
distinct periods. The first is between March and June 
and the second is between October and December. Fur-
thermore, they reveal that the areas in the vicinity of the 
indigenous forest on the western and southern parts of 
the catchment have at the highest erosion risk. These are 
mostly deforested areas that are now either bare land or 
have sparse shrub cover. Consequently, increased rainfall 
further increases the risk of erosion along the slopes in 
the Ruiru catchment. These results can be corroborated 
by Kamamia et al. (2021) who found that these areas are 
characterised by low aggregate stability and are therefore 
highly susceptible to erosion.

From Fig. 7 a cumulative monthly soil loss of 2.23 t/
ha and 1.68 t/ha was estimated from the long rainy season 
(March 0.11 t/ha/month, April 1.70 t/ha/month, May 0.43 
t/ha/month) and short rainy season (October 0.56 t/ha/
month, November 0.89 t/ha/month, December 0.22 t/ha/
month). The highest soil loss was observed in April, while 
the lowest soil loss of 0.003 t/ha/month was observed in 
July. Ongoma (2019) reported that precipitation in Kenya 
reaches its peak in April and is lowest in July. A compari-
son with the monthly average of 0.27 t/ha/month estimated 
from GloSEM shows that the average soil loss in April 
predicted by REG_SL is 6.3 times higher than the average 

cumulative yearly soil loss from GloSEM. This illustrates 
that the use of such averages for the design of erosion 
control measures could lead to the under-designing and 
construction of ineffective control measures. This situa-
tion could further be exacerbated where such measures 
fail, resulting in damage to crops and even loss of lives.

Soil loss can be described with two main mechanisms: 
erosion by raindrop impact and erosion by surface runoff. 
In reality, both mechanisms occur simultaneously. Thus, soil 
erosion mechanisms should be classified based on the degree 
of susceptibility of one mechanism relative to another (Kin-
nell 2005). There are two cropping seasons in the Ruiru Res-
ervoir catchment that take advantage of the bimodal rainfall 
in the catchment. Before the onset of the rainy seasons, the 
soils are dry and possess high infiltration rates. Despite this, 
the soils are loose and bare due to tilling. At the start of the 
rains, the soils are more susceptible to erosion by raindrop 
impact. Over time, the soil pores gradually get saturated with 
water and therefore increased precipitation causes more rain-
drops to penetrate through the flow detaching soil particles 
which are then lifted and transported (Kinnell 2005). Higher 
soil loss recorded during the long rains is due to increased 
precipitation events. Wei et al. (2009) concluded that rainfall 
events with long durations but relatively low intensities play 
important roles in inducing severe erosion. Therefore, it is 
imperative to note that measures protecting the soil against 
rainfall drops (such as increased plant cover) would mark-
edly reduce soil losses in the Ruiru catchment at the onset 
of rainfall.
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Soil loss dynamics under different LULC

The monthly soil loss trend observed in Fig. 8 for all months 
was BARE > AG > TEA > NV. Despite occupying the small-
est area (4.8%), BARE contributes largest to soil erosion. 
Online Resource 2 indicates that these areas have the low-
est clay percentages making them highly prone to erosion 
and probably the largest contributor to siltation in the Ruiru 
Reservoir catchment. This LULC includes some deforested 
areas and areas around homesteads and roadsides. These 
roads recorded high soil losses as observed from the maps 
(Fig. 6a and b). Most of the feeder roads within the Ruiru 
catchment occur on steep slopes and are made of earthen 
material. They are constantly used by heavy vehicles that 
carry milk and tea from the smallholder farmers to the vari-
ous processing units. This impact compresses the roads, 
forcing the edges to break away leaving the bare soils sus-
ceptible to water erosion. Cerdan et al. (2010) found a posi-
tive relationship between erosion rates and slope length on 
bare soils. As this LULC records the highest soil loss, veg-
etative or structural stabilisation of roadsides for example, 
by use of gabions (Laflen et al. 1985) could offer an all-year 
solution to mitigate erosion in these areas. The establish-
ment of grasses/turfs around homesteads and reforestation 
of areas surrounding the forests (see Fig. 3) also recording 
the high soil loss in March and November could protect the 
bare soils against erosion.

Cropland with an aerial coverage of 38.3% is the domi-
nating land-use in the Ruiru catchment and recorded the 
second-highest soil loss throughout the year. Most of the 
farmers in the Ruiru catchment practice rain-fed mixed 
annual agriculture. At the onset of the long rains in March 
and short rains in November, the soils are usually tilled and 
sowed. Tilling activities destroy soil aggregates and lack of 
vegetation exposes the soil to the direct impact of raindrops. 

Exposure of the already loose soil to rain leads to severe 
denudation of the topsoil (Feng et al. 2016; Muoni et al. 
2020). This variation also changes with the rainfall intensity 
with higher erosion rates being experienced during higher 
precipitation (Fig. 8). Adoption of more appropriate crop 
and tillage activities such as conservation tillage and strip 
cropping could be used as a strategy to reduce the soil loss 
recorded at the onset of both the long and short rainfall. 
Mulching activities can further protect the soil surface from 
the erosive forces of raindrop impact and overland flow espe-
cially during times where crops are less developed. Finally, 
the adoption of agroforestry can serve as a more permanent 
solution to reducing erosion by water.

Tea plantations in the Ruiru catchment, covering an area 
of 34.8%, occur mostly along steep slopes. High soil loss 
may occur due to the general topography and poor manage-
ment strategies (Krishnarajah 1985; Mupenzi et al. 2011). 
In consequence, soil erosion on top of slopes could lead to 
loss of productivity, which may be irreversible as the rate 
of soil loss greatly supersedes its formation rate. Soil loss 
occurs during (1) establishment of new tea plantations, 
which are undertaken without any conservation measures 
and (2) management activities such as pruning and weeding 
often lead to trampling, which loosens the soil, making it 
more susceptible to erosion. Soil loss in the tea plantations 
is particularly high within the first two months of the long 
(April and May) and short (October and November) rains. 
Before these months, productivity is usually low, there is 
largescale pruning and weeding in the catchment, as a result, 
the soil is loosened and exposed. This soil is then lost dur-
ing the next rainy season. Contrary to this, some studies 
have concluded that well-managed tea bushes or developed 
tea bushes have erosion rates comparable to natural forests 
(Krishnarajah 1985; Allaway and Cox 1989). For Sri Lanka, 
Krishnarajah (1985) reported that conservation measures 

Fig. 8  Soil erosion dynamics 
under different land use and 
land cover (LULC). Cropland 
(AG), bare land (BARE), 
natural vegetation (NV) and tea 
plantation (TEA)
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such as mulching with pruning residues and grass cuttings 
as well as the use of terraces resulted in almost complete 
elimination of soil erosion in tea plantations along steep 
slopes. The author further observed that mulching during 
replanting reduced soil erosion. Reduction of water erosion 
risk for this LULC can be attained by applying mulch during 
the establishment of new tea plantations. Moreover, mulch-
ing before pruning and weeding activities could protect the 
soil against trampling which induces erosion.

The NV LULC with a share of 16.6%, recorded the lowest 
soil loss throughout the year. NV included indigenous forest 
located on the western part of the catchment, afforested land 
as well as grasslands and shrublands. Afforested lands are 
part of an initiative by the Kenya Forestry Service (KFS) to 
restore degraded or deforested areas using mixed species 
of indigenous trees. Some of the afforested areas contain 
young tree stands. In addition to possessing underdeveloped 
tree canopies, the spacing between planted trees is usually 
wider during the establishment phase (Oliveira et al. 2013). 
This leaves a lot of open spaces where the impact of rain-
drops is much higher due to the lack of canopy, litter and 
underdeveloped tree roots (Drzewiecki et al. 2014). Over 
time, the trees’ canopies develop, and the leaf area index 
(LAI) increases. The increased litter forms a mulch layer 
protecting the soil surface (Oliveira et al. 2013). Only then, 
trees are efficiently capable of controlling soil erosion while 
increasing soil biomass as in the case of indigenous ones. 
Nevertheless, the major advantages associated with trees, 
especially indigenous, should be exploited through the adop-
tion of agroforestry systems. During the formative years, 
the crops can provide ground cover for the young trees. The 
trees would then later on control soil erosion and increase 
base flow through increased infiltration (Nair 2008). This 
was also observed by Ligonja and Shrestha (2015), who con-
cluded that on-farm tree planting contributed significantly 
to a 7% reduction of areas under very high erosion between 
1986 and 2008 in addition to increasing flow during the dry 
periods in Kondoa area, Tanzania. Likewise, Nambajimana 
et al. (2020) recommended a reforestation scheme of rap-
idly growing tree species as an important feature for erosion 
control in eroded areas of Rwanda. Waithaka et al. (2020) 
reported that most grasslands and shrublands (now occupy-
ing ~ 6% of the catchment) have been converted into settle-
ment areas in the Ruiru catchment. The remaining scattered 
portions serve as alternate pasture for the dairy cattle in the 
catchment. Grass and shrublands have shown the potential 
to reduce soil erosion.

Thus, it is clear that vegetation coverage is an important 
factor for soil erosion, as it reduces the direct impact of rain 
drops and alleviates runoff through increased infiltration 
which finally affects the quality of surface and river runoff 
(Cerdan et al. 2010; Feng et al. 2016). It should be however 
noted that extreme rainfall, such as that received in April, 

may at times increase the uncertainty of the effectiveness 
of vegetation in reducing erosion (Wei et al. 2009). Finally, 
the spatial distribution of vegetation on the slopes is a key 
factor for the Ruiru Reservoir catchment. This affects the 
source-sink spatial landscape patterns which influence the 
runoff generation and sediment transport (Liu et al. 2018). 
For instance, if done properly, adjusting vegetation patterns 
along slopes could greatly reduce soil losses into streams 
and the Ruiru Reservoir and therefore improve water quality 
and preserve the water quantity.

Annual regional soil loss vs GloSEM

An average cumulative yearly soil loss of 3.24 t/ha/yr (range: 
2.33–17.52 t/ha/yr) was obtained for the study area while 
using the GloSEM (Online Resource 3a). Although the 
REG_SL (Online Resource 3b) recorded a much lower aver-
age cumulative soil loss of 1.72 t/ha/yr, the soil loss range 
was much wider (0.0003–38.29 t/ha/yr). Online Resource 
3a–b show that there is a spatial agreement between the two 
estimates of high erosion risk on the farthest western part of 
the catchment. However, the differential map further shows 
that the GloSEM overpredicted soil loss for most of the 
catchment and underpredicted for the areas where REG_SL 
recorded high erosion rates. The cumulative REG_SL unlike 
the GloSEM displayed the small-scale spatial heterogeneity, 
which exposed the various erosion hotspots. Borrelli et al. 
(2020) argued that although the GloSEM model provides 
pioneering assessment to determine potential erosion at 
global scales, it is heavily data dependent and is not able to 
capture all the varying conditions to which it is applied given 
its global scale. Therefore, the coarse nature of the GloSEM 
grids could have resulted in spatial aggregation /generalisa-
tion and the loss of small soil loss inclusions.

Conclusion

Sustainable soil management, in the context of integrated 
water resource management, improves soil functions which 
impact positively on the SDGs. Suitable indicators such as 
risk of soil erosion is needed to transfer the complexity of 
the soil–water nexus into a format that can be assessed and 
measured. More often these indicators have not been well 
explored and little or no data is available in developing 
countries. Here, we established that through the combina-
tion of efficient soil sampling, analysis of remote sensing 
data and DSM useful information such as maps of monthly 
soil loss can be developed in data-scarce areas to aid in 
developing IWRM measures. Moreover, we demonstrated 
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that the static annual erosion could misrepresent the true 
dimensions of soil loss with averages disguising areas of 
low and high erosion potential. The monthly erosion risk 
maps reveal that a monthly average obtained from average 
cumulative yearly soil loss from the GloSEM average soil 
loss is 6.3 times higher than the average soil loss obtained 
from April. Furthermore, the bare land LULC (occupying 
the smallest areal coverage) was the largest contributor 
to erosion indicating that at times a small portion of the 
catchment is responsible for a large proportion of the total 
erosion.

As the RUSLE does not account for all complex soil 
erosion exchanges, the results obtained should be taken as 
estimates and not absolute values (Benavidez et al. 2018). 
But as highlighted in this study, it is ideal for determin-
ing soil loss at landscape areas especially in data-scarce 
areas. Varying both the R-factor and C-factor greatly 
impacted the dynamics of soil loss in the Ruiru catch-
ment. While the spatio-temporal distribution of rainfall 
is largely uncontrollable, the crop management factor is 
greatly influenced by the type and intensity of human 
intervention. Thus, it is only natural that erosion control 
focuses on improving catchment management practices 
“where” and “when” erosion is highest. This means that 
the spatio-temporal maps can be used by different stake-
holders during the development of watershed management 
plans (Mwangi et al. 2016b, c). Within these plans, land-
scape-scale measures including timely allocation of scarce 
erosion mitigation and protection measures, proper crop 
selection that reduces erosion, as well as time-dependent 
planting and harvesting techniques for agriculture, can be 
purposefullly incorporated. For Ruiru drinking water res-
ervoir catchment, a successful watershed management plan 
will require joint effort from the different stakeholders: 
small-scale farmers/communities, large-scale tea estate 
farmers, The Nairobi Water and Sewerage Company and 
the Kenya Forest Service. Only then will the sustainable 
use of soil and water resources and related ecosystem ser-
vices in the catchment be achieved.
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