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Abstract
Gait recognition can exploit the signals from wearables, e.g., the accelerometers embedded in smart devices. At present, 
this kind of recognition mostly underlies subject verification: the incoming probe is compared only with the templates in the 
system gallery that belong to the claimed identity. For instance, several proposals tackle the continuous recognition of the 
device owner to detect possible theft or loss. In this case, assuming a short time between the gallery template acquisition and 
the probe is reasonable. This work rather investigates the viability of a wider range of applications including identification 
(comparison with a whole system gallery) in the medium-long term. The first contribution is a procedure for extraction and 
two-phase selection of the most relevant aggregate features from a gait signal. A model is trained for each identity using 
Logistic Regression. The second contribution is the experiments investigating the effect of the variability of the gait pattern 
in time. In particular, the recognition performance is influenced by the benchmark partition into training and testing sets 
when more acquisition sessions are available, like in the exploited ZJU-gaitacc dataset. When close-in-time acquisition data 
is only available, the results seem to suggest re-identification (short time among captures) as the most promising application 
for this kind of recognition. The exclusive use of different dataset sessions for training and testing can rather better highlight 
the dramatic effect of trait variability on the measured performance. This suggests acquiring enrollment data in more sessions 
when the intended use is in medium-long term applications of smart ambient intelligence.

Keywords Gait recognition · Wearable sensors · Relevant feature extraction

1 Introduction

The services in a smart city, as well as in a more restricted 
context of a smart home or office, technically rely on ubiq-
uitous sensors and algorithms that transparently support 
automation, safety, and structural integration (Hizam et al. 
2021). Among the enabling technologies and methods, 
biometric-based authentication has extended beyond secur-
ing highly protected or classified zones or services. It has 
quickly moved from applications oriented to authentication 
to ambient intelligence and user-tailored services (Barra 
et al. 2018). Of course, the basis is always the verification 

or identification of a user. In verification, a claim of identity 
allows one to compare the template only with a reference 
template for that identity. The claim could be implicit. For 
instance, the owner of a smartphone generally is the only 
enrolled user for the device. Therefore, the submitted probe 
is compared with the only reference identity even without a 
claim. In identification, it is up to the system to determine 
the correct identity by comparing the probe with all enrolled 
users. This is the most common scenario in ambient intel-
ligence, where the presence of a registered user can trigger 
automatic and transparent personalization and adaptation 
of the environment. This is much more comfortable and 
natural than having to issue a password or present a token. 
However, biometric traits must fulfill some requirements 
to be effectively used, including universality, uniqueness, 
permanence, acceptability, and robustness to circumvention 
(spoofing, i.e., an attempt to steal the identity of another per-
son through a counterfeit biometric trait). Appearance-based 
traits, like face or popular fingerprints, are stronger in the 
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sense of uniqueness and permanence but may be easier to 
reproduce (Kavita et al.  2021). On the other hand, according 
to several studies, behavioral traits, though lacking perma-
nence, appear to be more robust to presentation attacks (sub-
mitting a false sample to the biometric system) (De Marsico 
and Mecca 2019).

It is appropriate to wonder whether gait can be consid-
ered as a biometric trait to reliably discriminate among 
different subjects. The basic walking characteristics and 
the basic kinematic patterns are clearly driven by com-
mon stereotypes (Borghese et al. 1996), but the individual 
energy-saving strategies produce qualitative and quantita-
tive differences that can make individual walking styles 
well recognizable. The analysis of electromyographic 
(EMG) signals (Pedotti 1977) shows “that locomotion can-
not be considered as a completely stereotyped function” 
because, “despite the similar kinematics, the torque time 
courses of different subjects present significant differences 
in agreement with different temporal sequence of muscle 
activation.” Despite the common dynamic aspects of the 
gait pattern, precise kinematic strategies (Bianchi et al. 
1998) explain the behavioral variations able to produce 
individual differences. These possibly support biometric 

identification. In more detail, a gait sequence (gait cycle) 
is conventionally divided into stance and swing phases, 
each further divided into phase components. A cycle is 
usually referred to either the right or left leg (in normal 
conditions the two cycles are symmetrical). Figure 1a 
shows the reference leg by the light dashed line.

Computer vision-based techniques still represent the 
most active research line to tackle the problem of recog-
nizing an individual walking pattern. However, they suffer 
from the well-known problems of trajectory crossing, total 
or partial occlusion and variation of the point of view also 
affecting other video-based applications. The increased 
presence of embedded sensors in smart devices has more 
recently inspired the investigation of alternative methods 
in which the gait dynamics are captured in the form of 
time series of, e.g., acceleration values. The accelerom-
eter collects one signal per each 3D space axis: the data 
recorded at time ti is the triplet ⟨xi, yi, zi⟩ of acceleration 
values measured on the three axes. It seems to provide 
better performances than other wearable sensors for rec-
ognizing the subject carrying the device, by also avoiding 
the problems related to video processing. For instance, 

Fig. 1  a Stereotypical gait cycle 
and its phases. b Example of 
signal in ZJU-gaitacc dataset
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the problem of trajectory crossing is automatically solved 
since signals are acquired singularly. Figure 1b shows 
examples of signals captured by the accelerometers used 
to collect ZJU-gaitacc dataset1 (Zhang et al. 2015), that 
is used for this work and will be described in more detail 
later.

The reverse of the medal is that these time series suffer 
from a significant variability, especially related to different 
capture times and other conditions like ground slope or kind 
of shoes.

This paper proposes two contributions:

• a novel automatic procedure to extract the most relevant 
features from accelerometer data, in the attempt to distill 
the invariant dynamic regularities present in the indi-
vidual walking pattern;

• the investigation of the critical influence of the train-
ing/testing benchmark partition when different capture 
sessions are available, as for the exploited ZJU-gaitacc 
dataset; the experimental results are expected to hold in 
general for behavioral biometric traits when they are not 
used in the traditional way, i.e., for continuous re-iden-
tification of the owner of a smart device, but in a wider 
smart ambient context.

The achieved results are compared with other approaches 
tested over the same dataset, considering verification and 
identification closed-set (all probes are assumed to belong 
to known/enrolled subjects). The novelties of the proposal 
can also be summarized as follows:

• Recognition: the approaches to gait recognition via wear-
ables mostly exploit the accelerometer signal (e.g., seg-
mented into cycles, steps, or fragments), or features like 
the FT coefficients or MEL/BARK cepstral coefficients; 
fewer approaches use aggregate features extracted from 
the signal; most of all, the double-step feature selection 
with Principal Feature Analysis (PFA) instead of much 
simpler variance analysis improves the quality of the final 
selection.

• Training: the imbalance in the one-vs-all approach to 
model learning is solved by resampling.

• Analysis: the training/testing partition is an obviously 
important step in experimental setup; we further assess 
the importance of considering the different acquisition 
sessions, if available, in such partition and analyze its 
influence; this aspect is mostly neglected in the com-
pared literature and, in general, avoiding a session-based 
partition improves the results, as the experiments dem-
onstrate; most datasets except ZJU-gaitacc (the one that 
the work exploits), at the best of our knowledge, include 

a single capture session: this compromises the generali-
zation of results to evaluate gait recognition over time, 
e.g., to provide automatic access to user-granted facili-
ties; a thorough comparison is mostly impossible, due to 
the use in most literature works of proprietary datasets, 
either not publicly available or containing a low number 
of subjects, therefore the analysis deals with works using 
ZJU-gaitacc.

The paper continues as follows. Section 2 introduces some 
basic concepts and terms related to biometrics and to gait 
recognition. Section 3 briefly presents a possible scenario for 
the use of wearable device-based gait recognition in a smart 
ambient. Section 4 summarizes some works related to wear-
able-based gait recognition. Section 5 describes the steps 
of feature extraction and selection. Section 6 discusses the 
training procedures and the related issues. Section 7 presents 
the results of the experiments, and in particular highlights 
the importance of a fair partition when multiple-session 
datasets are exploited. Section 8 draws some conclusions.

2  Gait as a biometric trait

Before tackling the main paper topic, it is worth reminding 
some basic concepts related to biometric systems and their 
performance evaluation. The section continues with an intro-
duction to gait as a biometric trait.

2.1  Biometrics at a glance

A biometric sample is a digital information obtained from 
a biometric capture device, for instance, an image of a face 
or a fingerprint, or another type of signal or time series rep-
resenting behavioral traits, for instance, voice or keystroke 
patterns. Samples are generally not used directly, but a tem-
plate is built from each sample. This can include a feature 
vector, collecting the values of hand-crafted (selected by the 
system developer) characteristics. Alternatively, the embed-
dings computed by convolutional neural networks (CNNs) 
can be used as templates. In these cases, the popular distance 
or similarity measures can be used to estimate whether two 
templates belong to the same subject. Reference templates of 
registered users make up the system gallery. The templates 
extracted from incoming samples to recognize make up the 
probe set used for performance evaluation. As a further pos-
sibility, feature vectors or embeddings extracted as above 
can be used to train a model for each subject using machine 
learning methods. This returns a classification response 
when an unknown probe is submitted to the system, after 
the same template extraction is performed. Once decided the 
structure of biometric templates, they can be extracted with 
the same procedure also from unknown samples.1 http:// www. cs. zju. edu. cn/ ~gpan/ datab ase/ gaita cc. html.

http://www.cs.zju.edu.cn/%7egpan/database/gaitacc.html


 M. De Marsico, A. Palermo 

Biometric applications can be classified according to the 
number of comparisons carried out to recognize a subject. 
The template extracted from the submitted probe sample 
is compared against the templates in the system gallery to 
either obtain the confirmation of the claimed identity or 
the identification of an “anonymous” subject. If the sub-
ject claims an identity, the identity verification entails a 1:1 
comparison (in terms of identities) between the template(s) 
of the unknown subject and the templates of the claimed 
identity. The identity claim can be implicit when a single 
subject is enrolled. For instance, when the owner of a smart 
device records his/her biometric template (e.g., fingerprint or 
face), all the following verification operations take this tem-
plate as a reference. A distance/similarity threshold deter-
mines either an Accept or Reject response for the claim. For 
a certain acceptance threshold, the False Non Match Rate 
(FNMR) [often substituted by False Rejection Rate (FRR)] 
expresses the probability of rejecting a legitimate user by 
computing the rate of false reject responses to the total 
number of genuine probes (that should have been accepted). 
Even though they are often used interchangeably, the second 
is different since it also counts the number of operations 
where rejection was not caused by the algorithm but by other 
causes, for instance, a failure to enroll the probe. For a cer-
tain acceptance threshold, False Match Rate (FMR) [(often 
substituted by False Acceptance Rate (FAR)] expresses the 
probability of accepting an impostor user by computing the 
rate of false accept responses to the total number of impostor 
probes (that should have been rejected). In the following, we 
will use the more popular FRR and FAR since, in our case, 
we do not have rejects other than those produced by the 
comparison, and therefore the metrics are equivalent. Their 
curves for different thresholds intersect in the point of Equal 
Error Rate (EER), at the threshold producing FAR = FRR 
(the lower, the better). Other performance-related items are 
the Receiver Operating Characteristic (ROC) curve and its 
Area Under Curve (AUC) (the larger, the better).

Without any identity claim, the identification entails a 
1:N comparison between the template(s) of the unknown 
subject and all the templates in the gallery. The returned 
result is the closest identity, and, especially during testing, 
the entire gallery is ordered by similarity with the probe. 
Identification can be Closed Set or Open Set. In the first 
case, the system assumes each probe belongs to an enrolled 
subject. The main performance measure is the Recognition 
Rate (RR), i.e., the rate of correct identities returned as the 
most similar ones. Further information on system perfor-
mance can be derived by the Cumulative Match Character-
istic (CMC) curve, plotting the values of Cumulative Match 
Score at rank k—CMS(k)—i.e., the rates of correct iden-
tifications within the k-th list position. The lower the rank 
where the CMS(k) reaches the value of 1, the better. Identi-
fication can be Open Set, too. A Reject response is returned 

when, according to an acceptance threshold, the probe is not 
recognized as belonging to an enrolled subject. Detection 
and Identification Rate at rank 1 for threshold t—DIR(1,t)—
expresses the rate of probes belonging to enrolled subjects 
that have been returned in the first position of the ordered 
list and whose similarity meets the threshold; FRR(t) = 1− 
DIR(1, t), while FAR(t) is the rate of False Accepts (with 
any identity) for threshold t to the number of probes belong-
ing to unregistered subjects. FAR and FRR curves determine 
EER and allow to compute the ROC and its AUC.

It is to point out that performance evaluation is done over 
a benchmark, including a ground truth for the recognition, 
i.e., each sample is annotated with its correct identity. In real 
operations, the ground truth is not available. This is why it is 
important to thoroughly evaluate the system before deploy-
ment in the real world.

2.2  Gait recognition approaches

Gait is one of the biometric traits that can be used for rec-
ognition. Three main tracks of research relate to the kind of 
sample that they take into account. The approach that is by 
far the most popular relies on computer vision. Interesting 
surveys appear in Lee et al. (2014), Prakash et al. (2018) 
and Joseph Raj and Balamurugan (2017). Computer-vision-
based techniques are often used for re-identification and 
identification in video surveillance applications. Another 
approach exploits sensor-equipped floors to capture gait fea-
tures. Three proposals about floor sensor-based recognition 
can be found in Orr and Abowd  (2000), Suutala and Röning 
(2004) and Middleton et al. (2005). This approach, though 
being quite expensive and requiring a dedicated setup, is 
generally used only for gait analysis in the biomedical field 
(Kamruzzaman and Begg 2006; Klucken et al. 2013; Muro-
De-La-Herran et al. 2014). The third line exploits wearable 
sensors. An extensive survey of related proposals can be 
found in De Marsico and Mecca (2019). The experiments 
presented in literature mostly exploit data captured in a sin-
gle session so that the natural variation of the gait pattern 
is somehow reduced. To this respect, it is worth underlin-
ing that behavioral traits, though unique, lack permanence 
in the medium-long term. Natural variability is caused by 
different conditions, e.g., voice distortion due to a cold or 
gait variations due to speed or ground slope. Therefore, they 
are mostly used for continuous re-identification in the short 
term, e.g., to assure to be in the presence of the same subject 
during a communication session, or for (implicit, continu-
ous) verification of a device owner. For instance, methods 
based on wearable signals are mostly exploited in this way. 
Evaluation using data from the same capture session effec-
tively addresses this kind of applications. Differently from 
short-term recognition, this work specifically explores pos-
sible issues related to smart city-related case studies, e.g., a 
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transparent authentication to access controlled city spaces. 
The definition of “transparent” is because the user does 
not need to issue any identity claim, and the identification 
is based on the recognition of the personal gait dynamics 
among those of the enrolled users. Of course, a reliable eval-
uation of the system performance requires using a dataset 
acquired in more sessions at different times and a session-
based fair partition of such dataset into training and testing 
sets. While this issue may appear trivial, the experimental 
results demonstrate that, for multi-session datasets, it must 
be taken into careful account. The reverse of the medal is 
that separating the data from different sessions can reduce 
the number of training samples when using machine learning 
training methods. A typical example is when we have only 
two sessions, like in our case, and either training contains 
one of the sessions plus part of the other, or both training 
and testing contain a mixture. This allows to create a larger 
training set. However, the possibility during testing to com-
pare templates extracted from samples captured at a short 
time distance from each other or from the training data is 
non-negligible. This causes better results than comparing 
samples systematically captured at different times. Lower 
but more realistic results are obtained by training the sys-
tem with data separated in time from the testing data, even 
though this means using less training data.

3  A possible biometric identification 
for smart cities: walk &go

The term Smart City defines an (urban) area that, thanks to 
technology, is much more safe and livable with respect to 
traditional urban settings. This is achieved through several 
innovative solutions: intelligent agents support and simplify 
everyday activities; the use of resources and the transmission 
of any kind of information is optimized; building design, 
transportation networks, and all services meet advanced cri-
teria of efficiency and effectiveness; services are customized 
according to personalized profiling (Barra et al. 2018). This 
epochal revolution is made possible by Internet of Things 
(IoT), and more recently Internet of Everything (IoE), by 
cloud computing, and by smart and mobile devices. Inter-
connected sensors of several kinds, both wearable and ambi-
ent-specific, make up a net that continuously collects context 
information (Barra et al. 2018). Such information includes 
data about the physical ambient but also about people, their 
actions, and context-relevant objects and devices. This huge 
and varied amount of data requires distributed intelligent 
systems for both collection and processing in order to trig-
ger appropriate actions. These are executed by suitable 
actuators, either agents or services. In these technologically 
advanced scenarios, biometric recognition plays a crucial 
role in assessing the identity of a person. This can either 

(more or less transparently) grant access to resources/spaces 
or provide user-customized services (De Marsico et al. 2011; 
Abate et al. 2011). Authenticated access to restricted areas 
via biometrics can overcome or complement traditional 
solutions like passwords or tokens. Biometric systems just 
require one to show one’s trait, e.g., the face or the finger-
print (probe), that will be compared with the system col-
lection (gallery) of registered (enrolled) users. The reverse 
of the medal is represented by the so-called “in-the-wild” 
conditions that often affect biometrics-related operations in 
smart cities. The acquisition of user samples, e.g., the face, 
is often unattended, i.e., it is often the case that no operator 
guides the user for a correct capture. For instance, mobile 
biometrics implemented through personal devices play an 
increasing role: users can autonomously exploit their own 
devices to capture their physical and behavioral features for 
authentication instead of passwords or cards, and this can 
be achieved even without an explicit interaction given that 
the devices run appropriate applications. In addition, sen-
sors should interfere in everyday life the least possible, with 
citizens possibly unaware of eventual smart technologies. As 
a further issue in uncontrolled and unattended settings, it is 
possible that the acquisition conditions are not always the 
best possible, and they can even be adverse, e.g., for uneven 
illumination or user pose. These challenges call for more 
reliable and robust biometric algorithms, and for more trust-
able testing providing fairly generalizable results.

The use of personal mobile devices is becoming 
increasingly popular. The embedded sensors can provide 
many different user information. Accelerometers and 
other sensors capture dynamic information about motion 
and actions. These “sightless” sensors (Kanev et al. 2016) 
can be used for biometric recognition. While smartphones 
are the most popular and widespread devices embedding 
them, the increasing miniaturization allows more options. 
For instance, wrist-worn devices like smartwatches are a 
possible alternative. In the case of gait, the natural arm 
swing can interfere with the walk signal. However, in a 
normal condition of regular and continuous walking, the 
swing pattern could also be part of the individual kinematic 
strategy. Tablets are a further possibility, though being 
quite impractical for the envisaged type of application. 
Some recent works suggest embedding sensors in shoe 
soles (Brombin et al. 2019). Finally, the new frontier is 
represented by biometric jackets.2 Other behavioral traces 
extracted by mobile devices can provide information about 
users’ habits and social behaviors, still respecting the users’ 
privacy and the data’s security (Kröger et al. 2019). As 
anticipated, mobile biometrics raise both new opportunities 

2 Biometric Jacket—Arduino-controlled raincoat with a bunch of 
sensors and lights embedded and sown into it. https:// www. hacks ter. 
io/ it- worked- yeste rday-i- swear/ biome tric- jacket- 975db8.

https://www.hackster.io/it-worked-yesterday-i-swear/biometric-jacket-975db8
https://www.hackster.io/it-worked-yesterday-i-swear/biometric-jacket-975db8
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and challenges: the quality of ubiquitous and easy data 
capture can be hindered by unattended acquisition and by 
possibly adverse conditions.

This work focuses on biometric recognition through the 
individual gait pattern. Video-based approaches traditionally 
tackle gait, but more recently, the increased embedding of 
accelerometers and other motion sensors in mobile devices 
has encouraged using gait acceleration dynamics instead 
(De Marsico and Mecca 2017). Video-based approaches 
traditionally present some limitations that can be overcome, 
e.g., camera perspective and trajectory crossing/occlusion. 
However, new issues arise, e.g., the ground slope and the 
walking speed. It is worth underlining that, in wearable-
based approaches, the sensor is embedded in user equip-
ment. Therefore, the signal is univocally identifiable, even 
in a crowd, because it is directly transmitted from the indi-
vidual device and, differently from video traces, there is no 
possibility of overlap or crossing. It is also interesting to 
notice that if no cyber attack is launched, the user is aware 
of the recognition since authentication requires a suitable 
app. Therefore, there is little risk of unauthorized data cap-
ture. At the same time, the user is not necessarily aware of 
the exact moment of authentication that can be triggered 
transparently by unobtrusive ambient elements. A possible 
architecture adds these few elements to the personal mobile 
devices, together with a processing facility. For instance, 
beacons (low energy Bluetooth devices) can send their 
code to a receiving apparatus (the mobile device). These 
codes are associated in the app with either start or stop sig-
nals that trigger start recording or stop &send the recorded 
acceleration time series to the authentication server, or to 
a cloud service. As a response, if the user is identified as 
an authorized one, suitable doors or services can automati-
cally open or start. The most realistic kind of recognition 
in this scenario is the identification open set. However, an 
identification closed set can be used as well in a context 
where, for example, a two-phase recognition is carried out: 
a preliminary identification open set or verification, carried 
out through possibly different biometric traits or through 
more traditional methods, may allow access to a controlled 
zone to a limited (closed) set of subjects. Afterwards, fur-
ther access to a sub-zone or single ambient can be granted 
by just identifying the approaching subject (identification 

closed set) without any further explicit request by the subject 
itself. In summary, wearable-based gait recognition is flex-
ible and usable enough for different scenarios, e.g., for entire 
government buildings, banks, etc., and individual restricted 
areas, e.g., offices (Figure 2).

It is worth underlining that the above approach is defi-
nitely different from identifying the subject through his/her 
device using, e.g., RFID or other proximity technologies. 
This kind of identification is broken if the device is stolen. 
On the contrary, studies in literature demonstrate that the 
individual gait pattern is very difficult to spoof, i.e., it is very 
difficult to imitate the gait pattern of an authorized user, also 
for trained impostors (Muaaz and Mayrhofer 2017).

4  Some work related to wearable 
device‑based gait recognition

Thanks to miniaturization, accelerometers can be embedded 
in wearable and smart devices, e.g., a smartphone. Due to 
the wide availability they are presently the most used sensors 
for gait recognition. The three recorded acceleration time 
series can contain relevant elements to characterize an indi-
vidual walking style. In some approaches, the whole signal 
is substituted by relevant features that are extracted from it 
and used for further processing.

It is possible to identify two main categories of methods 
that use acceleration time series. The works in the first cat-
egory exploit signal matching algorithms. Simple distance 
measures, like Manhattan or Euclidean (Gafurov et al. 2010), 
can dramatically suffer from time misalignment, especially 
without a preliminary interpolation and for signals captured 
at different times. Therefore, they are rather exploited by 
the variations of Dynamic Time Warping (DTW). In order 
to tackle the problems of gait signals including a different 
number of steps, some approaches preliminarily segment the 
signals to match into steps (De Marsico and Mecca 2017) 
or cycles (Derawi et al. 2010; Rong et al. 2007; Fernandez-
Lopez et al. 2016) (a cycle is composed by a pair of steps) 
that are compared afterward, while fewer ones compare 
unsegmented signals.

The second category of methods exploits Machine Learn-
ing. These either work on fragments or on features extracted 

Fig. 2  Three example scenarios: 
green and red are devices trig-
gering start and stop of capture
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from them. Differently form the above, in these cases a frag-
ment (or chunk) has not a kinematic basis but is rather a 
part of the walking signal of fixed time length or number 
of time series points. A Hidden Markov Model (HMM) is 
computed for each user in Nickel et al. (2011b). The accel-
eration data from each fragment is used in in Nickel et al. 
(2011a) to build a feature vector of fixed size. Features are 
mostly statistical ones, e.g., mean, maximum, minimum, 
binned distribution, etc., with the addition of the Mel and 
the Bark frequency cepstral coefficients. Vectors of these 
features are used to train a Support Vector Machine (SVM) 
for each user. Similar vectors are used in Nickel et al. (2012) 
to train a k-NN approach with fragments of different length.

Of course, it is also possible to find in literature 
approaches based on Neural Networks. IDNet (Gadaleta 
and Rossi  2016) is an authentication framework relying on 
Convolutional Neural Networks (CNN). The CNN is used 
as feature extractor, and then One-Class SVM (OSVM) is 
used for verification.

Unfortunately, the experiments in most of the first pro-
posals rely on in-house collected datasets, seldom available 
to the research community. On the contrary, a large wide 
dataset freely available is ZJU-gaitacc (Zhang et al. 2015) 
that represents a shared benchmark to compare the results of 
different approaches, even though the accelerometers used 
to collect the data are quite dated and the signals are already 
interpolated. The dataset will be described in the experimen-
tal section, and the results reported by the authors will be 
compared with those achieved in this work, together with 
other works using the same data. The authors also propose 
an approach to recognition based on Signature Points. The 
data are converted into magnitude vectors. The Signature 
Points are taken as the extremes of the convolution of the 
gait signal with a Difference of Gaussian pyramid, that is 
the points that are greater or smaller than all of their eight 
neighbors. Signature Points are stored as vectors and clus-
tered, linearly combined and saved into a dictionary, there-
fore obtaining a single element for each cluster. The system 
considers recognition as a conditional probability problem 
and uses a sparse-code classifier. The results are very inter-
esting and reach an up to 95.8% of RR (identification), and 
a down to 2.2% of EER (verification), even if is worth con-
sidering that the approaches in both works fuse the results of 
5 accelerometers worn in different body locations. The best 
results achieved by an individual accelerometer are 73.4% 
of RR and 8.9% of EER.

The work in Giorgi et al. (2017) exploits Deep Convo-
lutional Neural networks for subject re-identification and 
exploits the ZJU-gaitacc dataset to test the performance. The 
processing includes three steps: cycles extraction, filtering, 
and normalization. The cycle extraction exploits the signifi-
cant changes of values (peaks) on the z-axis caused by the 
heel impact with the ground. The deep network architecture 

includes two convolutional layers, a max pooling layer, two 
fully connected layers, and a final softmax layer for template 
classification. The tests use 5 out of the 6 walk signals of a 
session per subject as training set, and one for test experi-
ments. Using only a single session in the dataset causes sig-
nals from the same subject to be relatively similar, but is 
consistent with the re-identification application. Overfitting 
is prevented by creating artificial training samples. The re-
identification accuracy of the proposed scheme is quantified 
as the average number of correctly recognized cycles for 
each identity, i.e., appearing in the first, second, and third 
place of the list of results ordered by similarity.

More references and a more detailed description of the 
mentioned works is in De Marsico and Mecca (2019).

5  Feature extraction

The procedure of feature extraction from the accelerometer 
temporal series exploits the tsfresh3 library. The selection 
of the most relevant features, the training procedure and the 
classifier test exploit the scikit-learn4 library and, for some 
specific tasks, imbalanced-learn5 (all written in Python 3.8). 
The extracted features consist of aggregate values obtained 
from the time series; there is an acceleration time series for 
each axis x, y, and z, so every possible feature is computed 
relative to a single axis. This process returns 763 features 
per axis for a total of 2289 features. Obviously, it is not pos-
sible to list them all: only some of those selected as the most 
relevant will be described below; a complete list is available 
in the tsfresh documentation.6

Once a single vector of features represents each walk, the 
proposed method selects the most relevant ones for recogni-
tion. In fact, the training and testing of classifiers with vec-
tors consisting of the full set of 2289 characteristics achieved 
definitely unsatisfactory results (more than 50% less), dem-
onstrating that many of them were either irrelevant to the 
case at hand or redundant or misleading. The implemented 
two-phase selection procedure allows for significant reduc-
tion of the number of features, and a final scaling allows fair 
participation of all of them in the classification.

First phase Regarding the first phase, two strategies were 
compared. The first one further exploits the tsfresh library, 
which provides functions to identify the most relevant char-
acteristics in a set using a kind of supervised approach, that 
takes into account the identity associated with each vector. 
Actually, it would be possible to unify this phase and the 

3 https:// tsfre sh. readt hedocs. io/ en/ latest/ api/ tsfre sh. featu re_ extra 
ction. html.
4 https:// scikit- learn. org/ stable/.
5 https:// imbal anced- learn. org/ stable.
6 https:// tsfre sh. readt hedocs. io/ en/ latest/ text/ list_ of_ featu res. html.

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html
https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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previous extraction to directly obtain only the most relevant 
features, 1421 out of the 2289 initial ones.

The second strategy exploits a two-step deeper feature 
analysis and achieves a better selection. The obtained final 
vectors have lower dimensions and allow better classifica-
tion results. In this second strategy, the first step discards 
all 0-variance (constant) features, i.e., those with no useful 
information for classifier training. The output of this step 
is a decreased set of 2158 out of the initial 2289. The next 
step tries again to determine the relevance of the different 
features with a different approach though still based on vari-
ance. Using the scikit-learn function SelectPercentile only 
45% of the analyzed features are maintained, based on a 
score assigned by the ANOVA F value function. This func-
tion assigns the F-score to each feature according to the fol-
lowing formula:

where “inter-group variance” indicates the squared aver-
age of the distances of the average values of the individual 
features from the global average value of all features of all 
samples; “intra-group variance” is the normal variance of 
the features seen above. At the end of this computation, the 
final feature vector includes the highest scored 45% of the 
input features. This procedure is generally suited to compute 
the relevance of quantitative features. After this step, the 
number of features passes from 2158 to 971.

Second phase The second phase relies on a further fea-
ture selection based on Principal Feature Analysis (PFA) 
(Lu et al. 2007). It could be worth underlining the difference 
between PFA and the more familiar Principal Component 
Analysis (PCA). In both cases, the dataset is interpreted as a 
matrix X of dimension m × n , consisting of n (walk) vectors 
xi of size m (features). Then the matrix is transformed into 
a new matrix Z, aimed at bringing to 0 the average of the 
values of all the columns of X: this is obtained by subtracting 
the average of the corresponding values from each value of 
the whole column. PCA works by transforming the space 
of characteristics into one of smaller dimension q whose 
axes are represented by the q eigenvectors associated with 
the highest eigenvalues of the covariance matrix obtained 
from Z: they have no correlation with the features initially 
present in the dataset. The further steps entailed by PFA fur-
ther determine the most relevant projections of the original 
features in the new space (represented by the rows of the 
transformation matrix). At the end of the second phase, the 
number of surviving features is 400 (out of the initial 2289).

Feature scaling. Once the most relevant features have 
been selected for the classification, it is necessary to nor-
malize their values. This is essential as, even after filtering, 
there is a large number of features anyway: if they get val-
ues in different scales, such values may not be interpreted 

(1)F = (inter-group variance)∕(intra-group variance)

correctly for the purpose of training the classification model. 
The formula used for normalizing a feature value x is the 
familiar one:

where � is the average of all values taken by the feature 
across the vectors and � is their standard deviation.

6  Classifier training

6.1  Upsampling of the minority class

The chosen strategy has been to train a classifier for each 
identity. This allows to easily add subjects to the gallery by 
simply computing the model associated with their identity. 
On the other hand, these are typical conditions where, hav-
ing a subset of samples for each of several subjects, the indi-
vidual training sets are highly unbalanced due to the huge 
amount of vectors from the other identities. The classical 
solutions to this problem are based on resampling (Cervantes 
et al. 2020) according to two different methods. The first one 
entails downsampling, i.e., discarding as many samples of 
the over-represented class(es) up to reach the desired propor-
tion. In Machine Learning applications, due to the value of 
data, since each sample can take precious information, this 
is seldom applied. The second method entails upsampling, 
i.e., increasing the number of samples of the minority class. 
The strategies normally used for this purpose are varied: 
the least elaborate and best known is the one that simply 
duplicates some instances chosen within the minority class; 
its only advantage, however, is to balance the distribution of 
the instances, but without bringing any additional informa-
tion to the training set. This is why it was decided to adopt 
another strategy for the purposes: it consists of the applica-
tion of SMOTE (Synthetic Minority Oversampling TEch-
nique) (Chawla et al. 2002), which is capable of creating 
synthetic instances of the minority class starting from those 
already present. The exploited implementation is the one 
provided by scikit-learn in the library imbalanced-learn. In 
short, the algorithm is based on a very simple idea: it begins 
by randomly selecting an instance I in the minority class and 
looking for the k closest instances in the same class in the 
space of characteristics (k is a parameter of the algorithm, 
in this case 5 was used). Then it randomly chooses one of 
these k neighbors and connects it to I through a segment; the 
new synthetic instance is obtained by randomly selecting a 
point belonging to the segment (obviously different from 
the extremes). Figure 3 shows an example of the algorithm 
processing.

(2)
x − �

�
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6.2  Logistic Regression and final calibration

After balancing the positive and negative samples for each 
model training, the output is predicted by Logistic Regres-
sion. Logistic Regression uses an equation as the representa-
tion, in a way very similar to linear regression. Input values 
are combined linearly using weights or coefficient values to 
predict an output value. A key difference from linear regres-
sion is that the output value being modeled is a binary val-
ues (0 or 1) rather than a numeric value (see Fig. 4a). This 
is obtained by combining simple linear regression with a 
logistic function as follows:

where P is the predicted output, n is the dimension of the 
input, �0 is the bias and all the �i are the coefficients for the 
input values (xi) . During training the model is learning the 
� coefficients for each column in the input data from the 
training data. This technique is generalized to the multiclass 
classification problem by using a one-vs-rest approach.

The model obtained for each user during the training 
phase is used to make up the system gallery. A final step 
concerns a further calibration of the decision function; for 
the purposes of system testing, it is not enough that the 
models predict the class of a sample, but also a correspond-
ing probability is needed. In this context, every machine 
learning algorithm produces values that are calibrated in 
different ways, often not between 0 and 1. The goal of the 
calibration is to ensure that the predicted probabilities can be 
directly used as confidence values: this means, for example, 
that approximately 60% of the instances whose predicted 
probability is close to 0.6 will actually have to belong to the 
positive class. The technique used for calibration is isotonic 
regression. It searches for the non-decreasing broken line as 
close as possible to the observations (see Fig. 4b) The values 
obtained from the above computation are used as similarity 
values. In verification, a single similarity value is obtained 
per testing operation, which is matched against a threshold to 
determine the final response. In identification closed-set, the 
values obtained by comparing the probe with each gallery 
model, in turn, are ranked in decreasing order to return the 
recognized identity and also the ordered list of the other gal-
lery models. Re-identification entails determining whether 
the accelerometer is worn by the same person during a rec-
ognition session. It can be considered a special case where 
the model and the probe are captured close in time.

(3)P =
1

1 + e(�0+
∑n

k=1
�ixi)

Fig. 3  Visual example of SMOTE processing

Fig. 4  a Linear vs. logistic regression. b Isotonic Regression
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7  Experimental results

7.1  ZJU‑gaitacc dataset

The dataset ZJU-gaitacc7 (Zhang et al. 2015) collects gait 
signals from 175 subjects, out of which 153 participated 
in two capture sessions divided in time with 6 walks each. 
The delay between two capture sessions for the same sub-
ject ranges from one week to six months. The number of 
walks and the two different sessions clearly separated in time 
make the results obtained on the dataset more generalizable 
regarding intra-personal variations and particularly suited 
for the kind of analysis that this paper proposes. The remain-
ing 22 subjects have 6 walks and can be used as impostors. 
Unfortunately, no individual demographic information anno-
tates the data. Walk signals have a sufficiently high number 
of points in the time series (about 1400) being collected 
along a hallway 20 ms long. 5 Wii Remote controllers are 
located on the right ankle, right wrist, right hip, left thigh, 
and left upper arm. The experiments presented here only 
exploit the signals captured on the hip, being this a reason-
able position for a smartphone too. This dataset has been 
chosen because, besides having a sufficiently high number 
of users, it has been captured during two different sessions. 
This is important for testing performance after some time 
has elapsed between enrollment and recognition.

7.2  Experimental results and discussion

For each experiment, the walks of the two sessions were 
exploited in a different way for training and testing. The 
discussion following the experiments description analyzes 
how a different partitioning of the dataset into training and 
testing subsets, either taking into account the time difference 
or not, can influence the experimental results. The feature 
extraction and training procedure were always carried out 
as described above.

Verification experiments were carried out in two 
rounds. In the first round, the walks in the union of the 
two sessions were divided in a classical way into 70% 
training samples and 30% testing samples. In the second 
round, the walks of one session, in turn, were used as a 
training set, and those in the other session were used as 
testing, and then the results were averaged. It is reason-
able to expect that the performance achieved in the first 
round would be better due to the presence of a subset of 
the same session walks used for testing in the training set 
too, i.e., walks captured at the same time of those used for 
testing. This means that some temporary characteristics 
can find a match.

The experiments entailing identification closed set were 
also carried out in two rounds with the same settings as in 
verification. The expected outcomes are similar for the same 
reasons. Table 1 reports in the last rows the results achieved 
by the proposed approach and the comparison with other lit-
erature proposals, also taking into account the kind of appli-
cation and the use of the two sessions of the ZJU-gaitacc 
dataset. Especially comparing the results obtained in the two 
rounds of testing, it is possible to observe the dramatic influ-
ence of the benchmark partition into training and testing. As 
expected, when part of the second session is included in the 
training process, just to reach the “canonical” 70/30 parti-
tion, some of the possibly temporary characteristics, peculiar 
for each user, play a relevant role in testing. It is possible 
to observe that, in these conditions, the proposed approach 
outperforms most of the others, which is systematic in a 
dramatically evident way in verification. It can be hypoth-
esized that when both training and testing are carried out on 
a single session, like in Zeng et al. (2018), this effect is also 
stronger. Of course, this is not a limitation if the approach is 
used for re-identification in the very short term. However, 
template updating should be executed periodically. On the 
other hand, the extremely lower results achieved using the 
sessions in the fairest way demonstrate that even the most 
significant features do not sufficiently capture individual 
invariant gait regularities. However, it is further interesting 
to notice that when averaging the results from the two pos-
sible combinations of training and testing (last row in the 
table), the results are definitely worse than those achieved 
by De Marsico and Mecca (2017) (the only other work tak-
ing into account the session separation) but obtained by a 
definitely lighter computation (DTW vs. application of the 
trained function to reduced feature vectors).

Figure 5 visually suggests similar considerations regard-
ing the influence of session partition. While, as expected, 
there is a negligible difference when using either session 
1 or session 2 for training and the other one for testing, the 
70/30 partition (one session participates in both training and 
testing, though obviously with different samples) causes a 
dramatic boost in performance. However, this latter result is 
not generalizable because it is obtained in a somehow very 
specific, if not biased, condition. This suggests that when 
using behavioral traits that are more variable across time, 
more data sessions should be captured to try to encompass 
as much variability as possible and be used appropriately for 
evaluation according to the expected application. For similar 
reasons, enrollment in real contexts should entail capturing 
more samples across different times.

7 http:// www. cs. zju. edu. cn/ ~gpan/ datab ase/ gaita cc. html.

http://www.cs.zju.edu.cn/%7egpan/database/gaitacc.html
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8  Conclusions

Gait recognition by wearable sensors has many advantages. 
It does not suffer from typical computer vision limitations, 
is less demanding from a resource point of view, and can 
be carried out in specific settings without further equip-
ment. However, the results in the literature still demonstrate 
the need for searching for stronger regularities in individ-
ual walking patterns to tackle recognition in the medium/
long term. The results presented here further underline that 
more capture sessions separated in time and their partition 
between training and testing can dramatically affect the 
reported recognition performance. Unfortunately, datasets 

collecting behavioral data presently present limitations either 
in the number of sessions or in the number of samples per 
session. It is interesting to relate the results presented here 
to the intended use of biometric recognition. When requir-
ing identification of the enrolled subjects at time distance, 
much better generalizable results can be obtained using 
multiple-session datasets that better reflect the variability 
of traits. However, the trait variability can represent an issue 
also in the case of continuous re-identification of the owner 
of a smart device (short distance among samples) unless a 
periodical template updating is planned, i.e., the periodical 
substitution of the user template used as reference. These 
results and considerations are expected to extend to other 
behavioral traits. In the follow-up of this research, we will 

Table 1  Experimental results compared with approaches using the same ZJU-gaitacc dataset and same/different use of its sessions

The best results are in bold

References EER (%) RR (%) Session-based partition Method

Zhang et al. (2015) 8.09 73.04 Identification YES Verifi-
cation NO

Signature Points

Zeng et al. (2018) – 86.9–96.2 NO Uses either session 0 
or session 1 separately 
2-fold each with leave-
one-out

Deterministic Learning

Sun et al. (2018) 91.75% User Authentica-
tion Rate

96.9 NO Pearson correlation coef-
ficient (PCC) among gait 
cycles

Qin et al. (2019) 6 98.4 NO Fuzzy based on Neural 
Networks and Extreme 
Value Statistics

De Marsico and Mecca 
(2017)

9.26 92.8 YES Dynamic Time Warping 
(DTW) on unsegmented 
walk signals

De Marsico et al. (2018) 18.07 – Half of each session for 
training, the rest for 
testing

Principal Feature Analysis 
(PFA)

Mecca  (2018) 8.24 96.49 NO DTW on unsegmented 
signal after removing the 
starting steps

De Marsico and Mecca  
(2018)

4.1 97.28 NO DTW on unsegmented 
signal with score level 
fusion after applying dif-
ferent Gaussian filters

Giorgi et al. (2017) – 94.00% Re-Id Accuracy NO—only 1 session used Deep Neural Network
Proposed 0.8 ROC AUC = 0.99 97 CMS (5) = 99.8 CMS 

(10) = 99.8 CMS = 1 at 
rank 11

NO 70% of all session 
walks for training 30% 
for testing

Feature extraction and 
Logistic Regression

Proposed 15 ROC AUC = 0.85 61.2 CMS (5) = 88.4 CMS 
(10) = 95.8 CMS =1 at 
rank 66

YES Session 1 training 
Session 2 testing

Feature extraction and 
Logistic Regression

Proposed 14 ROC AUC=0.86 59.4 CMS (5) = 88.8 CMS 
(10) = 96.4 CMS = 1 at 
rank 27

YES Session 2 training 
Session 1 testing

Feature extraction and 
Logistic Regression

Proposed 14.5 ROC AUC = 0.86 60.2 CMS (5) = 88.6 CMS 
(10) = 96.3 CMS = 1 at a 
rank between 27 and 61

YES Average with Session-
based partition

Feature extraction and 
Logistic Regression
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continue investigating the possible strategies to extract the truly 
invariant characteristics related to individual kinematic strate-
gies. We are encouraged by a simple observation: when we 
know a person very well, we can often recognize it, even from 
the back, just by looking at the gait pattern. This means that the 
human cognitive system can extract the essentials from such 
patterns, and, as for other biometric traits, the challenge is to 
reproduce this ability for an automatic system.
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