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Constant power threshold—
predicting maximal lactate
steady state in recreational
cyclists

Introduction

Well-being and health benefits are well-
established goals to participate in recre-
ational sports (Ley, 2020; Molanorouzi,
Khoo, & Morris, 2015). Social recogni-
tion, improvements in self-esteem and
self-confidence as well as gains in per-
formance and pushing one’s own limits
are further relevant motives positively
impacting compliance to exercise (Dee-
len, Ettema, & Kamphuis, 2018; Gill,
Dowd, Williams, Beaudoin, & Martin,
1996; Kraus et al., 2017; Ley, 2020; Niko-
laidis, Chalabaev, Rosemann, & Knech-
tle, 2019). Thus, for recreational cyclists
exercising not only for health reasons
but also aiming at improving individual
performance, determinationofappropri-
ate training zones can be helpful for tai-
loring individual training programs and
for achieving these goals (Jones, Burn-
ley, Black, Poole,&Vanhatalo, 2019). The
transition from sustainable to non-sus-
tainable exercise intensities is commonly
consideredtodifferentiatebetweenheavy
and severe-intensity exercise. This corre-
sponds to themaximal sustainable oxida-
tivemetabolic rate and therefore iswidely
considered a benchmark for prescrib-
ing appropriate training zones (Beneke,
Hutler, Von Duvillard, Sellens, & Lei-
thauser, 2003; Jones et al., 2019; Jones &
Carter, 2000; Mann, Lamberts, & Lam-
bert, 2013). For readability, this transi-
tion is referred to as anaerobic threshold
(AnT) in the following.

All-out time trials (TT), which target
at completing fixed distances in min-

imum time or generating maximum
work in fixed time, do not need expen-
sive equipment and trained staff and
thus can be an attractive alternative for
recreational athletes. In recent years,
TTs experienced a revival under the
term functional threshold power, which
is the average workload during a pro-
longed all-out test (Allan & Coggan,
2010; Borszcz, Ferreira Tramontin, &
Pereira Costa, 2019; Inglis, Ianetta, Pass-
field, & Murias, 2020; Jeffries, Simmons,
Patterson, & Waldron, 2019; Lillo-Bevia
et al., 2019; McGrath, Mahony, Fleming,
Raleigh, & Donne, 2021). Capability
of all-out TTs for predicting perfor-
mance and estimating workload at AnT
was proven in numerous investigations
on experienced, well-trained cyclists
(Bentley, McNaughton, Thompson, &
Vleck, 2001; Burnley, Doust, & Van-
hatlo, 2006; Campbell, Sousa, Ferreira,
Assenço, & Simes, 2007; Groslambert
et al., 2004; Harnish, Swensen, & Pate,
2001; Sperlich, Haegele,Thissen, Mester,
& Holmberg, 2011; Swensen, Harnish,
Beitman, & Keller, 1999). Accord-
ingly, TTs are widespread in competitive
cycling. However, to the authors’ knowl-
edge, TT studies on low to moderately
trained cyclists are missing. Moreover,
TTs are only occasionally applied for
determining AnT and for identifying
training zones in recreational sports.
This is probably due to following rea-
sons. TT duration should be in the
range of 30min to 75min since aver-
age power output (PO) conforms to
output at AnT, whereas mathematical

correction is required for longer shorter
TTs (Borszcz et al., 2019; Ham & Knez,
2009; Harnish et al., 2001; Inglis et al.,
2020; MacInnis et al., 2019; McGhee,
Tanner, & Houmard, 2005; Pallares et al.
2020). Pacing prolonged TTs, however,
challenges even well-trained and com-
petitive cyclists (Borszcz et al., 2019;
Foster et al., 1993; Ham & Knez, 2009;
Koning de, Bobbert, & Foster, 1999;
Mattern, Kenefick, Kertzer, & Quinn,
2001). This is all the more the case
with recreational cyclists who usually do
not have specific endurance experiences
necessary to properly pace all-out TTs as
substantiated by the widespread experi-
ence of practitioners that many athletes
unexperienced in endurance sports have
problems to pace the classical 12min
Cooper test.

Accordingly, in the present investiga-
tionTTdurationwas set to 30min and to
45min and TTs were conducted at con-
stant PO in order to limit participants’
strain and to eliminate the interfering ef-
fects of pacing ability andpacing strategy.

The aim of this study thus was to ex-
aminewhether constant power threshold
(CPT), operationalized as the maximum
PO constantly maintainable over 30min
(CPT30) and45min (CPT45), is capable of
accurately estimatingAnT in recreational
cyclists. CPT30 and CPT45 were evalu-
ated against maximal lactate steady state
(MLSS), which is commonly regarded to
beoneof themost accurate tools for iden-
tifying AnT (Jones et al., 2019; Legaz-Ar-
rese, Carranza-García, Serrano-Ostáriz,
González-Ravé, & Terrados, 2011; Mes-
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Table 1 Anthropometric data of participants
Ages (years) Height (cm) Weight (kg) BMI (kg · m–2)

All 23.7± 3.7 175.7± 9.4 71.1± 13.8 22.8± 2.5

Female (N= 11) 22.9± 2.1 169.2± 7.0 61.0± 7.9 21.2± 1.7

Male (N= 11) 24.6± 4.9 182.3± 6.6 81.2± 10.7 24.4± 2.2

P/d a Ns <0.001/1.39 <0.001/1.46 <0.001/1.28

d Cohen’s d, Ns statistically not significant
adifferences between sexes

sias, Gobatto, Beck, & Manchado-Gob-
atto, 2017).

Methods

Participants

In all, 25 recreational cyclists participated
in this study of whom 22 performed all
tests required, so that data of 11 female
and 11 male probands were included for
analysis. Participants had tomeet follow-
ing inclusioncriteria: (1)20–40yearsold,
(2) Free from serious diseases, (3) Vol-
untarily willing to perform exhausting
exercise, (4) No endurance competition
experience, and (5) Low tomoderate aer-
obic capacity estimated by questioning
for physical activity and exercise habits.
They were instructed to avoid physical
training for at least 48h prior to testing
and to maintain their normal nutritional
habits. Researchhasbeenconducted eth-
ically according to the principles of the
DeclarationofHelsinki (Harriss&Atkin-
son, 2019). Allparticipantsapprovedvol-
untary participation through written in-
formed consent. The studywas approved
by the institutional ethics committee of
the Medical Faculty of Ruhr University
of Bochum, registered office: Heart and
DiabetesCenterBadOeynhausen,NRW.

Exercise testing
Participants performed several constant
load TTs, separated by at least 48h, on
an electricially braked cycle ergometer
(model Excalibur, Lode, Germany) in
a semi-air-conditioned laboratory (tem-
perature: 19–23 o C; humidity: 30–80%).
Investigators encouraged probands to
cycle as long as possible and to give
maximum effort before each TT but not
throughout. Information about the time
elapsed was given if asked for. Work-
load of the first TT was estimated to be

potentially close to MLSS on the basis
of the test persons’ self-report. After
warming-up for 3min at 60% of the
intended workload, PO was increased
to the target PO and kept constant for
at maximum 45min or until TT had to
be stopped due to exhaustion. Work-
load of the following TT was adapted in
10W steps until CPT30 and CPT45 were
determined.
4 Example 1: If the first TT at a work-

load of 140W was sustainable for
45min, the second at 150W for
38min and the third at 160W for
19min, PO at CPT30 and PO at CPT45

were 150W and 140W, respectively.
4 Example 2: If the first TT at a work-

load of 170W was maintainable for
41min, the second at 180W for
24min and the third at 160W for
45min, PO at CPT30 and PO at CPT45

were 170W and 160W, respectively.
4 Example 3: If the first TT at 190W

had to be terminated after 22min
and the second TT at 180W was
maintainable for 45min, PO at CPT30

and PO at CPT45 both were 180W.

Measurements

Capillary blood samples (20μl) were
taken from the earlobe before the TT
and from then on every 5 min and
analyzed by laboratory staff using an en-
zymatic-amperometric method (Super
GL, Dr. Müller Gerätebau, Germany).
Results of the determination of blood
lactate concentration (BLC) were not
communicated to the participants un-
less they had finished their last test. PO
at MLSS was defined as the highest PO
at which BLC increased by no more than
1.0mmol · l–1 between the 10th and 30th
min of exercise (Beneke et al., 2003).
Mean BLC (BLCmean) was the average
of the 10th, 15th, 20th, 25th and 30th

min. HR was continuously measured
using a HR monitor (Polar Electro, Fin-
land) and visible to the probands and
noted every minute. Mean HR (HRmean)
was the average from the 10th to 30th
min. Cardiovascular drift (CVD) was
the increase of HR from the 10th to 30th
min. Rate of perceived exertion (RPE)
was assessed immediately after cessation
of TT on the Borg scale (6–20). In
contrast to the original scale, probands
were allowed to give RPE in 0.5 steps.

Statistical analysis

IBM SPSS version 27.0 was used to an-
alyze data (IBM., Armonk, NY, USA).
Normal distribution was tested using
Shapiro–Wilk test. T-test and one-way
repeated-measures analysis of variance
(ANOVA), Bonferroni post hoc test and
Greenhouse–Geisser correction were
used for identifying and interpreting sig-
nificant differences of the mean. Statisti-
cal significance was set at P≤ 0.05 (*) for
significantandP≤ 0.01(**) forhighlysig-
nificant. Squared eta (η2; <0.06= small,
0.06–0.14=medium, >0.14= large) and
Cohen’s d (d; <0.5= small, 0.5–0.8=
medium, >0.8= large) for independent
and dependent variables were calculated
to assess effect sizes. Coefficient of deter-
mination (R2), standard error of estimate
(SEE) were computed by means of single
linear regression analyses. Percentage
SEE (%SEE) was SEE divided by PO at
MLSS, multiplied by 100. Bland–Altman
analyses were applied for determining
bias and 95% confidence interval (Bland
& Altman, 1999). Data is presented
as mean and standard deviation (SD)
unless otherwise indicated.

Results

In all, 22 probands conducted two to
six (median four) TTs for determin-
ing CPT30, CPT45 and MLSS. For
anthropometric data and physiologi-
cal parameters at MLSS see . Table 1
and 2, respectively. Repeated measures
ANOVA identified significant differ-
ences between MLSS, CPT30 and CPT45

for PO (P< 0.001, η2= 0.295), BLCmean

(P= 0.012, η2= 0.221), HRmean (P= 0.024,
η2= 0.188)andRPE(P= 0.003, η2= 0.238)
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but not for CVD. Post hoc analysis re-
vealed significant differences between
MLSS and CPT30 and between CPT30

and CPT45 for PO, BLCmean, HRmean and
RPE. Differences between MLSS and
CPT45 were not significant (. Table 3).

A workload higher than PO at CPT30

is, by definition, not sustainable for
30min. Time to exhaustion at the TT
performed 10W above CPT30 work-
load was 21.0± 6.4min and BLC, HR
and RPE at cessation of exercise were
8.40± 1.36mmol · l–1, 176.4min–1 and
19.6± 0.7. At CPT30 workload, 11 partic-
ipants had to terminate exercise between
the 30th and 45th min (38.6± 6.9min).
The other 11 probands were able to
maintain CPT30 workload for 45min,
which was the predefined maximum
test duration. Accordingly, CPT30 and
CPT45 workload were the same and
time to exhaustion thus could not be
determined. At the TT performed 10W
below CPT30 workload all participants
except one were able to cycle for 45min
and BLCmean, HRmean and RPE were
5.19± 1.45mmol · l–1, 166.8± 9.4min–1

and 16.5± 1.8, respectively. Differences
to BLCmean, HRmean and RPE at CPT30

workload were all highly significant
(P< 0.001) and effects sizes were large
(d= 1.46, d= 1.08 and d= 1.18, respec-
tively).

Interrelationships between PO at
MLSS and PO at CPT30 (R2 = 0.99,
SEE= 8.9W, %SEE= 5.1%, P< 0.001)
as well as between PO at MLSS and
PO at CPT45 (R2= 0.99, SEE= 10.0W,
%SEE= 5.7%, P< 0.001) were very close.
Bland–Altman analysis revealed a bias
of +3.3 for PO at CPT30 and +0.3%
for PO at CPT45. The 95% CI was
±15.6W (±8.7%) and 18.6W (±10.6%),
respectively (. Figs. 1 and 2).

Discussion

Motives for participating in recre-
ational sports are multifaceted (Ebben
& Brudzynski, 2008). For recreational
cyclists striving among others to push
their limit and improve performance,
precise determination of AnT can sup-
ply useful information for designing
training programs and defining appro-
priate exercise intensities. Hence, the

aim of the present study was to investi-
gate whether the CPT approach can be
a beneficial alternative for recreational
cyclists to assess AnT. The individual
decision whether a method is regarded
advantageous essentially is a trade-off
between accuracy, on the one hand, and
effort and practicability, on the other.
Thus, in the first instance accuracy of the
CPT approach is compared to existing
methods for predicting AnT and there-
after discussed with a focus on effort and
practicability. For evaluating accuracy,
predominantly studies applying MLSS
were used since MLSS is regarded one of
the most valid criterion standard (Jones
et al., 2019; Legaz-Arrese et al., 2011;
Messias et al., 2017).

Accuracy of CPT approach in
comparison to literature methods

R2 for the interrelationship between pro-
longed TTs and MLSS range from 0.71
to 0.99 (Borszcz et al., 2019; Campbell
et al., 2007; Harnish et al., 2001; Inglis
et al., 2020; Lillo-Bevia et al., 2019).
R2 for the interrelation between lactate
threshold and MLSS range from 0.31
to 0.90 and from ‘not significant’ to
0.95 for ventilatory threshold and MLSS
(Figueira, Caputo, Pelarigo, & Denadai,
2008; Hauser, Adam, & Schulz, 2014;
Heck, 1990; Laplaud, Guinot, Favre-Ju-
vin, & Flore, 2006; MacIntosh, Esau, &
Svedahl, 2002; Pallares, Moran-Navarro,
Ortega, Fernandez-Elias, & Mora-Ro-
driguez, 2016; Peinado et al., 2016;
Smekal et al., 2012; Van Schuylenbergh,
Vanden Eynde, & Hespel, 2004; Zwing-
mann et al., 2019). In the present study,
R2 for the interrelationship between PO
at CPT30 and PO at MLSS as well as
between PO at CPT45 and PO at MLSS
are R2= 0.99 and thus among the highest
reported in the literature. Correlation
parameters, however, are strongly influ-
encedby theheterogeneityof the random
sample and, furthermore, literature re-
sults are given in different units, both
impeding comparison between studies.
%SEE is considered to be the better pa-
rameter for comparing differentmethods
and, thus, was predominantly applied
for comparison reasons. If %SEE was
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Abstract
Introduction. Prolonged time trials proved
capable of precisely estimating anaerobic
threshold. However, time trial studies
in recreational cyclists are missing. The
aim of the present study was to evaluate
accuracy and viability of constant power
threshold, which is the highest power
output constantly maintainable over time,
for estimatingmaximal lactate steady state
in recreational athletes.
Methods. A total of 25 recreational
athletes participated in the study of whom
22 (11 female, 11 male) conducted all
constant load time trials required for
determining constant power threshold
30min and 45min, which is the highest
power output constantly maintainable
over 30min and 45min, respectively.
Maximal lactate steady state was assessed
subsequently from blood samples taken
every 5min during the time trials.
Results. Constant power threshold over
45min (175.5± 49.6W) almost matched
poweroutput atmaximal lactate steady state
(176.4± 50.5W), whereas constant power
threshold over 30min (181.4± 51.4W) was
marginally higher (P= 0.007, d= 0.74).
Interrelations between maximal lactate
steady state and constant power threshold
30min and constant power threshold 45min
were very close (R2= 0.99, SEE= 8.9W,
Percentage SEE (%SEE)= 5.1%, P< 0.001
and R2= 0.99, SEE= 10.0W, %SEE= 5.7%,
P< 0.001, respectively).
Conclusions. Determination of constant
power threshold is a straining but viable and
precise alternative for recreational cyclists to
estimate power output at maximal lactate
steady state and thus maximal sustainable
oxidative metabolic rate.

Keywords
Time trial · Anaerobic threshold · Functional
threshold · Cycling · Endurance exercise

not stated in literature, it was calculated
from presented data.

Prolonged all-out TTs, which are well
established fordeterminingAnTandpre-
dicting competition performance, show
the highest accuracy found in literature.
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Table 2 Relative PO, BLCmean, HRmean, RPE andCVDatMLSS
Relative PO
(W · kg–1)

BLCmean

(mmol · l–1)
HRmean

(min–1)
RPE CVD

(min–1)

All 2.46± 0.48 5.43± 1.57 167.2± 10.4 17.2± 1.6 6.1± 3.5

Female (N= 11) 2.34± 0.46 5.44± 1.10 173.1± 9.4 16.8± 1.7 6.2± 2.9

Male (N= 11) 2.57± 0.50 5.41± 1.99 161.3± 7.8 17.5± 1.6 6.0± 4.2

P/da Ns Ns 0.004/1.13 Ns Ns

BLCmeanmean blood lactate concentration, CVD cardiovascular drift, d Cohen’s d, HRmeanmean heart
rate from the 10th to 30th min,MLSSmaximal lactate steady state, Ns not statistically significant,
P probability, PO power output, RPE rate of perceived exertion
adifferences between sexes

Table 3 PO, BLCmean, HRmean, RPE andCVDatMLSS, CPT30 andCPT45
MLSS CPT30 CPT45

(W) 175.5± 50.2 181.4± 51.4 175.5± 49.6PO

P/da 0.007/0.74 – <0.001/1.00

(mmol · l–1) 5.43± 1.57 6.48± 1.31 5.75± 1.60BLCmean

P/da 0.026/0.62 – 0.003/0.82

(min–1) 167.2± 10.4 173.1± 9.8 169.2± 11.1HRmean

P/da 0.027/0.61 – 0.012/0.69

– 17.2± 1.6 18.3± 1.5 17.1± 1.2RPE

P/da 0.016/0.66 – 0.005/0.76

(min–1) 6.1± 3.5 6.3± 4.1 7.4± 5.0CVD

P/da Ns – Ns

BLCmeanmean blood lactate concentration, CPT30 constant power output maintainable over 30min,
CPT45 constant power output maintainable over 45min, CVD cardiovascular drift, d Cohen’s d,
HRmeanmean heart rate from the 10th to 30th min,MLSSmaximal lactate steady state, Ns not statis-
tically significant, P probability, PO power output, RPE rate of perceived exertion
adifferences to CPT30

To the author’s knowledge, capability of
prolongedTTs forestimatingPOatMLSS
in cycling was subject to following stud-
ies, which were all performed on trained
and well-trained athletes. %SEE for pre-
dicting MLSS from functional threshold
power, defined as a certain percentage
of the mean PO during a 20min all-out
cycling TT, range from 2.1% to 5.4%
(Borszcz et al., 2019; Inglis et al., 2020;
Lillo-Bevia et al., 2019). %SEE for 5km
TTs are 1.8% and 3.1% and for 40km
TTs 1.6% and 4.5% (Campbell et al.,
2007; Harnish et al., 2001). Lactate and
ventilatory threshold concepts based on
incremental exercise tests are standard
in laboratory testing. %SEE for predict-
ing MLSS range from 1.0% to 12.5%
for lactate thresholds and from 3.7% to
12.5% for ventilatory thresholds (Hauser
et al., 2914; Heck, 1990; Laplaud et al.,
2006; MacIntosh et al., 2002; Pallares
et al., 2016; Peinado et al., 2016; Smekal
et al., 2012; Van Schuylenbergh et al.,
2004; Zwingmann et al., 2019). Further

approaches for assessing AnT are critical
power concept, HR variability threshold,
Conconi’s HR deflection point threshold
and subjective rate of perceived exertion
scores which record rather inconsis-
tent results. %SEE for estimating MLSS
from critical power ranges from 3.2% to
insignificant (Dekerle, Baron, Dupont,
Vanvelcena, & Pelayo, 2003; Maturana,
Keir, McLay, & Murias, 2016; Okuno
et al., 2011; Pringle & Jones, 2002) and
from 6.7% to almost 16% for subjective
rate of perceived exertion scores (Dos
Santos et al., 2020; Madrid et al., 2016;
Nakamura et al., 2009; Nakamura et al.,
2008; Perandini et al., 2007). Weak
as well as close interrelationships were
found between HR variability thresh-
old and ventilatory thresholds (Grannel
& De Vito, 2018; Karpetian, Engels,
& Gretebeck, 2008; Mankowski et al.,
2017), while Conconi’s test is also under
controversial discussion due to contra-
dictory study results (Assis Pereira de
et al., 2016; Bodner, Rhodes, Martin,

& Coutts, 2002; Bourgois et al., 2004;
Carey, Raymond, & Duoos, 2002; Cook,
2011; Grazzi et al., 2008; Heck et al.,
1989; Van Schuylenbergh et al., 2004).
Finally, HR formulas are consistently re-
garded to not be capable of assessingAnT
or training zones precisely (Knoepfli-
Lenzin, Haenggli, & Boutellier, 2014;
Mann et al., 2013; Röcker et al., 2002;
Shen & Wen, 2019).

In the present study, %SEE for esti-
mating PO at MLSS from PO at CPT30

and PO at CPT45 are 5.1% and 5.7%,
respectively. Comparison reveals that
accuracy of the CTP approach is only
marginally lower than that of prolonged
all-out TTs performed on experienced
endurance athletes, at least as good as
that of lactate and ventilatory threshold
concepts and critical power method and
even higher than that of HR variability
threshold, Conconi’sHRdeflection point
and subjective rate of perceived exertion
scores. Moreover, it is worth mentioning
that in the present study four of five par-
ticipants whose PO at CPT45 exceeded
PO at MLSS reached a BLC plateau dur-
ing the last 20min of exercise. However,
we assessed MLSS as the highest PO at
which BLC increased by no more than
1mmol · l–1 between the 10th to 30thmin
of exercise because it is themost common
definition. If we instead defined MLSS
conditions during the last 20min of exer-
cise, four of the five participants would
have kept MLSS conditions. Bias, SEE
and %SEE would have been 3.2W, 7.3W
and 4.1%, respectively, and just in one
participant CPT45 would have exceeded
PO at MLSS by 10W. Hence, the risk
of prescribing too high exercise intensi-
ties and thereby to induce overloading
is very low. Precision could have been
further increased by applying 5W in-
crements but 10W increments are stan-
dard for MLSS determination and strain
for participants would have been higher.
Nevertheless, data clearly point out that
the CPT approach is capable of precisely
determining AnT in recreational athletes
and to serve as a valid cornerstone for
assessing training zones. The present re-
sults are in linewith a studyperformedon
recreational runners which found %SEE
to be 2.6% for predicting MLSS speed
from maximum constant running veloc-
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ity maintainable over 45min (Vobejda,
Wortmann, & Zimmermann, 2013).

Applicability of critical power
approach and all-out TTs to
recreational cyclists

As mentioned before, not only accu-
racy but also effort and practicability
are further decisive factors determining
suitability of methods for determin-
ing AnT. Accuracy of HR variability
threshold, Conconi test and perceived
exertion approaches appears insufficient
for ambitious sportsmen and -women,
and lactate and ventilatory threshold
concepts require expert staff and expen-
sive equipment, which most recreational
cyclists do not have access to. Therefore,
discussion is focussed on applicability of
all-out TTs and critical power approach.

Critical power is reported to be higher
than PO at MLSS so that mathematical
corrections are necessary. Calculations
are facilitated by customer friendly data
calculators available in the internet but
bear a noteworthy risk of errors since
differences between critical power and
MLSSrange fromminus2%toplus16.3%
(Dekerle et al., 2003; Jones, 2019; Mat-
urana et al., 2016; Okuno et al., 2011;
Pallares et al., 2020). Moreover, deter-
mining critical power requires three to
seven maximum-effort work bouts each
inducing very high BLC and a feeling
of discomfort. This is very challeng-
ing, particularly for low to moderately
trained recreational cyclists who usually
are not used to exercise in such high in-
tensity zones limiting practicability for
recreational athletes.

As stated before, studies investigating
capability of prolonged all-out TTs for
estimating AnT were almost exclusively
conducted on trained cyclists. However,
practicability to recreational athletes and
transferability of these results is ques-
tionable due to following reasons. There
is evidence that prolonged all-out TTs
should last about 30min to 75min in or-
der to render mathematical corrections
unnecessary for calculating workload at
AnT.A duration of 30min to 75min con-
forms to time to exhaustion at MLSS in
recreational and trained cyclists (Baron
et al., 2008; Dittrich, de Lucas, Beneke, &
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Guglielmo, 2014; Fontana, Boutellier, &
Knopfli-Lenzin, 2009; Grossl, Dantas De
Lucas, Mendez de Souza, & Antonacci,
2012) and output almost equals work-
load at AnT (Borszcz et al., 2019; Har-
nish et al., 2001; Ham & Knez, 2009;
McGhee et al., 2005). In contrast, at TTs
shorter than30minaverageworkload ex-
ceeds workload at AnT, whereas it falls
below at TTs lasting longer than about
75min (Borszcz et al., 2019; Lillo-Bevia
etal., 2019; Campbelletal., 2007;Harnish
et al., 2001; Sperlich et al., 2011), so that
mathematical corrections are inevitable.
Allen &Coggan (2010) recommended to
correct power by the factor 0.95 but this
factor is challenged (Inglis et al., 2020;
MacInnisetal., 2019). Hence, calculating
AnT from power output of TTs shorter
or longer than about 30min or 70min is
a source of errors and derogates accuracy
of AnT determination. However, out-
come of prolonged TTs is strongly influ-
encedby theathletes’ ability toadequately
paceTTs(Fosteretal., 1993; Ham&Knez,
2009; Koning de et al., 1999), but pacing
prolonged TTs challenges even trained
cyclists. Mattern et al. (2001) compared
a predetermined slow starting pattern to
the self-selected strategy in competitive
cyclists and found the self-selected strat-
egy to be unfavorable. Borszcz et al.
(2019) investigated the relationship be-
tweenthefunctional thresholdpowerand
POatMLSS, but althoughall participants
were experienced cyclists, test was pre-
ceded by a specific 50min warm-up and
must have been performed at least once
before accuracy was markedly better in
the well-trained than in the trained cy-
clists. In general, recreational athletes do
not have specific experiences fromTTs or
competitions and thus are barely able to
properly pace such trials. Finally, terrain
and wind resistance strongly influence
cycling velocity during field tests so that
technical equipment such as power mea-
suring devices are needed for accessing
mean workload. Above that, most sta-
tionary bikes at home and in commercial
fitness centers do not have the capabil-
ity to compute mean workload. Due to
aforementioned reasons, practicability of
prolonged all-out TTs is regarded limited
for recreational cyclists.

Applicability of the CPT approach
to recreational cyclists

Athletes participating in the present
study had only low to moderate aer-
obic capacities and the majority was
not even practicing endurance sports.
Determining workload of the first TT
based on probands’ self-report thus was
only a first estimate and not necessarily
close to MLSS. Accordingly, number of
required TTs varied markedly from two
to six. However, this methodology was
applied in order to ensure transferability
to practice of recreational sports. Proce-
dure for determining CPT is doubtlessly
very exhausting. It therefore has to be
emphasized that high motivation and, in
particular, good health is an inevitable
prerequisite for conducting the required
TTs. Moreover, a medical examination
prior to testing is strongly recommended.
Nevertheless, even though not encour-
aged during theTTs, 22 of 25 participants
conducted all tests required for identify-
ing CPT30 and CPT45. One test person
had to finish testing ahead of schedule
due to illness. Only two probands re-
fused to conduct the presumably final
TT for confirming CPT. They argued
that they could not maintain any higher
workload and CPT thus was clearly
identified. Hence, the vast majority of
recreational athletes participating in the
study were willing and able to withstand
the strain.

PO at CPT45 almost equals PO at
MLSS, whereas PO at CPT30 is 3.4%
higher. Accordingly, shortening TT du-
ration is not recommendable and deter-
mining CPT45 rather than CPT30 appears
appropriate for recreational athletes in
order to avoid error-prone mathemati-
cal correction. Yet, some factors mitigate
overall burden. First, strain decreases
notably once workload falls below PO at
CPT30. At a workload 10W lower than
CPT30, corresponding to a reduction of
about 5%, all participants were able to
exercise for 45min and RPE values de-
creased from 19.6 to 16.5. This conforms
to the verbal feedback of most partici-
pants that at maximum two or three TTs
were perceived very hard and that tran-
sition from sustainable to non-sustain-
able exercise occurred within a rather

narrow and clearly perceptible intensity
range. Second, in practice, time and ef-
fort can be further reduced. Number of
TTs can be reduced by approximating
AnT workload prior to CPT45 determi-
nation by means of less straining meth-
ods, such as HR variability threshold or
Borg’s rate of perceived exertion score.
Third, CPT45 determination can be in-
tegrated into regular training programs
since heavy to severe-intensity exercise
bouts, whicharegenerallyanintegralpart
ofmost endurance exercise programs de-
signed for improving performance, can
be replaced by TTs required for CPT45

determination. Cyclists who attach great
importance to accuracy of AnT deter-
mination and are willing to accept the
strain can further improve precision by
determining CPT45 up to a precision of
5W.

Furthermore, and in contrast to other
methods for determining AnT, the car-
diovascular drift, which is the HR in-
crease in the course of constant load ex-
ercise (Coyle & Gonzales-Alonso, 2001),
can be directly assessed during CPT de-
termination and provide further help-
ful informationforcontrollingendurance
exercise intensity in the field.

Conclusions

Evidence is provided that determination
of CPT45 is a viable and precise approach
for young healthy recreational cyclists
who value accurate assessment of MLSS
as point of reference for prescribing en-
durance exercise intensity and assessing
appropriate training zones. It is almost
free of costs in that it only requires a reg-
ular HR monitor and power adjustable
ergometers, which are standard in most
fitness centers. Some recreational cyclists
even have power measuring devices at
their disposal. It does not require high
aerobic capacity and, in contrast to tra-
ditional TTs, no specific pacing ability.
However, it has to be pointed out that de-
termining CPT45 is very exhausting and
therefore requires high motivation and
foremost good health. Moreover, study
was carried out on participants in the
third and fourth decade of age so that
further research is needed in how far this
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approach is applicable to other groups of
athletes.
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