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Abstract
In this paper, the regionalization of geographical space according to selected topographic factors and the spatial distribu-
tion of precipitation is discussed. The model takes into account qualitative and quantitative data describing the conditions 
associated with the studied precipitation. In the modelling, data mining methods including data clustering methods for 
agglomeration and artificial neural networks for classification have been used. The reason for their use was the classification 
of the area due to conditions related to precipitation, the distinguishing of similar areas and the delimitation of the propa-
gation of the phenomenon or transition zones. To realize the research aims, professional software for data management, 
spatial data analysis, mathematical calculations and data mining have been used. The result of the research was a model of 
the classes representing areas with specific conditions affecting the phenomenon, transition zones between classes and areas 
with conditions other than those in the surroundings of the measuring stations, which are not classified in any of the classes. 
Classification results indicate the boundaries of the areas in which we can model the values measured at stations, the transi-
tion zones of possible discontinuous change and areas in which the phenomenon should not be modelled due to significantly 
different conditions from those in the neighbourhoods of measuring stations. Unclassified areas are also potential locations 
for new measuring stations.

Keywords Artificial neural network · Regionalization of geographical space · Multi-criteria classification · Precipitation 
regions · Topographical factors

Introduction

Due to global development in the research studying changes 
in the environment, the number of measurement stations that 
monitor specific global parameters has increased. The most 
common examples are automated observation networks 
monitoring the parameters of climate or air pollution such 
as gas, solid or liquid substances. Decisions about leaving 
stations where they are or building new stations are usually 
preceded by various analyses that consider time and space 

distribution of the studied phenomenon. Developing meas-
urement stations usually involves an optimization problem in 
terms of designing a minimum number of measurement sta-
tions whilst maintaining the necessity of correctly describing 
and modelling the phenomenon in the given area, the aim 
of which is to provide values for the studied phenomenon as 
continuous data and to determine their spatial distribution 
(Al-Zahrani and Husain 1998; Goovaerts 1998; Changhyoun 
et al. 2014; Shafiei et al. 2014).

The most common way is to interpolate values between 
points using statistical methods or mathematical functions. 
Information about conditions accompanying the modelled 
phenomenon, such as a natural boundary for abrupt changes 
in values, may not always be used as function parameters of 
the statistical model, and the model of the phenomenon in 
the form of isolines averages the abrupt values of neighbour-
ing classes.

The requirement to standardize and integrate data accord-
ing to the Infrastructure for Spatial Information in the 
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European Community (INSPIRE) directive increased access 
to acquired spatial data and facilitated analysis. The constant 
development of remote sensing methods made it possible 
to acquire more information about the environment and its 
changes more frequently. The information acquired using 
new geoinformation methods results in new possibilities, 
but it requires a new approach to developing methods that 
would allow frequent actualization of the previous model in 
such a way that the ’knowledge’ acquired using the model is 
not removed but supplemented. The widespread availability 
of digital weather (states of atmosphere described by physi-
cal quantities such as temperature, precipitation, and atmos-
pheric pressure) databases and climate (characteristic atmos-
pheric conditions determined on the basis of at least 30 years 
of observations in a specific area) databases has resulted 
in the frequent use of meteorological information in spatial 
analyses that are used extensively in geographic information 
systems (GISs) equipped with spatial estimation procedures. 
Interest in the possibility of including high-resolution spa-
tial information about precipitation in GIS systems is the 
result of the demand generated by the fields of science and 
economics. It is believed that the greatest influence of future 
climatic changes on society will come from the changes in 
the distribution and variability of precipitation (McAvaney 
et al. 2001; Trenberth et al. 2003; Meehl et al. 2005; Covey 
et al. 2014).

By analysing qualitative and quantitative attributes and 
their spatial analyses, we can assign thematic data from a 
given area to measurement stations. Assigning data is the 
first step on the way to building a model. It is not always 
possible to describe relationships between accompanying 
phenomena and the dependent variable using a simple math-
ematical model, and finding interdependences involves the 
process of data exploration. Finding knowledge in data is a 
multi-step process and allows the selection of many methods 
in subsequent stages of building the relationship between 
conditions and the studied parameter.

The aim of the created model is to indicate regions with 
specific outstanding conditions that influence the studied 
phenomenon without estimating the quantitative influence 
of factors on that phenomenon and to determine the degree 
of trust in the obtained results to indicate areas of incomplete 
or uncertain information. In studying natural phenomena, 
cartographic presentations of areas with outstanding features 
or outstanding values of phenomena and their scales is a 
natural way of reducing the complexity of the problem to 
indicate significant differentiation of the characteristics of 
the phenomena. The applied method of regionalization is 
consistent with general idea of the first law of geography 
(Tobler 1970, 1979).

Distinguishing areas with similar geographical (severe 
climate, natural resources), economic (earning facility, prof-
its in agriculture production), national and demographic 

(population density) features is a natural way of classify-
ing geographic space. Geographic regionalization derives 
from the needs of scientific research and making various 
decisions, such as localization decisions. In many instances 
of synthetic regionalization, it is assumed that areas with 
similar topographic features have similar natural conditions 
and can cause similar reactions of environment, for exam-
ple, to the change of plans and funding rules of area spa-
tial development, causes of disasters, etc. The division into 
natural units became the basis for the construction of data 
models for various GISs and then for modelling environmen-
tal conditions, which results in models of phenomena. The 
examples consist of at least several hundred climate models 
created in the past 10 years, for instance general circulation 
model/global climate models (Climateprediction.net 2015) 
or the elaborations that verify them (Dai 2005; Hamilton and 
Ohfuchi 2007; Covey et al. 2014).

The objective of this paper is to develop a method for 
regionalizing geographical space according to selected topo-
graphic factors and the spatial distribution of precipitation.

Methodology

Developing a model of regionalization involves several steps 
of data processing, which include:

– identification of topographic conditions accompanying 
precipitation and building a spatial data model,

– grouping of measurement stations with taking into 
account average precipitations,

– develop a dependency model based on the relationship 
between the characteristics of the terrain and the class of 
precipitation.

Topographic conditions to separate regions

Methods for the determination of topographic indicators, 
value evaluation and classification in the informative envi-
ronment are important parts of geographical analyses. The 
notion of attributes (indicators) of topographic factors has 
been used in the literature for a long time in relation to the 
group of features characterizing terrain topography, which 
mainly includes terrain, durability, permeability, slope, 
height, exposition and land cover (Cressie 1991; Li et al. 
2005; Zhang et al. 2013). Some of the most commonly 
used topographic determinants are geographic location; 
average absolute and relative height; maximum, minimum 
and average declines; curvature profiles; paths of waterfall 
on slopes (Manoj et al. 2004; Mutasem et al. 2013); dis-
tance from rivers, roads and built-up areas and the course 
of morphological barriers. There have been many attempts 
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at the objective classification of areas using topographical 
indicators in modelling many natural phenomena as model 
parameters.

It was assumed that the relationship between precipita-
tion distribution and topography has been confirmed based 
on many years of research conducted by climatologists 
and on consultations with them. Many studies confirm 
the existence of the relationship between average precipi-
tation values and topographic conditions. Many authors 
describe local impacts of various topographic factors on 
the spatial distribution of precipitation, but the complex 
relationship between topography and precipitation distri-
bution has not been completely elucidated. Basista and 
Bell (1994), pointing to much earlier studies and to their 
own, claim that interactions between precipitation and 
exposition, slope and exposure together and separately on 
both regional and continental scales are unknown; how-
ever, local interactions exist and have been verified. Veri-
fied local relationships between topographic conditions in 
the neighbourhood of meteorological stations and daily, 
monthly and annual average precipitation are discussed in 
many studies. The above-mentioned work (Basist and Bell 
1994) is quoted in most articles that consider precipitation 
dependency on terrain.

Studies on the relationship between precipitation 
and topography conducted in Japan and of so-called PT 
(Precipitation Terrain) combination in single mountains 
(Yoshiharu et al. 2007) showed that a PT combination des-
ignated as a ‘Gaussian functional relationship’ (GRIM) 
can be found on the windward side of a mountain, and 
more precipitation is generated on the windward side when 
the wind speed is less.

It was concluded that an increase in precipitation 
became stronger towards the leeward side together with an 
increase in wind speed. Torrential rainfall in southwestern 
Germany and eastern France (Kunz and Kottmeier 2006) 
pointed to the existence of several mechanisms that deter-
mine the spatial distribution of precipitation over complex 
terrain, such as the influence of a different variation of the 
model on the results of a precipitation distribution model. 
They confirmed the most significant relationship between 
increased intensity of rainfall above and below the moun-
tain peaks. In the literature appearing since the beginning 
of the 20th century, we see many references confirming 
the dependence of rainfall and topography. The influence 
of topography is clearly visible in hilly and mountainous 
regions. The above relationships were analysed using sta-
tistical methods mainly used for quantitative data. It has 
been confirmed many times that qualitative data about land 
cover, physiographic units or watersheds are useful for 
indicating or distinguishing precipitation regions (Prud-
homme and Reed 1999; Bac-Bronowicz 2005, 2007; Gou-
vas et al. 2009; Myoung-Jin et al. 2010).

Spatial data model

The data model was built using a GIS and contains spatial 
and descriptive data characterizing the modelled phenom-
enon and the accompanying factors and conditions. Spa-
tial data are stored in the vector and raster models, which 
together with descriptive data are the inputs for the construc-
tion of the final models. Precipitation stations and precipi-
tation averages form a layer (object class) with point-type 
geometry. Accompanying conditions were recorded in the 
form of vector layers with area-type geometry in the natural 
limits of their range. Thematic layers contain quantitative 
and qualitative data.

For the construction of a classification model, the inte-
gration of data from thematic layers (feature classes) in one 
class of objects with a fixed reference unit is crucial. In this 
context, one of the systems of basic units called TEMKART 
(Podlacha 1986) constructed from fields of approximately 1 
km2 (between 0.981 and 1.022 km2 ) was used. The size of 
the basic field used to collect data in a thematic database is 
consistent with the dimensions used in international studies 
for Europe (Roekaerts 2002; Noirfalise 2007; Metzger et al. 
2005; ETC/BD 2006). Various combinations of the sizes of 
basic fields and their applications are presented in the table 
for climatic networks and data sets in The Tyndall Centre for 
Climate Change Research (Mitchell et al. 2004). The subject 
has also been analysed often in Poland for the distribution of 
climate parameters (Stach 2010). In the results of attribute 
and spatial analyses, data from different thematic layers were 
integrated in the elementary fields of the raster model grid. 
The data characterizing precipitation and related conditions 
include the following thematic layers:

– measurement stations,
– altitude - DTM,
– declines of the terrain,
– directions of terrain slope (exhibition),
– land cover (land use),
– physiogeographic unit,
– river catchment areas.

Quantitative data applied in the classification model are 
mainly data that can be measured and presented in the form 
of natural or actual numbers, characterizing topographic 
conditions frequently discussed in the literature in model-
ling the spatial distribution of precipitation (“Topographic 
conditions to separate regions”). Qualitative data entered 
into the classification model represents the diversity of the 
characteristics of the test area because of the landform and 
land use, which also affects the diversity of the precipitation 
phenomenon. Introducing information about the catchment 
belonging to the model assigns information about the ele-
mentary fields belonging to the zone. The boundaries of the 
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catchment run mostly along the ridges or lines of changes of 
the directions of slopes and cover different forms of terrain 
at the same time, indicating the area of common catchment. 
Catchments are natural dividing zones that can be used to 
locate phenomena instead of the coordinate system. The pre-
cipitation station coordinates and the elementary fields have 
not been entered into the classification model in order not 
to create a close relationship between the position and the 
value of precipitation. Types of data and geometric types of 
thematic layers are shown in Table 1.

Grouping stations

The stage that precedes the creation of the classification 
model of the area is the analysis of average precipitation 
at precipitation stations. Measuring stations are grouped 
into classes on the basis of similarity between the average 
values within four time periods. To divide stations into 
groups, hierarchical grouping was used, in which a tree 
structure is formed by recursive combining of existing 
groups. Agglomeration methods assume that each obser-
vation is a separate group, and in subsequent iterations, 
two groups (focus) that are closest to each other are com-
bined into a new group (Sreejesh et al. 2014; Borcard et al. 
2011). The Euclidean distance was accepted as the meas-
ure of similarity, while the distance between the groups 
was determined by average combination. In this method, 
a predetermined number of classes does not exist. The 
division into groups is made based on the analysis of the 
chart showing the distance between individual objects and 
groups. The results obtained by that method are used to 
make decisions about the division. The final boundaries 
of classes are based on a classification tree, analysis of 
the average values of the characteristics in the group and 
expertise.

Applying artificial neural networks 
to the classification

To conduct classification, multilayer, non-linear feedforward 
artificial neural networks were used (Bishop 1995). The cre-
ated model is the model of assigning features that describe 
areas to predicted classes of precipitation. The idea of using 
artificial neural networks is presented in Fig. 1.

The input layer is formed by neurons, and figures rep-
resenting quantitative and qualitative attributes are entered 
onto this layer. The output layer consists of neurons that 
represent the classes of precipitation. The number of input 
neurons depends on the number of numerical attributes (1 
feature = 1 neuron) and the number of qualitative attributes, 
as well as the number of bits necessary to record a feature 
combination in the form of a binary number (1 feature = the 
number of cells needed to record a feature in the zero-one 

Table 1  List of thematic layers, data format and geometrical types

Layers Data format Geometry Resolution Data type

Measurement stations Vector Point - Quantitative
NMT GRID Elementary field in the form of square 1 × 1 km Quantitative
Terrain slopes GRID Elementary field in the form of square 1 × 1 km Quantitative
Directions of terrain slopes GRID Elementary field in the form of square 1 × 1 km Qualitative
Land cover Vector Area - Qualitative
Physio-geographic units Vector Area - Qualitative
River catchments Vector Area - Qualitative
Integrative layer TEMKART GRID Elementary field in the form of square 1 × 1 km Quantitative 

and qualita-
tive

Fig. 1  The idea of using artificial neural networks to classify areas 
according to chosen conditions accompanying precipitation
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format = n neurons). In the hidden layer, the hyperbolic tan-
gent activation function was used (Bridle 1989; Vogl et al. 
1988):

On the output layer, the softmax activation function was 
used:

where:

Ij - input value,
Oj - output value.

Each neuron represents one class. The output neuron hav-
ing the highest value indicates the class. The softmax 
function enables us to determine the probability that a 
recognized object belongs to the class (Bridle 1989). The 
value of function is normalized in such a way that the sum 
of all values of output neurons is 1. Normalized values can 
be interpreted as the probability of belonging to the class.

The number of output neurons have to match the num-
ber of separated groups of precipitation stations. Each out-
put neuron is assigned to the specific group of stations. 
Process of artificial neural network learning requires sets 
of data with known patterns that contain factors which are 
entered onto the input layers and known response of the 
network entered onto the output layer. The value “1” is 
entered onto neuron representing given group of stations 
and “0” onto other neurons.

In the learning process, the weights of connections 
between input neurons that characterize conditions around 
the station and output neurons representing precipitation 
classes are determined. After the learning process, the 
neural network classifies elementary fields outside the 
surroundings of precipitation measurement stations, indi-
cating similarity to the conditions existing in selected pre-
cipitation classes. The training set has been randomly but 
proportionally divided into three subsets for each class: 
the training set (70%), the validation set (15%) and the 
testing set (15%). The training set is involved in the process 
of changing weights of connections in subsequent itera-
tions, the validation set is involved in the process of weight 
changes and in testing the correctness of solutions and the 
testing set is used only to evaluate the correctness of recog-
nition. The iteration process ends when the minimal error 
is obtained and at the moment of obtaining convergence of 
charts of listed teaching sets. It should be emphasized that 
in the learning process and recognition, the same number 
of features describing elementary fields must be entered 

(1)Oj = F(Ij) =
1

1 + e
−Ij

(2)Oj = F(Ij) =
e
Ij

Σke
Ik

onto the input layer. In the learning process, we know 
the input attributes of elementary fields and the network 
answers (belonging to precipitation class), while during 
recognition only the input attributes take place. The num-
ber of features and the way of data scaling must be equal 
in the teaching and recognition processes.

Specification of test area

The selected test area for the construction of a classifica-
tion model is in southwestern Poland. It is characterized by 
varied topography, including lowlands, uplands and moun-
tains. The terrain is closely related to the geological and 
tectonic construction. To the north, the area is surrounded 
by moraine hills that are about 300 m above sea level. To the 
south of the hills is a wide valley of the Oder River running 
northwest to southeast, where the terrain falls to approxi-
mately 115 m above sea level (Badura et al. 2004). Further 
south, the terrain rises gently to the Sudetic Marginal Fault, 
which is the boundary between the Fore-Sudetic Block and 
the Sudetes Mountains. The fault creates a clear morpho-
logic edge showing height differences of approximately 250 
m. The Sudetes Mountains also run northwest to southeast. 
The average height of the mountains ranges from 600 to 
1400 m, with peaks up to 1602 m. The terrain directly affects 
agroclimate conditions. Due to the parallel arrangement of 
physical-geographical units in Lower Silesia (dominant 
course) the air masses flowing from the Atlantic Ocean to 
northeastern Europe and Scandinavia affect its climate and 
weather conditions. Much less frequently there are masses of 
warm air from the Azores or from the direction of the Medi-
terranean. The dominant masses cause mild winters and rela-
tively cool summer months in that part of Europe (Dubicki 
2002; Soczyńska et al. 1997). A special feature is frequent 
but short periods of cloudy weather with rainfall. In winter, 
mild southwestern winds are characteristic, while in sum-
mer there are northwest winds that lower the temperatures 
in Lower Silesia. Long-term highs are common weather 
conditions. They are also connected with subtropical air 
and are characterized by long periods of beautiful sunny 
weather that is often windless. Most often, highs appear in 
May and September. The coexistence of marine and conti-
nental climate features, as well as the occasional influx of 
Arctic air and tropical masses, results in great volatility of 
the weather throughout the year. The atmospheric pressure 
decreases with altitude and transparency of the atmosphere 
increases, temperatures decrease and precipitation increases 
according to relief and exposition. Cold patches and local 
wind systems are formed.

Data about atmospheric precipitation at measurement 
points are taken from The Atlas of Precipitation in Poland 
1891–1930 (Wiszniewski 1953) and from yearbooks 
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published by the Institute of Meteorology and Water Man-
agement. Average sums of precipitation for May and June, 
July, July and August and for the vegetation period were 
entered into the database. Listed periods are particularly 
important for agriculture because of the needs of specific 
crops (Bac-Bronowicz 2010). Values were introduced for:

– 460 stations from 1881–1930,
– 250 stations from 1948–1980,
– 45 stations from 1981–2013.

The height of the terrain, slope and exposure were calcu-
lated as the average of 16 samples in a square with sides 
of 1 km based on the DTM, with an accuracy correspond-
ing to the scale of 1:50,000. Information about land cover 
was obtained from the database created under the CORINA 
Land Cover program (CLC 2006). Elementary fields belong-
ing to the physio-geographic units were determined based 
on Kondracki and Walczak’s elaboration, with boundaries 
deriving from the analysis of the shape and morphology 
of the terrain (Pawlak et al. 2008; Kondracki 2000). Using 
this type of unit allows morphological barriers, which are 
the main factors in the distribution of climate characteris-
tics, to be distinguished. Using the regular basic fields, a 
regular continuous model for the whole studied area was 
obtained. Adopting those units as basic ones in climate 
modelling boosts the credibility of the results because they 
are frequently tested material. Detailed information about 
the course of the catchment borders was obtained from the 
HYDRO database (HYDRO base and maps; hydrography 
on a scale of 1:50,000) at the Geodesy and Cartography 
Documentation Centre in Wroclaw.

Results

Grouping precipitation stations into classes 
according to average values of precipitation

Two variants of multi-criteria grouping were prepared. They 
differ in terms of the set of attributes describing the pre-
cipitation stations. In the first variant, the following features 
were accepted:

– average precipitation during the growing season from 
April to September,

– average precipitation between May and June,
– average precipitation between July and August and
– average precipitation in July.

The average precipitation from many years of observations 
was analysed, which eliminates the influence of randomness.

In the second variant, the height of terrain in the loca-
tion of precipitation stations was added. Based on obtained 
charts and on expertise, the following groups within indi-
vidual variants were separated (Tables 2, 3).

The first option provided only division with regard to 
the sum of average precipitation from listed periods, but in 
Table 2 for the variant I also the altitude ranges in each class 
are presented.

Adding the altitude in the second variant diversified 
groups with similar values of precipitation but with differ-
ent altitude conditions. The intervals of average precipita-
tion in individual classes are also presented graphically in 
Fig. 2a. Because of multi-criteria division, which takes into 
account several features at the same time, intervals of indi-
vidual classes (values of average precipitation sums) overlap 
partially.

Table 2  The average values 
of precipitation in separate 
groups–variant I

No. IV–IX (mm) V–VI (mm) VII–VIII (mm) VII (mm) H a.s.l. (m) Number 
of sta-
tions

Min Max Min Max Min Max Min Max Min Max

GI-1 303 345 95 122 124 142 68 80 28 146 44
GI-2 338 380 111 132 132 158 67 88 45 195 78
GI-3 352 405 117 144 139 167 79 95 62 373 42
GI-4 390 445 136 161 156 180 82 100 82 604 79
GI-5 426 485 145 175 171 196 93 112 172 670 60
GI-6 458 516 156 183 183 216 97 124 190 780 52
GI-7 519 634 177 223 200 242 107 135 296 800 33
GI-8 575 741 192 247 231 294 121 160 280 1603 29
GI-9 728 830 251 280 282 365 155 204 416 1490 10
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Separated groups were organized according to the 
increase in minimum values. In the first version, together 
with the increase in minimum sums of average precipita-
tion, the minimum altitude in groups increases. At the same 
time, the difference between extreme values of altitude inter-
vals also usually increases (Fig. 2a). In the second version, 
because of introducing the attribute describing altitude, the 
precipitation stations were separated into stations where the 
values of average precipitation are similar but differ when it 
comes to altitude (Fig. 2b). Examples are groups GII-4 and 
GII-5, which have a similar range of average precipitation 

but form separate groups due to differences in height. In 
group GII-9, there are stations with high amounts of aver-
age precipitation that are so large that they dominated the 
altitude differences.

The division in both versions refers to the terrain cor-
related with the geology of the area. Groups GI-1 - GI-3 
and GII-1 - GII-3 appear mainly in lowland areas with little 
differentiation of altitude. Groups GI-4 and GI-5 and GII-4 
and GII-5 appear mainly on the borders between upland 
and lowland areas and mountainous terrain. Groups GI-6, 
GI-7, GI-8 and GI-9 and GII-6, GII-7, GII-8 and GII-9 are 

Table 3  The average values 
of precipitation in separate 
groups—variant II

No. IV–IX (mm) V–VI (mm) VII–VIII (mm) VII (mm) H a.s.l. (m) Number 
of sta-
tions

Min Max Min Max Min Max Min Max Min Max

GII-1 303 346 95 122 124 143 68 84 28 146 47
GII-2 338 373 113 144 132 152 67 87 45 186 65
GII-3 359 413 117 146 147 167 79 96 85 240 72
GII-4 389 455 135 154 157 182 89 104 335 470 18
GII-5 399 461 141 162 158 189 82 109 172 320 67
GII-6 430 500 136 175 161 209 89 112 380 780 18
GII-7 451 528 154 189 171 218 93 124 190 565 81
GII-8 522 631 177 215 200 248 109 136 280 800 37
GII-9 575 830 196 280 231 365 128 204 300 1603 31

Fig. 2  The chart of average precipitation at measurement stations; the division into groups a variant I, b variant II
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generally in mountainous areas where there is great diver-
sity of both precipitation and altitude. In the set of those 
groups, groups GI-8, GI-9 and GII-9 should be especially 
distinguished as classes with a significant minimum value 
of average precipitation and with a great span in the interval 
of their values. The classes separated in both variants should 
not be compared directly. The first division aimed at separat-
ing groups based on precipitation, and the second one sepa-
rated groups with similar values of precipitation but with 
different altitudes. These divisions prove that precipitation 
does not depend directly on altitude but on the shape of the 
terrain around the station. The examples are stations located 
at tectonic faults with clear morphological edges that have 
similar values of precipitation to stations located within a 
few kilometres on the wing of a raised fault.

Applying artificial neural networks 
to the classification of areas according to chosen 
conditions accompanying precipitation

The structure of network consists of an input layer containing 66 
neurons, a hidden layer containing 66 neurons and an output layer 
containing 9 neurons. Different structures of networks, activation 
functions and algorithms used in such tasks were tested (Bishop 
1995; Bridle 1989). The choice of activation function on the output 
layer and the learning algorithm were made considering the crite-
rion of the best adjustment to data measured by the correctness of 
recognition of patterns after the learning process. Calculations were 
made in the MATLAB program using the Neural Network Tool-
box 8.2 packet. A scaled conjugate algorithm for fast supervised 
learning (Moller 1993) was used to learn artificial neural networks. 
The learning process consists of several thousand examples where 
both the previously listed qualitative and quantitative attributes 
of elementary fields and the precipitation class the closest to the 
precipitation station are known. The patterns have been chosen 
according to the following criteria:

– an elementary field cannot be further than 3.5 km from a 
measurement station,

– an elementary field should be located in the same physi-
ographic unit as the precipitation measurement station,

– an elementary field belongs to the same catchment as the 
precipitation measurement station.

In the process of artificial neural network learning a 
large set of patterns containing data for the input and output 
layers is needed. Because the number of measurement sta-
tions is relatively small (max. 400), similar conditions in a 
neighbourhood of the precipitation station are assumed to 
increase the number of patterns. Each next basic field near 
the station is treated as a pattern of a given group of stations. 
Radius of the neighbourhood does not come directly from 
the mathematical dependencies but from the knowledge and 

experience gained from the researched area. The distance of 
3.5 kilometers selected in the research area is a result of the 
spatial distribution of the measurement stations. The mini-
mum distance between stations is 7 km. During establish-
ment of the neighborhoods it was assumed that they should 
not overlap. Lengthening distance from the station increases 
the probability of significant changes of the local factors 
adopted for the model building. The neighborhoods can have 
different radius for each station. On the plains, where there 
are smaller variations in relief, the radius may be larger, 
whereas in the mountains, the radius should be smaller. The 
basic principle of the pattern creation is the choice of repre-
sentative neighborhoods for a given group of precipitation 
measurement stations. Choosing a neighborhood from a dif-
ferent physiographic unit than the location of a station may 
introduce errors in the process of artificial neural network 
learning and cause incorrect classification of data. Each 
catchment area is characterized by specific local conditions 
that have influence on the precipitation. The catchment is a 
potential precipitation region, so the choice of neighborhood 
from different catchment can have the same effect as choos-
ing the incorrect physiographic unit.

The surroundings of stations (elementary fields) that are 
representative for the i-th separated class have been chosen. 
Patterns were indicated using existing knowledge of pre-
cipitation in that part of Poland. Patterns should be chosen 
carefully so that they can represent conditions from the pre-
cipitation class around the station. At the same time, they 
should include possible differentiation within that class. The 
mentioned criteria assume that the studied phenomenon is 
not isotropic and that it changes depending on topographic 
factors that usually change directionally. The created model 
of the spatial distribution of the phenomenon is not an iso-
tropic model (changeability of distribution depending on 
direction in assumed coordinate system) in its classical 
meaning because the dependency model does not include 
coordinates of the elementary fields’ localization. Only the 
features mentioned in previous chapters are entered into the 
input layer.

Figure 3 presents an example of indicating elementary 
fields in the surroundings of a precipitation measurement 
station, taking into account the distance from the station and 
localization in the same physiographic unit. Indicating sev-
eral elementary fields in the stations surroundings introduces 
to the learning process possible differentiation of numerical 
attributes values for a given precipitation class.

The chosen examples of classification models are pre-
sented below.
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Option I—without taking altitude into account 
during multi‑criteria classification of patterns

The number of patterns used to learn artificial neural net-
works for individual classes is presented in Table 4. Their 
number in individual classes is proportional to the number 
of stations in the precipitation class. To learn networks, the 
training set including 5995 model fields with 9 assigned 
model classes was used. The greatest number has patterns 
from classes GI-2 and GI-4 and result from the number of 
measurement stations (respectively 16.7% and 22.9% in 

total) and the area ranges of that concentration. The small-
est number of patterns is from class GI-9, which includes 
the surroundings of stations located in high mountains. The 
spatial extent of the land forms in the studied area is rela-
tively small in relation to other ones; therefore, the number 
of measurement stations is small and comprises just 2.5% of 
the total number of stations in the studied area.

The horizontal column labels in Fig. 4 provide numbers 
of classes (target class) indicated in the training set, while in 
the columns there are numbers of correctly (diagonal) and 
incorrectly (outside the diagonal) classified cases (output 

Fig. 3  The example of the choice of elementary fields in the surroundings of a precipitation measurement station for learning process

Table 4  The number of 
elementary fields included 
in the process of the neural 
network training—option I

Class Number of patterns Percentage (%) Number of stations in 
the class

Percentage (%)

GI-1 306 5.1 9 3.8
GI-2 1374 22.9 40 16.7
GI-3 795 13.2 24 10.0
GI-4 1432 23.9 55 22.9
GI-5 663 11.1 36 15.0
GI-6 586 9.8 28 11.6
GI-7 475 7.9 25 10.4
GI-8 285 4.8 17 7.1
GI-9 79 1.3 6 2.5

Σ = 5995 Σ =100% Σ =240 Σ =100%
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class) after the learning process. After the learning process, 
the neural network can include patterns in other precipitation 
classes than that indicated at the beginning because it gen-
eralizes the acquired knowledge. Based on chart in Fig. 4a, 
we can predict the migration of patterns between classes 
and indicate neighbourhoods and similarity of classes. For 
example, in class GI-6, the network recognized a few cases 
from classes GI-4, GI-5, GI-7 and GI-8, which should be 
interpreted as spatial localization of class GI-6 near the men-
tioned classes and the possibility of transition zones occur-
ring between them. In the process of learning network, the 
compatibility between target classes and output classes at 
the level of 76% was obtained. Incorrect recognition of pat-
terns after learning was 24%. However, the result should 
not be considered negative. Usually during recognition, the 
network mistakes one neighbouring class (meaning spatial 
neighbourhood of localization of the class) in relation to 

the expected value. The example is class GI-4, where ele-
mentary fields are included in neighbouring classes GI-3 
and GI-5 (correspondingly 1.3% and 1.5%). It should be 
emphasized that the model does not include localization of 
elementary fields but only of the features describing them 
and that accompany precipitation. Spatial differentiation is 
characterized only by belonging to a catchment. Classifica-
tion to not spatially neighbouring classes is just 0.1%. The 
result confirms the assumption that the borders of the cli-
matic phenomena are not clear and that transitional zones 
between classes can appear (alternative assessment).

Option II—taking into account altitude 
during multi‑criteria classification of patterns

In option II, we create the model of classification of elemen-
tary fields indicating weights of connections between the 

Fig. 4  The results of classification of the training set elements after the learning process (target class—class indicated in training set, output 
class—class recognized by the neural network after learning process): a option I, b option II

Table 5  The number of 
elementary fields included 
in the process of the neural 
network training—option II

Class Number of patterns Percentage (%) Number of stations in 
the class

Percentage (%)

GII-1 385 6.4 11 4.6
GII-2 1047 17.3 31 12.9
GII-3 1455 24.1 43 17.9
GII-4 349 5.8 16 6.7
GII-5 878 14.5 33 13.8
GII-6 209 3.5 10 4.2
GII-7 959 15.9 49 20.4
GII-8 501 8.3 27 11.2
GII-9 256 4.2 20 8.3

Σ=6039 Σ=100% Σ=240 Σ=100%
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conditions in the surroundings of measurement stations and 
precipitation classes grouped according to the altitude in 
their localization. The number of patterns selected in indi-
vidual classes is presented in Table 5. There were 6039 pat-
terns involved in the learning process. Taking into account 
altitude in the localization of the measurement station dur-
ing the process of grouping caused us to include measure-
ment stations in various classes with similar precipitation 
values or to include the same group of measurement stations 
according to similar altitude but greater differences between 
precipitation values.

In each option, the choice of patterns took place automati-
cally at first, according to selected criteria, and then it was 
verified by expertise. In some cases, patterns were added or 
removed from the training set, which is why there are small 
differences in the number of patterns in options I and II.

The greatest number of patterns is in classes GII-3 and 
GII-7, which is the result of the number of precipitation 
measurement stations (respectively, 17.9% and 20.4% of 
the whole number) and the spatial extension of that con-
centration. The smallest number of patterns is in class GII-
6, which includes the surroundings of stations located in 
mountain valleys.

The degree of correct answers provided by the network 
is similar to the one obtained in option I and is 79.8%. The 
smallest recognition took place in classes GII-4 and GII-6, 
and some elementary fields from those classes were recog-
nized as belonging to GII-5 and GII-7 (instead of GII-4) and 
GII-7 (instead of GII-6).

Classification of elementary fields

After the process of teaching, the artificial neural network 
specified weights of connections between neurons. To clas-
sify elementary fields, the sets of data that characterize those 
fields (in the form of sets and formats determined at the 

beginning of the learning process) are entered onto the input 
layer. The selection of classes is made by selecting the neu-
ron (corresponding to the given class, determined during the 
phase of creating the structure of the network and during the 
learning process) with the highest value of activation.

At the same time, due to the use of the softmax activa-
tion function, we obtain the probability of accepting (choice) 
the class. The result is not always unequivocal if the prob-
abilities obtained on the output layer are below the assumed 
threshold or a few neurons obtain similar values. To summa-
rize the results, the rules of classification and division into 
certain, uncertain or alternative results should be elaborated.

In practice, the activation values of at most three neu-
rons with the highest value obtained on the output layer 
were analysed (main class and two alternative classes). To 
determine classes, the maximum value p1 with respect to 
the thresholds and the next two highest values  p2 and  p3 
received on the output neurons (in respect to one another) 
are analysed. Calculated relationships present relative dif-
ferentiation of values of belonging to the classes. Indicat-
ing alternative class shows that in the given area, there are 
features characteristic of other precipitation classes equal 
to the probability of belonging to another class. The lack of 
selecting an alternative class means that there is no dominat-
ing features characteristic of the defined classes. The rules 
used to visualize the results of classification are presented in 
Table 6. For each i-th set of data that characterize the con-
ditions in the basic field, the calculated activation function 
values on nine output neurons are received.

The neuron with the highest activation function value 
indicates the class in which the elementary field should be 
included. Because of probable, theoretical range of output 
values between 0 and 1, which corresponds to the probabil-
ity of inclusion in the class, the thresholds that allow us to 
categorize results as certain or uncertain or to indicate an 
alternative class have been determined.

Table 6  Decision table—summary of the classification results

p1 the highest value of activation for output neuron for i-th set of input data for the class assigned to neuron
p2 value of activation for the next output neuron less than  p1 for i-th set of input data
p3 value of activation for next output neuron less than  p2 for i-th set of input data

Criterion I Criterion II Criterion III Classification characteristics Description on the map

p1 ≥ 0.7 – – Choice of one class.Certain selection of the base class Dependable
0.5 ≤ p1 < 0.7 p1

p2
≥ 2.5 – Choice of one class.Certain selection of the base class Dependable

0.5 ≤ p1 < 0.7 p1

P2
< 2.5

p2

p3
≥ 2.5 Choice of less certain base class and the choice of alternative 

class. The probability of belonging to the other class deter-
mined by  p2 is relatively high

Dispensable

0.5 ≤ p1 < 0.7 p1

P2
< 2.5

p2

p3
< 2.5 Choice of less certain base class lack of alternative class.The 

probability of belonging to the other class determined by  p2 
and  p3 is relatively high. Lack of belonging to one alternative 
class

Less reliable

p1 < 0.5 – – Lack of possibility to choose base class. Uncertain belonging Unreliable
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It was assumed that:

– If one neuron on the output layer gives p1 ≥ 0.7 , option I 
is fulfilled and the case is considered as certainly belong-
ing to the class represented by the neuron

– If one neuron on the output layer gives p1 < 0.7 and 
p1 ≥ 0.5 , then option II is fulfilled. If the activation value 
of the next output neuron is 2.5 times less than p1, then 
the case is also considered as certainly belonging to the 
class represented by the neuron.

– If one neuron on the output layer gives p1 < 0.7 and 
p1 ≥ 0.5 and a p2

p3
< 2.5 appears, the alternative class 1 

can be indicated if the condition III, p2
p3

≥ 2.5 , is met. In 

practice, it means that the probability of indicating the 
correct class is more than or equal to 0.5. However, the 
second neuron also obtains a relatively high value less 
than 0.5, while the third one, when it comes to value, 
which represents the class, obtains a significantly differ-
ent probability from the second neuron; thus, the alterna-
tive class 1 can be distinguished.

– If the relationship p2
p3

< 2.5 , then the differences between 

output values are so small that it is difficult to indicate 
one alternative class.

The expected value at the output layer corresponding 
to the recognized class should be close to 1. However, in 
practice, values of 0.9–1 are obtained for a small number of 

cases. Due to the possible similarity of the set of classified 
features to other classes and the activation of other neurons, 
obtaining a probability of belonging to a class at level above 
0.9 is difficult to achieve. The range of the correct classifi-
cation determined experimentally is from 0.6 to 0.8. The 
accepted threshold of 0.7 is the center of the interval. For the 
assumed threshold value of  p1 = 0.7, the highest achieved 
value of  p2 was 0.28, so the  p1 value was approximately 
2.5 times higher than the  p2 value. Assuming this propor-
tion with a decreased  p1 value to 0.5, it was assumed that 
the  p2 value should be higher than the p1

2.5
 value to be able to 

indicate the alternative class.
The analysed area includes 20525 basic fields (the area 

of each is 1 km2 ) and the fields that were the examples in 
the learning process. Recognition was conducted using two 
models of neural networks with determined (during the 
learning process) weights of connections for options I and 
II. The examples of graphic interpretation of received results 
of classification, taking into account criteria from Table 6 
divided into certain, uncertain results and probable indica-
tion of alternative class, are presented in Figs. 5, 6.

Discussion

The application of the proposed method for classification 
model construction makes it possible to indicate areas 
with features similar to indicated patterns with probability, 

Fig. 5  A fragment of the upland area with graphic presentation of classification results using artificial neural networks from option I
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which allows inclusion in the class or the indication of 
areas for which we cannot indicate predominant (certain) 
class belonging. Elementary fields that belong to a cer-
tain class should be interpreted as areas similar to the sur-
roundings of measurement stations in the class. There is 
high probability of the occurrence (in elementary fields) 
of precipitation values similar to those at measurement 
stations. Elementary fields for which the probability of 
belonging to the class is higher than the accepted thresh-
old are the areas where the interpolation models of the 
phenomenon can be used. Belonging to a less certain class 
should be interpreted as the possibility of indicating one 
class that exceeds the threshold of probability of 0.5, but 
the probability of belonging to the alternative class is 
relatively high ( p1/ p2) or the probability of belonging 
to other classes is relatively high ( p1/ p2 and  p2/ p3). 
Thus, there are two classes, each of which does not have a 
high enough probability of becoming the alternative class. 
There are usually two or three classes in the border zone, 
where one of them always prevails and there is a similar-
ity to one or two classes. Lack of class recognition on 
the probability level less than 0.5 should be interpreted 
as lack of dominant similarity to the conditions that exist 
in one of the separated pattern classes. In practice, there 
is usually a transition/border zone of several zones of 
studied phenomenon or a lack of measurement stations in 
places with a defined set of features. Unrecognized zones 
are potential areas to locate new measurement stations to 
measure the studied phenomenon. Including the height 

of the measurement station in the division into classes 
changes both the classification of measurement stations 
and the classification of elementary fields. Separate classes 
in options I and II should not be compared directly. Divi-
sion into two options proves the correctness of accepting 
parameters connected with topography as factors support-
ing the explanation of spatial distribution of precipitation 
for further studies. Using knowledge of the neural network 
according to option I, we mainly obtain separate areas 
because of the studied phenomenon. In the second option, 
in the step of stations grouping, an additional differentia-
tion because of height is visible. In the classification of 
elementary fields, there is a noticeable division of one 
class from option I into two separate but similar classes 
in terms of precipitation values but different in terms of 
terrain. In other case, the amalgamation of classes with 
little variation in precipitation into one common class with 
similar terrain was observed. The created model of area 
classification allows us to identify areas similar to the sur-
roundings of measurement stations and to determine with 
high probability the boundaries of precipitation classes, 
transitional zones and unclassified areas. An example of 
the graphic visualization of such zones is presented in 
Figs. 7, 8.

Option I presents the boundaries of precipitation classes 
for which the precipitation value is a dominating feature of 
division. The boundaries change depending on altitude and 
terrain, but those are not the dominating factors. Unclassified 
fields show lack of patterns (a result of bad design of station 

Fig. 6  A fragment of the upland area with graphic presentation of classification results using artificial neural networks from option II
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location) for precipitation classes near the tops of hills and 
mountains and in valleys away from rivers. Option II pre-
sents the borders boundaries of precipitation classes, where 
altitude determines the division of precipitation classes. The 
division and classification refer to the geological structure 
in the tested area directly connected with the terrain. Tran-
sitional zones mainly refer to tops of hills and hills without 
measurement stations.

Conclusion

Thematic layers connected with the distribution of precipi-
tation are important elements of spatial databases in all 
environmental studies. This article presents different atti-
tudes towards building thematic layers that concern precip-
itation in relation to widely used geostatistical modelling 
and interpolation functions. The constructed model does 

not directly show the numerical values of precipitation 
but presents the interval of possible values corresponding 
to separated classes. The result of classification is given 
with the probability of belonging to class. For accepted 
elementary units of area, the possibility of having a few 
features of pattern classes was assumed; in practice, the 
most frequently recognized is one main class and possibly 
an alternative class, or there is a lack of recognition if the 
probability of belonging is below the accepted threshold. 
The result of classifying elementary fields that are above 
the accepted threshold to a certain class is interpreted as 
a significant similarity to the pattern conditions in the 
localization of measurement stations and the high prob-
ability of the occurrence of similar precipitation in terms 
of value intervals corresponding to the recognized class. 
The alternative class appears most often in the transitional 
zone between areas with certain selection of base class. In 
reality, the alternative class can correspond to the areas 

Fig. 7  Indication of precipitation classes’ boundaries, transitional zones and unclassified areas—option I
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with precipitation and conditions similar to two or more 
classes. Not belonging to the class may mean the lack 
of measurement stations in the area with the conditions 
that appear in the classified elementary filed or incorrect 
measurement data at measurement stations. Because of 
the presented features, the model can be applied to realize 
the following tasks:

– spatial analysis of phenomenon distribution in relation to 
topographic factors accompanying the studied phenom-
enon without determining the mathematical function of 
the relationship between them,

– spatial analysis of phenomenon distribution taking into 
account attributive data describing factors accompanying 
the studied phenomenon,

– indicating borders of phenomenon’s spread and transi-
tional zones on the basis of point measurements,

– indicating areas without patterns, that is, measurement 
stations in the areas with features not similar to classified 
areas.

The presented model of classification can be used if there 
is a large amount of data and the possibility of creating 
a training set that includes full differentiation of features 
describing conditions and a full range of precipitation 
values in a given area. The result of classification should 
be treated as an introduction to advanced models created 
together with specialists, such as geostatistical modelling 
within the borders of designated classes. Hierarchical 
identification of ordered zones, estimated and marked in 
the database as basic, alternative or unrecognized classes, 
allows the user to maintain subjectivity when making deci-
sions during the modelling of the studied climate parame-
ter. GIS-based multicriteria decision analysis (GIS-MCDA) 

Fig. 8  Indication of precipitation classes’ boundaries, transitional zones and not classified areas—option II
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arbitrate many spatial decision problems (Malczewski 
2006). One of the most remarkable features of the GIS-
MCDA approaches is the wide range of decision. Dividing 
zones of uncertainty indicate areas for which the decision 
has to be preceded by additional analyses of values that 
influence the chosen climate parameter. New technologies 
and the development of knowledge allow for the rationali-
zation of many research processes of not well-recognized 
phenomena. The example is the attempt to use qualitative 
data to elaborate climatic regions using neural networks. 
The result of that work is receiving the compatibility of 
area delimitation with the perspective of increasing the 
detailed indication of dividing zones if including other data 
into training sets, which explains the distribution of the 
phenomena. The proposed way of classifying areas and 
indicating similarities to the surroundings of measurement 
points can be also implemented in studies on phenomena 
measurements in real time, daily, monthly and decade aver-
ages, and from many-years average measurements. Each 
classification model should be preceded by an analysis 
of the data influencing or accompanying the studied phe-
nomenon. Indicating zones with high probability for which 
the values of natural parameters have been determined is 
significant for interdisciplinary studies when specialists 
have to cooperate closely. Reliable information allows for 
effective cooperation. Data about climatic parameters are 
part of informative systems concerning the management 
of natural resources and following the current course of 
phenomena for early warning against natural disasters. The 
construction of probability maps and indicating the cat-
egories of climatic data reliability allow us to distinguish 
areas for which values can be questionable (for instance, 
the risk of precipitation occurrence and the strategy for 
agriculture development, flood cover, etc.). It seems that 
it is sometimes better to have information about the lack 
of data in some areas of studied terrain than to use inter-
polated data that do not correspond to reality and on that 
basis make wrong decisions (Mitas and Mitasova 1988, 
1999; Jiang and Eastman 2000; Eastman 1999; Store and 
Kangas 2001; Zhang and Goodchild 2002; Bac-Bronowicz 
2004; Nas et al. 2010; Huang et al. 2011).
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