Skip to main content

Advertisement

Log in

Correlation of hsa miR-101-5p and hsa miR-155-3p Expression With c-Fos in Patients of Oral Submucous Fibrosis (OSMF) and Oral Squamous Cell Carcinoma (OSCC)

  • Original paper
  • Published:
Journal of Maxillofacial and Oral Surgery Aims and scope Submit manuscript

Abstract

Aim

MicroRNAs have been widely acknowledged as a diagnostic, prognostic, and/or therapeutic biomarker for the progression of OSCC, but the correlation of hsa-miR-101-5p and hsa-miR-155-3p is yet to be established with c-Fos in OSCC and OSMF.

Methodology

An observational study enrolled 40 patients divided into 2 groups: Group I—21 OSMF patients without malignant transformation, Group II—19 patients with locally advanced, large-operable, or metastatic OSCC, after applying inclusion and exclusion criteria. Both miRNAs were extracted and analyzed from the tissue sample excised from the involved site. The linear regression analysis of the expression of hsa-miR-155-3p, hsa-miR-101-5p, and levels of c-fos in OSMF and OSCC patients and its correlation for habits, age, and gender were evaluated.

Results

The expression of hsa-miR-101-5p was 0.81 times downregulated in OSCC tissue compared to OSMF, whereas hsa-miR-155-3p and c-fos were both upregulated 9.30 times and 1.75 times, respectively, in OSCC tissue. In Gutkha and tobacco chewers, the hsa-miR-155-3p expression could explain 12.3% (p = 0.031) for Gutkha chewers, whereas c-fos could explain 38.6% of the cases (p = 0.020) for tobacco chewers. The expression of hsa-miR-101-5p and hsa-miR-155-3p explained 43.7% and 59.5% of OSCC cases in alcoholics, respectively. Interestingly, in non-alcoholics, hsa-miR-155-3p and hsa-miR-101-5p were significant predictors of OSCC.

Conclusion

Downregulation of tumor-suppressor hsa-miR-101-5p and upregulation of proto-onco hsa-miR-155-3p is responsible for intricate regulation of the progression of OSMF to OSCC via deregulated expression of c-Fos and tobacco chewing and advancing age is significant contributors for OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Chou H-C, Lin H-W, Yang J-H, Lin P-Y et al (2019) Clinical outcomes of oral cancer patients who survive for more than 5 years in Taiwan. J Formos Med Assoc 118(12):1616–1622

    Article  PubMed  Google Scholar 

  3. Phulari RGS, Dave EJ (2020) A systematic review on the mechanisms of malignant transformation of oral submucous fibrosis. Eur J Cancer Prev 29(5):470–473

    Article  CAS  PubMed  Google Scholar 

  4. Arora R, Adwani D, Naphade M, Bhagat B, Qureshi AQ (2014) Malignant conversion of oral submucous fibrosis in surgically treated case. J Clin Diagn Res 8(10):ZD31–ZD32

    PubMed  PubMed Central  Google Scholar 

  5. Ong TK et al (2017) Survival after surgery for oral cancer: a 30-year experience. Br J Oral Maxillofac Surg 55(9):911–916

    Article  CAS  PubMed  Google Scholar 

  6. Tsai WC, Kung PT, Wang ST, Hunag KW, Liu SA (2015) Beneficial impact of multidisciplinary team management on the survival in different stages of oral cavity cancer patients: results of a nationwide cohort study in Taiwan. Oral Oncol 51(2):105–111

    Article  PubMed  Google Scholar 

  7. Mathey-Andrews CA et al (2015) Small but mighty: microRNAs as novel signalling molecules in cancer. RNA Dis 2:e627. https://doi.org/10.14800/rd.627

    Article  Google Scholar 

  8. Baba O, Hasegawa S, Nagai H et al (2016) MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J Oral Pathol Med 45(4):248–255. https://doi.org/10.1111/jop.12351

    Article  CAS  PubMed  Google Scholar 

  9. Chakravarthi B, Goswami M, Pathi S et al (2016) MicroRNA-101 regulated transcriptional modulator SUB1 plays a role in prostate cancer. Oncogene 35:6330–6340. https://doi.org/10.1038/onc.2016.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Zeng H, Li H, Chen T, Wang L, Zhang K, Chen J, Wang R, Li Q, Wang S (2017) MicroRNA-101 inhibits growth, proliferation and migration and induces apoptosis of breast cancer cells by targeting sex-determining region Y-Box 2. Cell PhysiolBiochem 43:717–732. https://doi.org/10.1159/000481445

    Article  CAS  Google Scholar 

  11. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. View Article : Google Scholar : PubMed/NCBI

  12. Muhammad N, Bhattacharya S, Steele R, Phillips N, Ray RB (2017) Involvement of c-Fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma. Clin Cancer Res 23(12):3120–3128. https://doi.org/10.1158/1078-0432.CCR-16-2811

    Article  CAS  PubMed  Google Scholar 

  13. Krishna A, Bhatt MLB, Singh V, et al. (2018) Differential expression of c-fos proto-oncogene in normal oral mucosa versus squamous cell carcinoma. Asian Pac J Cancer Prev 19(3):867–874. Published 2018 Mar 27. https://doi.org/10.22034/APJCP.2018.19.3.867

  14. Dong C, Ye DX, Zhang WB, Pan HY, Zhang ZY, Zhan L (2015) Overexpression of c-fos promotes cell invasion and migration via CD44 pathway in oral squamous cell carcinoma. J Oral Pathol Med 44:353–360

    Article  CAS  PubMed  Google Scholar 

  15. Lessa AM, Valverde LF, Dias RB, Machado MCM, Santos JN, Rocha CAG (2013) The role of microRNAS in oral squamous cell carcinoma pathogenesis: a literature review. Appl Cancer Res 33(4):198–205

    Google Scholar 

  16. Buechner J, Tomte E, Haug BH, Henriksen JR, Lokke C, Flaegstad T, Einvik C (2011) Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  18. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. https://doi.org/10.1038/nrc1997

    Article  CAS  PubMed  Google Scholar 

  19. He B, Lin X, Tian F, Yu W, Qiao B (2018) MiR-133a-3p inhibits oral squamous cell carcinoma (OSCC) proliferation and invasion by suppressing COL1A1. J Cell Biochem 119(1):338–346. https://doi.org/10.1002/jcb.26182

    Article  CAS  PubMed  Google Scholar 

  20. Gissi DB, Morandi L, Gabusi A, et al. (2018) A noninvasive test for MicroRNA expression in oral squamous cell carcinoma. Int J Mol Sci 19(6):1789. Published 2018 Jun 16. https://doi.org/10.3390/ijms19061789

  21. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC (2010) Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 16(4):360–364. https://doi.org/10.1111/j.1601-0825.2009.01646.x

    Article  PubMed  Google Scholar 

  22. Hi LJ, Zhang CY, Zhou ZT, Ma JY, Liu Y, Bao ZX, Jiang WW (2014) MicroRNA-155 in oral squamous cell carcinoma: overexpression, localization, and prognostic potential. Head Neck 37:970–976. https://doi.org/10.1002/hed.23700

    Article  Google Scholar 

  23. Zhao XD, Zhang W, Liang HJ, Ji WY (2013) Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS ONE 8:e56395. https://doi.org/10.1371/journal.pone.0056395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zargar S, Tomar V, Shyamsundar V, Vijayalakshmi R, Somasundaram K, Karunagaran D (2019) A feedback loop between microRNA 155 (miR-155), programmed cell death 4, and activation protein 1 modulates the expression of miR-155 and tumorigenesis in tongue cancer. Mol Cell Biol 39:e00410-e418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin Q, Wang X, McBride J, Fewell C, Flemington E (2008) B-cell receptor activation induces BIC/miR-155 expression through a con- served AP-1 element. J Biol Chem 283:2654–2662

    Article  CAS  PubMed  Google Scholar 

  26. Manikandan M, Deva Magendhra Rao AK, Arunkumar G, et al. (2016) Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer 15:28. Published 2016 Apr 7. https://doi.org/10.1186/s12943-016-0512-8

  27. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA (2019) The regulatory role of MicroRNAs in breast cancer. Int J Mol Sci 20(19):4940. Published 2019 Oct 6. https://doi.org/10.3390/ijms20194940

  28. Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, Ye ZY, Tao HQ (2010) MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer 46:2295–2303

    Article  CAS  PubMed  Google Scholar 

  29. Long Y, Wu Z, Yang X, Chen L, Han Z, Zhang Y, Liu J, Liu W, Liu X (2016) MicroRNA-101 inhibits the proliferation and invasion of bladder cancer cells via targeting c-FOS. Mol Med Rep 14:2651–2656

    Article  CAS  PubMed  Google Scholar 

  30. Liu J-J, Lin X-J, Yang X-J, Zhou L, He S, Zhuang S-M, Yang J (2014) A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res 42(19):12041–12051. https://doi.org/10.1093/nar/gku87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to extend our thanks to our study participants for participating in the study. We also like to thank our parent Institute for funding this study.

Funding

This study received funding from the parent institute (Grant Number AIIMS/IEC/2016/238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Chugh.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parent Institute Where Research Was Conducted: All India Institute of Medical Sciences, Jodhpur, Rajasthan, INDIA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugh, A., Purohit, P., Vishnoi, J.R. et al. Correlation of hsa miR-101-5p and hsa miR-155-3p Expression With c-Fos in Patients of Oral Submucous Fibrosis (OSMF) and Oral Squamous Cell Carcinoma (OSCC). J. Maxillofac. Oral Surg. 22, 381–387 (2023). https://doi.org/10.1007/s12663-021-01668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12663-021-01668-0

Keywords

Navigation