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Sensor-based jump detection
and classification with machine
learning in trampoline
gymnastics

Introduction

An exercise in trampoline sport consists
of ten elements (jumps) and the order
in which the elements are performed is
at the discretion of the gymnast. Each
jump consists of various twists and som-
ersault rotations and their number and
combination determine the difficulty of
each jump. According to the regulations
of the Fédération Internationale deGym-
nastique, the degree of difficulty, execu-
tion, time of flight, and horizontal dis-
placement scores define a final total value
using of the following equation:

Total value =DD + E(max 20pts)
+ ToF + HD(max 10pts)
–penalty deductions

DD = the degree of difficulty
E = execution
ToF = time of flight
HD = horizontal displacement
pts = points

For a long time, the total value in
trampolinecompetitionsconsistedof two
variables: the degree of difficulty and the
overall skill execution. In order to make
trampoline gymnastics more attractive
and the evaluation of the gymnasts more

The data and code that support the findings
of this work are not publicly available due to
privacy, legal, or ethical restrictions but are
available from the corresponding author on
reasonable request.

objective, the technical committee of the
Fédération Internationale de Gymnas-
tique established the time of flight as
a new performance value in 2010 and
thehorizontaldisplacementvalue in2017
(Ferger, Helm,&Zentgraf, 2020). The in-
creased efforts to objectify performance
measurement in trampoline gymnastics
through the introduction of the time of
flightandhorizontaldisplacementhas led
to the development of a new measure-
ment system (called HDTS: horizontal
displacement, time of flight, and syn-
chronicity) and changes in the interna-
tional scoring rules (Ferger&Hackbarth,
2017; Ferger, Hackbarth, Mylo, Müller,
& Zentgraf, 2019; Ferger et al., 2020).
In addition to these objectively measur-
able parameters, two other parameters
arecurrentlybeingcollectedwiththehelp
of judges. The execution, and, thus, the
quality of the movement (E), is evaluated
by four judges, and the difficulty of ele-
ments (D) by one judge. The duty of the
judge of difficulty is to check the elements
and difficulty values entered on the com-
petition cards. The difficulty of each ele-
ment is calculated based on the number
of twist and somersault rotations. Each
¼ somersault and each ½ twist increases
the difficulty score by 0.1. A fully com-
pleted somersault is given 0.5 of a diffi-
cultypoint, adouble somersault 1, a triple
somersault 1.6, and a quadruple somer-
sault 2.2 points. If a jump type has both
somersault and twist rotations, the dif-
ficulty points are added up. Individual
somersaults of 360–630° without twists,

with straight or piked execution, receive
an additional 0.1 points. Multiple som-
ersaults of 720° or more, with or without
a twist, executed in a straight or piked
position, receive an additional 0.1 points
per somersault (FIG Executive Commit-
tee, 2016).

Therefore, this judge has to recognize
the execution of ten jumps in rapid suc-
cession, which can be a very challeng-
ing task, for example, the distinction be-
tween “Full-in Full-out” (one twist in the
first somersault, one twist in the second
somersault—822) and “Half-in Rudy out
Fliffis” (half-twist in the first somersault,
one and a half-twists in the second som-
ersault—813). Furthermore, athletes and
coaches have to recognize the exact exe-
cution of and, even more important, de-
viations from these jumps during their
training sessions. Currently, there is no
reliable method to automatically recog-
nize the various jump types.

However, current developments in
sensor technology make it possible to
measure complex whole-body move-
ments as they occur in technical compo-
sitional sports in order to assist the eval-
uation of movement quality (Camomilla,
Bergamini, Fantozzi, & Vannozzi, 2018).
Thus, in addition to technique and
match analysis, one finds, among other
things, a sensor-based recognition of
flight elements in half-pipe snowboard-
ing (Harding, Small, & James, 2007) as
well as the use of IMUs for detection of
training load and classification of gym-
nastic elements in trampolinegymnastics
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Table 1 Distributionanddescriptionof theelementsbasedonthecompetitionsystem,numberof jumpsrecorded(Q),anddifficultyof theelement (D)
Element Description Quantity Q Difficulty D

Somersault A A back somersault performed in straight (a) position 138 0.6

Somersault B A back somersault performed in piked (b) position 138 0.6

Somersault C A back somersault performed in tucked (c) position 252 0.5

Double back B A double back somersault performed in piked (b) position 100 1.1

Double back C A double back somersault performed in tucked (c) position 105 1.0

Barani A A front somersault, straight (a) with twist 124 0.6

Barani C A front somersault, tucked (c) with twist 107 0.6

Fliffis B A front half-out (double front somersault with ½ twist in the second somersault)—piked (b) 100 1.4

Fliffis C A front half-out (double front somersault with ½ twist in the second somersault)—tucked (c) 100 1.3

Back full A full-twisting, straight back somersault 114 1.3

(Campbell, Bradshaw, Ball, Hunter, &
Spratford, 2021; Helten, Brock, Müller,
& Seidel, 2011).

Fromapractical coachingperspective,
theuseofwearable inertial sensorsorsen-
sor-based systems should add value to
everyday training and competition. The
IMUsareparticularlywell-suited tomon-
itor performance in a reactionless way,
in real time, and without cumbersome
set-up procedures, such as calibration
(Baca, 2006; Chambers, Gabbett, Cole,
& Beard, 2015; Hood, McBain, Portas,
& Spears, 2012; Knight et al., 2007; Li
et al., 2016; Mendes, Vieira, Pires, & Ste-
van, 2016). These sensors are capable of
measuring physical quantities related to
the movement of a body and their meas-
urements can be used to estimate tempo-
ral, kinematic, and dynamic parameters.
Thismeans that the systematic, objective,
and reliable monitoring and evaluation
of performance can strengthen the link
between research and practical coaching,
particularly in high-performance sports
(Camomilla et al., 2018). However, the
use of sensor-based jump detection in
training practice has been scarcely prac-
ticableuptonow. Complexmathematical
calculations for relatively simple move-
ments and a large number of sensors
prevent the systematic use of thesemeth-
ods in trainingandcompetition(Harding
et al., 2007; Helten et al., 2011).

New opportunities have arisen to ad-
vance the automated classificationof sen-
sor-based data with the expansion ofma-
chine learning (ML) and data science
into other areas of research. This also
includes recent research at the intersec-
tion between biomechanics, mobile sen-
sors, and ML. Current research offers

newpossibilities in this area and indicates
the potential for integrating ML systems
for application in sports, particularly in
the analysis of requirements for complex
movements (Ancillao, Tedesco, Barton,
&O’Flynn, 2018; Camomilla et al., 2018;
Stetter, Krafft, Ringhof, Stein, & Sell,
2020). However, the use of ML methods
for the detection of complex jumpmove-
ments, such as those occurring in tram-
poline gymnastics, using mobile sensor
data has been insufficiently explored up
to now.

This paper presents the feasibility of
the automatic classification of trampo-
line jumps using data from a data log-
ger with an integrated IMU manufac-
tured by 2D Datarecording (Datasheet
2d-Datarecording, 2021). We also dis-
cuss how to transform raw inertial data
into meaningful characteristic features
that underlie the detection of a jump
and its assignment to a jump type. The
duration of a jump is defined by jump
limits from the acceleration data (ACC)
which determine the start and end of the
movement. The conditions for the exe-
cution of the respective jumps cannot be
derived from the characteristic acceler-
ation values alone; it is necessary to use
the angular velocities of rotation of the
gyroscope (gyro) about its three axes for
this.

We tested eight different approaches
to automatically classify jumps based on
the sensor data. These are common ML
techniquesused inmanifoldapplications,
including sensor-based data (Huang &
Perry, 2016; Meyer et al., 2019; Wolt-
mann et al., 2022). The primary goal
of the ML models is to automatically de-
tectdifferent typesof jumps (somersaults,

twists, and combinations thereof) in the
ongoing training of trampoline gymnas-
tics. Another goal is to simultaneously
detect and record the various conditions
ofexecution(tucked, piked, straight)and,
thereby, expand the analysis of individ-
ual techniques in the long term. Finally,
the classification of elements and deter-
mination of the difficulty of an exercise
in competition could be automated.

Methods

Participants

Four trampoline gymnasts (male, n= 3;
female, n= 1) who are competing at the
national level were recruited from local
gymnastics clubs located in Bad Kreuz-
nach and Frankfurt, Germany. Writ-
ten informed consent was obtained from
the participants in advance. This project
was approved by the local Human Ethics
Committee of the University of Giessen.

Procedure

Data were collected over the course of
several training units at two national
sports bases in Germany. Participants
were instructed to wear a chest strap
along with a logger (. Fig. 1) and per-
form a warm-up of their choosing prior
to data collection. The data logger with
an integrated IMU (with 6° of freedom,
triple-axis ACC up to 16g, triple-axis
GYRO up to 2000°/s, sampling rate
1000Hz; 2D Datarecording, Karlsruhe,
Germany) was secured to the upper
back (T2 vertebra) with a chest strap
(Datasheet 2D-Datarecording, 2021).
Three-dimensional kinetic data, which
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are used to decode the jumps performed,
were logged over the entire course of
the training session. The contents of the
training sessionwere recorded in training
logs. In addition, the IMU data collected
were synchronized with existing video
data (50 fps) in the WinARace 2021
software (2D Datarecording, Karlsruhe,
Germany) to validate the information
on the sequence of somersault and twist
rotations or the technique. It was not
possible to use the video camera (Digital
Camera Exilim EX-F1, Casio, Tokyo,
Japan) in all units. A total of 5927
jumps were recorded, of which 3932
were classified as straight jumps which
are irrelevant for classification as they
are used to gain height. Furthermore,
we also excluded jumps that occurred
fewer than three times in the entire
dataset. This left us with 2076 jumps of
50 different jump types. Ten out of the
50 jump types represent all important
andpossible somersault and twist combi-
nations, therefore, these were ultimately
used. This amount of data is enough to
train a variety of ML models, which is
very important, especially for complex
models that require a lot of training data
in order to achieve stable results.

Acceleration data along the three axes
of motion and angular velocities around
the three axes of motion were collected
for ten jumps (. Table 1) with differ-
ent modes of execution (tucked, piked,
straight). Therawdatawerepreprocessed
to facilitate the reliable detection of any
overlaps occurring between somersault
and twist rotations. Jump limits for jump
detection were determined from the ac-
celeration data, based on the starts and
ends of the jumps. The number of lat-
eral and longitudinal body axis rotations
involved in the motion was derived for
the respective axes from the angular ve-
locity data. Three different calculation
variables for the angle subtended in the
overall jump were determined for this
purpose and used for further calcula-
tion. Consequently, a total of 45 datasets
(features) are available from theACCand
the angular velocity data (GYRO) for the
classification of an individual jump.

This number of values measured for
each individual jump should allow a nu-
anced identification of the individual
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Abstract
The task of the judge of difficulty in
trampoline gymnastics is to check the
elements and difficulty values entered on the
competition cards and the difficulty of each
element according to a numeric system. To
do this, the judge must count all somersaults
and twists for each jump during a routine
and thus record the difficulty of the routine.
This assessment can be automatedwith the
help of inertial measurement units (IMUs)
and facilitate the judges’ task during the
competition. Currently, there is no known
reliable method for the automated detection
and recognition of the various elements to
determine the difficulty of an exercise in
trampoline gymnastics. Accordingly, a total of
2076 jumps and 50 different jump types were
recorded over the course of several training
sessions. In the first instance, 10 different
jump types were used to train different
machine learning (ML) models. Eight ML
models were used for the automatic jump

classification. Supervised learning approaches
include a naive classifier, deep feedforward
neural network, convolutional neural
network, k-nearest neighbors, Gaussian
naive Bayes, support-vector classification,
gradient boosting classifier, and stochastic
gradient descent. When all classifiers were
compared for accuracy, i.e., howmany jumps
were correctly detected by the ML model,
the deep feedforward neural network and
the convolutional neural network provided
the best matches with 96.4 and 96.1%,
respectively. The findings of this study will
help to develop the automated classification
of sensor-based data to support the judge
and, simultaneously, for automated training
logging.

Keywords
Trampoline · Training · Automated classificati-
on · Machine learning · Inertial measurement
unit

jumps and their variants in terms of exe-
cution. Utilizing ML methods, both the
preprocessed and the raw data are used
to estimate the correct motion detection
for a jump to facilitate an assessment
as to whether all 45 values measured
(features) are actually relevant for the
classification of the jumps and if the se-
lected subsections were chosen correctly
when observing the jumps, or whether
the raw data is ultimately more suitable.

Data engineering

In order to study and validate the reliabil-
ity of the jumpdetection results, themea-
surement data that were preprocessed in
the IMU using range filtering and online
filtering were processed again using the
2D Datarecording Analyzer software.

Thedataalreadyprefiltered inthe IMU
were filtered even further using infinite
impulse response filtering with several
adjustablefilterfrequenciestosmooththe
measurementdata by removingnoise. As
the sensor co-ordinate system does not
match the athlete’s body coordinate sys-

tem when the sensor is attached to the
athlete’s back, the 3D rotation provided
in the 2D Datarecording calculation al-
gorithm can be used to correct the sensor
coordinate system to the same orienta-
tion as the body coordinate system for
additional data processing. This is done
by applying a rotation (+90° | 0° | +90°)
to the IMU data for the x, y, and z axes.

Both the jump limits and the limit val-
ues for different intensities of movement
are defined along the three axes of move-
ment based on the acceleration data. The
movement intensities are distinguished
by different high limit values and the
sensor first detects a jump relevant for
the jump detection at an acceleration of
>70m/s2. The start and end points are
determined by delimiting the individual
jumps based on the previous calculation
or preprocessing of the data. This allows
the integration of the gyro signal or the
calculation of the angles traversed from
the angular velocity around the three axes
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Fig. 18 Inertial measurement unit position for the upper back, configuration, and technical specifications

of movement within the limits of the re-
spective jump (Djump).

D jumpSi gI . . . = ∫ F (x) dx (1)

D jumpIAbs . . . = ∣∫ F (x) dx∣ (2)

D jumpAbs I . . . = ∫ ∣F (x)∣ dx (3)

When analyzing jumps with superim-
posed somersault and screw rotations,
simple integration yields implausible re-
sults (Harding et al., 2007). This can be
explainedbythesigns tied tothedirection
of rotation. With a simple forward som-
ersault, i.e., a rotation around the frontal
axis, the sensor records an angular ve-
locity around the vertical (y) axis that
remains constant within a certain range.
This angular velocity is negative accord-
ing to the body and the right-handed co-
ordinate systemand should reach a swept
angle of approximately –360° integrated
over the duration of the jump. This is
because the integration result does not
only contain the value of the swept an-
gle but also directional information; the
result is positive for backward rotations
and negative for forward rotations. This
directional sign then gives rise to implau-
sible results when rotations are superim-
posed. The example of a Barani (. Fig. 2)
illustrates the problem.

In this case, thehalf-turn is performed
after the first half of the somersault. This
changes the direction of rotation of the
somersault for both the body and the
sensor. If the first half of the somersault

is still in thenegative directionof rotation
associated with the forward somersault,
thesecondhalfofthesomersaultbecomes
positive insigndue tothehalf-twist. If the
two sections are considered individually
in an idealized execution, the integral
wouldfirst result ina sweptangleof–180°
and then a swept angle of +180°. The
total swept angle would, thus, be 0°. In
practice, the values reached are just above
or justbelow0°due to thedifferent timing
of the half screw in the jump. For this
reason, an absolute of the respective gyro
channel is formed for the duration of the
jump over time prior to the integration of
this channel. This removes all directional
informationandcalculates the total swept
angle without the forward and reverse
rotations mathematically cancelling each
other out. However, as the directional
information is often helpful for a later
classification of the types of jump, all
three variants of the integration of the
gyro channels are used (. Fig. 3).

Following the integration of the gyro
channels, the jumps are segmented based
on the values calculated and the naming
structures implemented. Based on these
jump-specific values, the empirical limit
values for each individual type of jump
and its execution variant can be assigned
to a specific category. The categories
are jumpswith rotations (JumpWithRot),
jumps with twists (JumpWithTwist), and
somersaults (JumpOnlySomersault).

We compared all models using differ-
ent subsetsof features to identify themost

important features and their influences
on the models and determine the best
segmentation. The first group of features
is based on raw values, where each jump
is divided into different percentage steps
per dataset. Each percentage step incor-
porates the average and standard devia-
tionforeachfeaturewithinthatparticular
percentage of a single jump. The models
are trained on each feature set and used
to identify the best length, expressed as
a percentage, for a segment according to
the models’ best overall accuracy. The
5–20% segmentation is based on tech-
nical considerations and tested experi-
mentally, whereas the 25% segmentation
takes the jump phases of the elements
into account (take-off phase, execution
and opening phase, and landing). There
are five raw value datasets with 5, 10,
20, and 25% steps, respectively. The sec-
ond group of datasets also includes this
segmentation and additional features de-
rived and calculated from domain know-
ledge as presented in Eqs. 1, 2, and 3.
Here, we used the same procedure to
find the best model as for the datasets
based on raw values.

A total of eight models on eight
datasets (four from each group of fea-
ture sets) were evaluated, giving us
64 experiments. From this, we extracted
the model with the highest degree of
accuracy both for each individual group
of datasets and for all the datasets as
a whole. This was done by training all
models using the same 80% from each
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Fig. 29 Barani A
(front somersault
with twist-straight)
with directional in-
formation from the
sensor. TOF time of
flight

dataset (training data) and then testing
the model’s accuracy on the remaining
20% (test data). All the models use open
source implementations.

Another aspect of this work was to
find the most important features for the
ML models. The latter are those that
are representative of a specific class of
jump. These may differ from jump type
to jump type. We used Shapley additive
explanation (SHAP) values to assess the
importance of each feature (Lundberg &
Lee, 2017). These correlate the models’
outputs to the input features by mutually
disregarding features in subsets and com-
paring the models’ outputs. The SHAP
values can give insights into how influ-
ential a single feature is for a particular
type of jump. This information is used
to calculate the influence (expressed as
a percentage) that each of the 45 features
had on themodel’s output. We tested this
for the best model to identify the most
important phase and sensor measure for
each type of jump.

Machine learning models

We evaluated a variety of eight MLmod-
els for the automatic jump classification.
These models cover all the main ap-
proaches on classification models from
the k-nearest neighbor classifier (KNN),
over support-vector classification (SVC)
and decision trees up to very complex
neural networks (. Table 2). The mod-
els can generally be divided into three
complexity categories: naive, simple, and
complex. These categories describe how
expressive each model is and how much
time and training data are required dur-
ing model training. The naive category
only contains the naive classifier (NC).
The KNN, Gaussian naive Bayes (GNB),
SVC, gradient boosting classifier (GBC),
and stochastic gradient descent (SGD)
are simple models. These are already ca-
pable of modelling complex contexts but
still based on either simple mathematical
principles or only a few calculations. The
category of complex models contains the
neural network-based deep feedforward
neural network (DFF) and convolutional
neural network (CNN). These two mod-

els are very strong in their ability to solve
complex problems. However, their com-
plexity requires more data and training
time thanmodels from the other two cat-
egories. All mentioned algorithms will
be described in . Table 2 with a short
summary of their functionalities. Note
that every jump is represented as a single
vector, where each entry (feature) is ei-
ther the mean, the standard deviation of
a percentual step (raw data), or a derived
feature (preprocessed data).

We will show that these models gain
different levels of quality for the task
of jump classification according to their
complexity.

Additionally, SHAP values are used
for the best model, i.e., the model with
thebestoverall accuracy, for furtheranal-
yses. Most models are opaque in their
workings and, therefore, their decision-
making is not traceable. However, one
wants to be able to argue why a model
has decided to classify a jump into a par-
ticular jump type. Therefore, the use
of SHAP values can test different sub-
sets of feature combinations and observe
the differences in the model’s output and
quality. This results in a mapping for
each jump containing the influences of
every feature on the decision. With this
mapping, we were able to recognize the
most influential percentual phases and
features for each decision according to
the highest SHAP values. By analyzing
every decision in that way, we can build
a comprehensive understanding of the
characteristics of a jump.

Results

All eight ML models were tested on the
eight datasets, originating from the four
different percentual splits and the use of
raw or preprocessed data. This leads to
64 experiment values expressed in the
final accuracies of each model on the
test data specified. The detailed results
can be found in . Table 3. For brevity,
we only present the data based on the
best percentual split and the feature sets
being used.

The best model is the DFF with just
the raw data with 20% steps. It reaches
an accuracy of 96.4% and, therefore, out-
performs all other ML models by 0.3 to
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Table 2 Overview of differentmodels

Model

Naive classifier NC Takes the probability distribution of jump types in the training data and randomly assigns labels to the test dataset
according to this distribution. Therefore, the NC is independent of any features

K-nearest neighbors KNN Interprets each jump as a point in the high-dimensional vector space and classifies unknown jumps by assigning
the most common jump type in the direct k-neighborhood of the unknown jump. The number of neighbors to con-
sider (k) for this can be chosen to fit the ML task

Gaussian naive
Bayes

GNB Decides the affiliation of the jump to a jump type by the maximum likelihood over all features, which are modelled as
independent Gaussian distributions

Support-vector
classification

SVC Takes the vector space from the KNN, but decides the jump types according to learned hyperplanes dividing the vector
space into compartments

Gradient boosting
classifier

GBC Constructs a collection of decision trees that take the feature values for decision-making. Additionally, the GBC learns
each new decision tree based on the solutions and errors of the previous tree (boosting)

Stochastic gradient
descent

SGD Takes the approximated gradient of the function the jump types create in the vector space and creates a separation of
the vector space into compartments like SVC

Deep feedforward
neural network

DFF The simplest form of neural network. Fully connects several layers of neurons with each other and learns the weights
along these connections. This is done in a completely self-containedway, making the DFF a black box approach

Convolutional neu-
ral network

CNN Works similar to DFFs but uses 2D input. For each jump, the first axis is the percentual decomposition and the second
axis contains the means, the standard deviations and the features derived for that particular percentual step of the
jump

Table 3 The differentmodels and the, respectively, best performing datasets
Modela Percent step

(%)
Mean
(raw data)

Std
(raw data)

Preprocessed
data

Accuracy
(%)

Training
time (s)

NC – – – – 7.0 <1

KNN 20 Yes Yes No 95.9 4

GNB 10 Yes Yes Yes 88.9 1

SVC 25 Yes Yes Yes 94.2 1

GBC 25 No No Yes 93.0 7

SGD 10 Yes Yes Yes 91.5 4

DFF 20 Yes Yes No 96.4 16
CNN 20 Yes Yes Yes 96.1 25
aModels defined in. Table 2

7.5% points. The CNN does not perform
better, even though it should be able to
model complex tasks better than theDFF.
The higher complexity is also shown in
the training times. Therefore, the DFF is
preferable to the CNN.

From this conclusion, we want to ana-
lyze the influences of the features on the
prediction. Accordingly, we calculated
the SHAP values on the best model, i.e.,
theDFF from. Table 2. . Figure 4details
a single decision for a back tucked somer-
sault (somersault C).The chart illustrates
the influence of each feature on the de-
cision of the model to say ‘somersault C’.
Each bar shows how much the feature
contributes to the model towards this
decision. The grey values next to the fea-
ture names are the actual measurements.
The features ‘20_mean_Gyro_y_R’ and
‘20_mean_Gyro_y_Fil’ have the highest

impact. These are the measurements for
the rotation around the y-axis during the
phase from20 to 40%of the jump. There-
fore, we argue that the rotation around
the y-axis in the phase from 20 to 40%
is the most expressive part of the jump
type ‘somersaultC’notonly for themodel
but also in general. This was tested for
several other jumps and the SHAP val-
ues were able to identify several similar
arguments, for example, the combined
rotation around the y-axis in the first
20% and the z-axis in the first 40% is the
most expressive part of a back full for the
MLmodel. With this feature analysis and
the averaged representative jump, there is
a lot of potential for the application of the
models in training and competitive sce-
narios. These applications are discussed
in the following section.

Discussion

This article has presented and discussed
eight different ML models for the classi-
fication of trampoline jumps. Based on
raw inertial data from an inertial sen-
sor, ACC along the three axes of motion
and angular velocities (GYRO) around
the three axes of motion were collected
for selected jumps (. Table 1). Utiliz-
ing the approach for automated jump
recognition presented herein, the train-
ing process can be augmented regard-
ing the achievement of a target value of
skills and skill combinations (e.g., diffi-
culty value of a freestyle or compulsory
exercise in trampoline gymnastics) and
related to the qualitative development of
the performance of motor tasks with ad-
ditional parameters, such as the appli-
cation of force (horizontal displacement,
time of flight, and synchronicity) and
quality of execution. It shows that the
systematic, objective, and reliable mon-
itoring and evaluation of performance
using IMUs can strengthen the link be-
tween research and practical coaching,
particularly in high-performance sports
(Camomilla et al., 2018). Furthermore,
the accuracy of the DFF model of 96.4%
shows that the use of sensors for auto-
mated jump detection is rewarding de-
spite complex mathematical calculations
(Harding et al., 2007; Helten et al., 2011).

With our experiments, we have
demonstrated that the DFF works best
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Fig. 39 Integration of the
gyro signal of the angles
traversed from the angular
velocity around the three
axes ofmovement.A1 1ua,
A2 1.5ua, ua units of area

Fig. 48 The influences of eachmeasurement on the decision for a back tucked somersault (somersault C) according to their
Shapley additive explanation (SHAP) values

with the data based on raw values and
that theCNNworksbestwith thedomain
knowledge included. Additionally, this
work also demonstrates that using the
raw data and a DFF is slightly advanta-
geous for the use case overall. However,
there is no general recommendation for
the use of a particular calculated feature
set because each model requires its own
adapted feature space. The NC performs

badly, because, as expected, it does not
incorporate any knowledge about the
data except the a priori distribution of
the jump types. Furthermore, we cannot
recommend a specific model per se. On
the one hand, the DFF performs best,
but, on the other hand, the SVC has
the shortest training time while having
an acceptable accuracy. However, all
models except the DFF require prepro-

cessed data, which adds computational
complexity to thedata processing. There-
fore, the application of a specific model
depends on the particular use case.

Another interesting conclusion is the
fact that the KNN performs well. There-
fore, we can assume similarities of jumps
of a certain jump type in their vector
representation and raw measurements.
This leads us to the assumption that these
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jumps might follow the same visual pat-
terns and an averaged representative
jump can be derived for each jump type.
This representative jump can be used to
advise athletes in training and recognize
the phases of a jump type.

This uncertainty in model and data
selection and their influence is a com-
mon conclusion in other current work
classifying jumps (Bitén, 2021; Echter-
hoff, Haladjian, & Brügge, 2018). One
general notion of these works is the dis-
cussion that an ML solution should be
tailored to the problem by experimental
design. This is also independent of the
type of sport as both publications show.
Bitén also acknowledges the vast number
of models that can be used and limits the
studies to a certain subset. In this work,
we use a similar argument to support
our extensive combinationofmodels and
features in the experiments and the con-
clusions drawn in the results and discus-
sion. Additionally, this problem makes
explainable artificial intelligence (XAI)
a strong candidate for further research,
as shown by our use of SHAP values.
These are already used to back up some
of our claims. Other works support simi-
larargumentsbyapplyingXAI torelevant
sports-related analysis, like performance
of basketball teams (Wang, Liu, & Liu,
2022). To the best of our knowledge,
no work for jump classification includes
explainable ML argumentation.

Thedocumentationof training data in
trampoline gymnastics has so far been
limited, for example, to the collection
of the training duration, athletics, num-
ber of exercises, number of individual
jumps and jump combinations, whereas
the technical quality of elements is not
systematically recorded. The application
of mobile sensors combined with pre-
dictive models for jump detection offers
new possibilities in this area and indi-
cates the potential for integrating ML
systems for application in sports, par-
ticularly in the analysis of requirements
for complex movements (Ancillao et al.,
2018; Camomilla et al., 2018; Stetter et al.,
2020).

The automated determination of the
difficulty of jumps according to interna-
tional scoring rules is a special challenge
for competition. However, the approach

presented here also indicates prospects
for supporting the difficulty judges and
enables a direct derivation and formula-
tion of individual target values for train-
ing. Finally, the competition data repre-
sent relevant factors influencing perfor-
mance and can be made available in real
time.

Conclusion

Machine learning methods can be used
to detect jumps using sensor data. The
applicationparticularlyofmobile sensors
in combination with prediction models
for jumpdetectionhasbeen insufficiently
researched up to the present. The ap-
proach proposed herein basically shows
considerablepotential forexpandingmo-
bile applications in a sport with complex
movement requirements. Future work is
planned to apply these techniques to pro-
vide immediate feedback through which
an athlete’s performance is evaluated or
the difficulty judge is supported.
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