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Abstract
A W-operator is an image transformation that is locally defined inside a window W, invariant to translations. The automatic 
design of the W-operators consists of the design of functions, whose domain is a set of patterns or vectors obtained by 
translating a window through training images and the output of each vector is a class or label. The main difficulty to con-
sider when designing W-operators is the generalization problem that occurs due to lack of training images. In this work, we 
propose the use of membership functions to solve the generalization problem in gray level images. Membership functions 
are defined from the training images to model regions that are often inaccurate due to ambiguous gray levels in the images. 
This proposal was applied to brain magnetic resonance image segmentation to test its performance in a field of interest in 
biomedical images. The experiments were carried out with different numbers of training and test images, windows sizes of 
3 × 3 , 5 × 5 , 7 × 7 , 11 × 11 , and 15 × 15 , and images with noise levels at 0, 1, 3, 5, 7, and 9 % . To calculate the performance 
of each designed W-operator, the classification error, sensitivity, and specificity were used. From the experimental results, it 
was concluded that the best performance is achieved with a window of size 3 × 3 . In images with noise levels from 1 to 5 % , 
the classification error is less than 4 % and the sensitivity and specificity are greater than 94 and 98% , respectively.
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1 Introduction

A W-operator is an image transformation that is locally 
defined inside a window W, invariant to translations (Benal-
cázar et al. 2015). Let W be a window that defines a neigh-
borhood of each pixel to process, a W-operator labels each 
pixel based only on the values observed within the window 
neighborhood W. The simplest case is when the window 

is reduced to a single pixel (Gonzalez and Faisal 2019; 
Hirata and Papakostas 2021). The machine learning-based 
approach to designing W-operators consists of estimating 
the W-operator from collections of input–output image pairs, 
called training data, that describe the result of the desired 
transformation. In general terms, learning takes place from 
patterns or configurations collected from the input images, 
the training set, and the corresponding values of the points 
to be analyzed in the ideal images (Hirata and Papakostas 
2021; Barrera et al. 2022). The collected patterns determine 
an estimate of the probability of occurrence of the pair, con-
figuration-output value, that is used to define the W-operator. 
In this way, the representation of the W-operators is a deci-
sion table formed by patterns called observation vectors and 
their corresponding estimated labels (Guevara et al. 2019).

All the possible observation vectors collected through a 
window must be represented in the table and must have an 
associated output value, even those configurations that do 
not appear in the training images since they may later be 
present in other images different from the training ones. In 
this case, the operator must be able to assign a value to them, 
that is to say, it must be able to generalize (Benalcázar et al. 
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2012). However, to complete the table with all the possi-
ble configuration vectors, large amounts of training images 
would be needed but in practice are finite and limited. On 
the other hand, increasing the window size leads to an expo-
nential increase of the search space and the lack of train-
ing images prevents the table being completed with all the 
possible configurations vectors. For example, with 256 gray 
levels and a 3 × 3 window, the size of the search space, i.e. 
the decision table, is equal to 2563×3 . The finite and limited 
number of training images in addition to the exponential 
increase of the search space when the size of the window 
increases, both emphasize the generalization problem.

Some works propose several techniques to solve the 
generalization problem. In Hirata Junior et al. (2002) and 
Chlapinski and Ciota (2009) the authors use pyramidal mul-
tiresolution and aperture to restrict the spatial domain of the 
windows and the range of gray levels in order to reduce the 
search size in the designed tables. They apply their proposal 
in deblurring while in Hirata Jr et al. (2015) authors apply 
the techniques mentioned above for eyes segmentation on 
a human face. Other solutions are presented in Benalcázar 
et al. (2014) and Benalcázar et al. (2015) where W-operators 
are designed using aperture and feedforward neural networks 
that model the conditional probability of each observation 
vector.

On the other hand, in Comas et al. (2014) membership 
functions are implemented to represent knowledge in a 
mathematical language based on fuzzy sets theory. Fuzzy 
sets (FS) take care of the imprecision and the vagueness 
in human understanding systems and provide a framework 
to describe, analyze, and understand vague and uncertain 
events. FS give a theoretical framework to model gray level 
images because of their imprecision and, also, for predicting 
unknown values. The imprecision is due to the ambiguity in 
the gray levels which is generated in the process of capturing 
the image and the spatial ambiguity caused by the impreci-
sion at the boundaries of objects or the edges in the image. 
In this way, each region of the image can be modeled as a 
fuzzy set where the membership function assigns to each 
pixel a membership degree in the range [0,1] to solve the 
ambiguity in the image scene (Acharya and Ray 2005). FS 
theory is applied in different areas related to image process-
ing. In Huang and Wang (1995), Cheng et al. (1997), Chaira 
and Ray (2004), Aja-Fernández et al. (2015), Mahajan et al. 
(2021), membership functions play an important role in 
finding one or more appropriate threshold values for image 
segmentation, determining the relationship of a pixel with 
its membership region. Clustering algorithms are another 
important task in which FS theory has achieved a good per-
formance. For example, in fuzzy C-means algorithm (FCM) 
where pixels belong to various clusters with varying mem-
bership degrees. This algorithm has been modified in Zhang 

and Chen (2004); Yang et al. (2009); Sing et al. (2015); 
Adhikari et al. (2015) to improve its robustness in the seg-
mentation area.

In this paper, we present a solution to address the gen-
eralization problem encountered in the automatic design of 
W-operators for grayscale images using membership func-
tions. Our method introduces several novel aspects:

• The capability to determine the optimal dimension of 
the W-operator and the set of weights assigned to each 
pixel in the image for distinguishing a discrete target set 
of classes.

• Membership functions are utilized to assign membership 
degrees to each observation vector not within the domain 
of the W-operator. Consequently, classes are assigned 
based on their membership degrees.

• The choice of the type of membership functions 
employed depends on the nature of the data; that is, any 
type can be used depending on the dataset.

• We propose the application of this methodology to brain 
MRI. Nevertheless, it can be applied to any type of image 
where the segmentation of regions of interest is desired.

The remaining sections of this paper are structured as fol-
lows. Section 2 provides an overview of W-operators and 
membership functions. Section 3 introduces the proposed 
methodology. Section 4 demonstrates an application of 
the methodology in brain MRI segmentation. The results 
and discussion are presented in Sect. 5 and a comparison 
between the proposed method and other MRI segmentation 
methods is developed in Sect. 6. Finally, conclusions are 
drawn in Sect. 7.

2  Theoretical framework

In this section, we present some theoretical definitions that 
provide background and describe the proposed approach.

2.1  W‑operators

Digital images can be represented by a function f ∶ E → L , 
where E = Z2 and L = 0,… , l − 1 denotes the set of gray lev-
els of the image. For binary images l = 2 and for grayscale 
images l = 25 (Hirata and Papakostas 2021). If the set of all 
images defined on E with gray levels in L is denoted as LE , 
an image operator is any mapping of the form Ψ ∶ LE → LE 
(Montagner et al. 2016).

The W-operators are a particular case of image opera-
tors, that label each pixel of the image based only on the 
values observed within the window neighborhood W. More 
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information about the functional properties of W-operators 
can be found in Benalcázar et al. (2012, 2015).

The automatic design of W-operators consists of two 
stages: a training stage and a testing stage. In the train-
ing stage, the W-operator called � , is designed. Thus, a 
set of pairs of training images (O, I) is considered, where 
O ∶ E ⊂ Z2

→ {0, 1,… , 255} represents the observed 
images, I ∶ E ⊂ Z2

→ {1,… , c} represents the ideal images 
and c is the number of classes. The W-operator � is defined 
as a classifier

which maps an observation vector X = (x1,… , xk) to one 
of the labels or classes of the set {1,… , c} . An observation 
vector X = (x1,… , xn) is a vector composed of n values, with 
xk ∈ L , where each value is defined by xk = f (t + wk) (Mon-
tagner et al. 2016).

The window W is translated pixel a pixel through the 
images O and I, simultaneously (Benalcázar et al. 2012). The 
values of the window W inside the image O generates the 
observation vector X (see Fig. 1) and the value of the central 
pixel of the window W in the image I gives the label or class. 
The window W is translated through the entire set of training 
images. Each time an observation vector appears, the cor-
responding label frequency in the table is increased. Finally, 
the label of each configuration vector is estimated based on 
the highest frequency value. As we do not always have large 
amounts of training images, it is difficult to obtained a com-
plete configuration table. Figure 2 shows, as an example, the 
construction of this configuration table.

Finally, in the testing step, the error of the W-operator 
designed is estimated and its predictive capacity is evaluated.

2.2  Membership functions

Fuzzy logic is a tool that allows to represent knowledge in 
a mathematical language through the fuzzy sets theory and 
their membership functions (Comas et al. 2014). The FS 
theory provides a framework for describing, analyzing and 
interpreting vague and uncertain events, i.e., to model the 

(1)� ∶ X → {1,… , c},

imprecision and vagueness existing in human understand-
ing systems. A grayscale image has ambiguity related to 
the process of capturing images and the spatial ambiguity 
caused by the imprecision in the objects’ boundaries. Each 
region in the image can be modeled as a FS defined by a 
membership function, assigning to each pixel a membership 
degree in the range [0,1] (Acharya and Ray 2005). Formally, 
a membership function for a fuzzy set F included in X (uni-
verse of discourse), is a map u(x) ∶ XF → [0, 1] , where each 
element of X is mapped to a value between 0 and 1. This 
value quantifies the grade of membership of the element in 
X to the fuzzy set F.

In the context of the automatic design of W-operator, 
a membership function is defined for each class using the 
training images. These functions will assign membership 
degrees to each element of an image within a window, giving 
rise to a fuzzy window or fuzzy observation vector. Thus, a 
label according to their membership degrees is assigned to 
each vector not present in the table designed in the training 
stage (Robalino et al. 2020). Therefore, membership func-
tions solve the generalization problem present in the auto-
matic design of W-operators for grayscale images.

Fig. 1  Visualization of an observation vector made up of the values 
within a window

Fig. 2  Design of a W-operator using a window W and a pair of train-
ing images
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3  Proposed methodology

Due to the lack of training images there will be vectors that 
will not be found in the configuration table. This lack of 
predictive capacity of the W-operator designed for the con-
figuration vectors not registered in the training stage is called 
“generalization problem”. This problem increases the error 
of the W-operator leading to poor results. We propose the 
use of membership functions to solve the lack of information 
produced by the null or low frequency of the observation 
vectors in the table.

3.1  Definition of membership functions

The membership functions uj , for all j ∈ {1,… , c} , are cho-
sen according to each problem and to the nature and type 
of the data. The construction of membership functions that 
adequately capture the meanings of the variables has been 
addressed by several authors (Mendel and Wu 2010; Klir 
and Yuan 1995). Membership functions can be represented 
in multiple ways. Due to their mathematical simplicity, the 
most common are: triangular; trapezoidal, Gaussian, sigmoi-
dal, gamma, among others (Medaglia et al. 2002). Conceptu-
ally, there are two approaches to determine the membership 
function associated with a set. The first approach is based on 
expert knowledge and the second approach uses a collection 
of data to design the function. This last approach is used in 
the automatic design of W-operators, to define the member-
ship functions from a set of training images. Figure 3 shows 
an example of definition of Gaussian membership function 
for two classes, from a pair of training images.

In Sect. 4.2 an example of how to determine membership 
functions based on the problem is introduced.

3.2  Design of W‑operators by membership 
functions

The representation of the W-operators is a large decision 
table where all the possible configurations or observation 
vectors collected through a window must be represented. 
Each observation vectors must have an associated output 
value, even those configurations that do not appear in the 
training images since they may later be present in other 
images different from the training ones. In this case, the 
operator must be able to assign a value to them, that is to 
say, it must be able to generalize. In this paper, we propose 
the use of membership functions to solve the generalization 
problem present in the automatic design of W-operators for 
gray level images. The membership functions assign mem-
bership degrees to each observation vectors not present in 
the domain of the W-operator.

Each observation vectors is searched in the table gener-
ated in the training stage. If the vector appears in the table, 
then the corresponding label is assigned. Otherwise, the 
membership functions are used to assign the label. Let Rj 
the gray levels range of the the class j, i.e., Rj = [gjmin , gjmax ] 
where gjmin and gjmax are the minimum and maximum gray 
level in the j-class, for all j ∈ {1,… , c} . To calculated the 
membership degree of the vector X to the corresponding 
class j, first the membership functions are selected from the 
central pixel xcentral . If the value of the central pixel xcentral 
belongs to Rj then the membership function Uj is applied to 
the observation vector X. If the value of the central pixel 
xcentral belongs to the range of two or more classes, the mem-
bership functions of those classes are applied to each of the 
gray values of the observation vector, and then the average 
of the degrees of membership is calculated as shown in the 
following equation:

where k is the size of the observation vector X. The assign-
ment of a label to the observation vector will depend on the 
maximum of the degrees of membership of the analyzed 
classes.

In the next section we apply our proposed approach to a 
MRI segmentation problem to test its performance.

(2)Uj(X) =

∑k

i=1
uj(xi)

k

Fig. 3  Gaussian membership functions for classes 1 and 2 based on a 
pair of training images
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4  Application to MRI segmentation

The proposal for design W-operators using membership 
functions was applied to magnetic resonance images (MRI) 
segmentation. One of the advantages of MRI is its abil-
ity to discriminate various types of tissues for subsequent 
quantification and, thus, help in the diagnosis of different 
pathologies Segmentation of these types of images is a con-
stant requirement in medical science (Meschino et al. 2008). 
However, one of the main difficulties when working with 
these images is the overlap between the ranges of gray levels 
in their tissues, generating fuzzy boundaries between their 
tissues. This problem increases when MRIs are corrupted 
by noise, which is unavoidable in these kinds of images. 
Therefore, the use of membership functions for tissue seg-
mentation in MRI is a good example of the application of 
our proposal. Figure 4 shows the diagram of the application 
of the proposed method.

4.1  Materials and methods

Simulated 3D images from the Montreal Neurological Insti-
tute, McGill University were used (Kwan et al. 1996; Mon-
tréal Neurological Institute 2007). From the database, 50 
images of size 271 × 181 , weighted in T2 (TR = 3300 ms, 
TE = 35 ms, 120 ms) were selected. These images contain 
white Gaussian noise levels at 0, 1, 3, 5, 7, and 9 % . The 
selection criterion was the broad presence of all four tissue 
types in the simulated brain MRI images.

The most common MRI sequences are T1 and 
T2-weighted scans. While in T1 images the contrast and 
brightness of the image are predominately determined by 
T1 properties of tissue, conversely, in T2 images the con-
trast and brightness are predominately determined by the 
T2 properties of tissue. Although images weighted in T2 
were used, the proposed method can be applied, without 
loss of generality, to T1 images. In the case of the latter type 
of images, there are widely recognized tools and process-
ing software for these images that serve as gold-standard 
in the neuroimaging research field, such as Computational 
Anatomy Toolbox for SPM (CAT) (Gaser et al. 2022) and 
FreeSurfer (Fischl 2012).

We define different experiments to compare the per-
formance of the W-operators. The technical details are 
described in the following list:

• Images: the noise levels used were 0, 1, 3, 5, 7 and 9 %.
• Dataset partition: the dataset is separated in training 

images and test images. Three partitions were used, in 
percentage 80-20, 70-30 and 50-50.

• Size windows: five dimensions were used 3 × 3 , 5 × 5 , 
7 × 7 , 11 × 11 and 15 × 15.

• Membership functions: given the nature of the training 
images, the membership function utilized was the Gauss-
ian membership function.

4.2  Definition of membership functions

In our experiment, we consider four classes (c = 4) since 
each pixel will be classified into one of the following classes: 
background, white matter, cerebrospinal fluid, and gray 
matter.

Gaussian membership functions were chosen based on 
the shape of the histograms of the different classes, as it can 
be seen in Fig. 5a–c. These types of membership functions 
were selected, not only because their capability to adapt to 
the shape of these specific histograms, but also because their 
versatility and simplicity.

To define the Gaussian membership functions of each 
class, background rank Rb , white matter rank Rwm , cerebro-
spinal fluid rank Rcf  , and gray matter rank Rgm the mean 

NO

YES

1 Based on the training images:.
- parameters: ,Estimate m

class ranges:and R
esign W-operator-D .

σ
j

2  Defin membership functions. e
.for each class

3 Obtain observation vector. the x
each of test imagesfor .

4 Is the observation vector.
in the table?

5 Assig degrees of membership. n
to each observation vector using

.membership functions

6.Calculate the maximum between
the degrees of membership of an
observation vector.

7 ssign each pixel in.A a level to
image.the output

A a level tossign each
image.pixel in the output

Fig. 4  Diagram of the proposed method
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and the standard deviation must be calculated (Comas et al. 
2014). Figure 5d–f shows these functions and how they 
cover the frequency distribution of the gray levels for each 
class. The gray matter is represented with the color red, the 
cerebrospinal fluid with blue color, the white matter with 
yellow color and the background with black color. This last 
class is not visible because their mean is equal to 0.

For each image Oi and each gray levels range Rj , the mean 
mij and the standard deviation �ij are determined. Once the 
estimation of the parameters mij and �ij have been calculated, 
the average for each class j = {1,… , c} is calculated using 
the following equations:

The Gaussian membership functions for each class are 
defined using the parameters mj and �j . Therefore, four 
membership functions Ub , Uwm , Ucf  and Ugm are established 
for the background, white matter, cerebrospinal fluid, and 
gray matter, respectively.

The proposed approach is presented in the pseudocode 
given in Algorithm 1.

(3)mj =

N
∑

i=1

mij

N
�j =

N
∑

i=1

�ij

N
.

Algorithm 1  Proposed algorithm to design W-operators

5  Results and discussion

In this section we present the results of the robustness 
analysis performed in order to validate the W-operators 
defined by membership functions. The metrics used to 
evaluate the performance of the operators were classi-
fication error, sensitivity, and specificity, all calculated 
from the values of the average confusion matrix of each 

Fig. 5  Histograms and Gaussian 
membership functions using 
80-20 dataset partition for the 
different noise levels. a–d 0% . 
b–e 5% . c–f 9%
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experiment. These metrics are calculated with the follow-
ing equations (Sokolova and Lapalme 2009):

(4)Classification Error =
FP + FN

TP + FN + FP + TN

(5)Sensitivity =
TP

TP + FN

(6)Specificity =
TN

TN + FP

where TP corresponds to true positives, TN to true negatives, 
FP to false positives, and FN to false negatives.

As an example of the results obtained in the experi-
ments, some tables are shown. In Table  1 the results 
of the W-operator, using windows of sizes 3 × 3 , 5 × 5 , 
7 × 7 , 11 × 11 and 15 × 15 , are presented. Those results 
are obtained using the partition 80-20. The gray matter 
is represented with red color, the cerebrospinal fluid with 
blue, the white matter with yellow and the background 
with black.

Table 1  Results of the 
W-operator using 3 × 3 , 5 × 5 , 
7 × 7 , 11 × 11 and 15 × 15 
windows and the partition 80-20
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Tables 2, 3, 4 show the classification error, the sensitiv-
ity and the specificity using the different partition for the 
noise level 0% and 9% . The results presented show that 
the smallest windows provide the better segmentations. 
The best results are obtained with windows of size 3 × 3 
and 5 × 5 . As might be expected, when the noise level 
decrease, the better segmentation results.

Figures 6, 7 and 8 show the classification error, the sensi-
tivity and the specificity graphs of the W-operators designed 
with windows of sizes 3 × 3 , 5 × 5 , 7 × 7 , 11 × 11 and 
15 × 15 , using the different sets of training and test images 
with different noise levels. The graphs show that when the 
size of the window grow up, the error increase while the 
sensitivity and the specificity decrease.

For a window of size 3 × 3 , the error is less than 3% in all 
the partitions used when working with images with noise 
from 0 to 5% . The error is less than 6.2% when noise increase 
to 9% . The partition 80-20 proved to be the best, despite the 
percentage of error.

When the noise level increases, there is a greater over-
lap between the ranges of each region or class, as could 
be observed in the training images histograms (see Fig. 4). 
The greatest overlap can be observed between the white 
matter (yellow line) and the gray matter (red line) classes, 
while the overlap of the cerebrospinal fluid class (blue 
line) is slight.

At this point, it is important to know the generaliza-
tion capacity (GC) of the proposed method. To achieve 
this goal, it is essential to calculate the total number of 
observation vectors (total # of X) obtained from the set 
of test images, and the number of observation vectors that 
were labeled by the membership functions ( # X labeled by 
MF). Subsequently, these values are substituted into the 
following equation:

Equation 7 was applied to calculate the generalization per-
centage of the proposed method in MRI with 0 % and 9 % 
noise. The total number of observation vectors obtained 
from the set of test images is equal to 962,125. In the case 
of the application of the W-operator designed using Gauss-
ian functions and a 3 × 3 window to MRI with 0 % noise, the 
number of observation vectors labeled by the membership 
functions is equal to 423,882. Consequently, the generali-
zation percentage was 44.06% . Conversely, when applying 
this W-operator to MRI with 9 % noise, the generalization 
percentage increases to 48.09%.

(7)GC =
#X labeled by MF

total #of X
× 100%.

Table 2  Classification error, sensitivity and specificity for W-operator 
using the partition 80-20

Partition 80-20

 Noise % Size (W) Error Sensitivity Specificity

0 3 × 3 2.533 95.878 99.251
5 × 5 3.798 92.977 98.853
7 × 7 5.435 90.423 98.331
11 × 11 8.085 87.162 97.466
15 × 15 10.106 85.183 96.78

9 3 × 3 5.407 91.851 98.342
5 × 5 5.355 89.78 98.358
7 × 7 7.049 85.601 97.825
11 × 11 10.476 79.228 96.72
15 × 15 12.985 75.666 95.876

Table 3  Classification error, sensitivity and specificity for W-operator 
using the partition 70-30

Partition 70-30

 Noise % Size (W) Error Sensitivity Specificity

0 3 × 3 2.610 95.951 99.228
5 × 5 3.912 93.229 98.818
7 × 7 5.578 90.75 98.286
11 × 11 8.162 87.643 97.439
15 × 15 9.967 85.901 96.82

9 3 × 3 5.509 92.016 98.309
5 × 5 5.447 90.251 98.328
7 × 7 7.155 86.363 97.791
11 × 11 10.549 80.324 96.693
15 × 15 13.009 76.938 95.862

Table 4  Classification error, sensitivity and specificity for W-operator 
using the partition 50-50

Partition 50-50

 Noise % Size (W) Error Sensitivity Specificity

0 3 × 3 2.882 95.665 99.129
5 × 5 4.298 93.032 98.674
7 × 7 5.906 90.801 98.153
11 × 11 8.533 87.83 97.281
15 × 15 10.473 86.051 96.609

9 3 × 3 6.105 91.639 98.111
5 × 5 6.079 89.813 98.112
7 × 7 7.785 86.014 97.56
11 × 11 11.253 80.022 96.417
15 × 15 14.012 76.14 95.471
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It is evident from the generalization percentages in each 
experiment that the W-operator designed with membership 
functions demonstrates a higher level of generalization in 
MRI scenarios characterized by elevated noise levels. This 
is due to the greater number of new observation vectors 
that do not exist in the domain of the W-operator under 
such conditions.

6  Comparison of the proposed method 
with other MRI segmentation methods

The proposed method was compared with other tech-
niques focused on brain MRI segmentation. In Dubey and 
Mushrif (2015), propose calculating a set of thresholds to 
segment each tissue in brain MRI, using the intuitionis-
tic diffuse roughness measure (IFRM), obtained using the 
histogram as a lower approximation and the intuitionis-
tic diffuse histon as a top approximation. In Dubey et al. 
(2016), propose an intuitionistic FCM clustering algorithm 
for MRI segmentation. The initial centroids are obtained 
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Fig. 6  Classification error of the W-operators designed for the different partition. a 80-20. b 70-30. c 50-50
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by means of the aforementioned intuitionistic diffuse 
roughness measure (RIFCM). In both of these segmenta-
tion methods, the evaluation of performance is based on 
common metrics, including the Jaccard coefficient and the 
Dice coefficient. These metrics are calculated based on 
the confusion matrix, composed of true positives (TP), 
true negatives (TN), false positives (FP), and false nega-
tives (FN). The Jaccard similarity coefficient measures the 
similarity between two sets by comparing their shared and 
dissimilar members. Its values range from 0 to 1, with 
higher values indicating greater similarity between the two 
sets. The Jaccard coefficient is defined as:

The Dice coefficient, a measure of similarity between two 
sets, is defined as:

This similarity metric falls within the range of 0 to 1, and 
the higher its value, the greater the similarity between the 
two sets, in this instance, the ideal image and the image 
segmented by a particular method.

In Table 5, it can be observed that the similarity coeffi-
cients evaluated in our methodology exhibit slight discrep-
ancies compared to those obtained by other approaches. 

(8)Jaccard coefficient =
TP

TP + FP + FN
.

(9)Dice coefficient =
2 TP

2 TP + FP + FN
.

3x3 5x5 7x7 11x11 15x15

Window size

70

75

80

85

90

95

100

Se
ns

iti
vi

ty
(%

)

0%
1%
3%
5%
7%
9%

(a)

3x3 5x5 7x7 11x11 15x15

Window size

70

75

80

85

90

95

100

Se
ns

iti
vi

ty
(%

)

0%
1%
3%
5%
7%
9%

(b)

3x3 5x5 7x7 11x11 15x15

Window size

70

75

80

85

90

95

100

Se
ns

iti
vi

ty
(%

)

0%
1%
3%
5%
7%
9%

(c)

Fig. 7  Sensitivity of the W-operators designed for the different partition. a 80-20. b 70-30. c 50-50
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Nevertheless, our proposal to utilize membership functions 
generated from the training data addresses one of the most 
prominent challenges in the automatic design of W-oper-
ators. This challenge lies in generalizing the w-operators 

for the processing of new images that were not used dur-
ing the training phase. As a result, the ability to perform 
multi-class segmentations is significantly expanded, as 
illustrated in the case of segmentation in MRI.
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Fig. 8  Specificity of the W-operators designed for the different partition. a 80-20. b 70-30. c 50-50

Table 5  Comparison of the 
proposed method with other 
methods focused on brain MRI 
segmentation

Noise % Tissue class Jaccard coefficient Dice coefficient

IFRM RIFCM WO-MF IFRM RIFCM WO-MF

5 CSF 0.9218 0.9116 0.8448 0.9593 0.9537 0.9157
GM 0.9186 0.9565 0.8352 0.9576 0.9777 0.9102
WM 0.9715 0.9456 0.9094 0.9855 0.9720 0.9525

9 CSF 0.8304 0.9016 0.8276 0.9073 0.9482 0.9054
GM 0.9091 0.9257 0.7362 0.9523 0.9614 0.8481
WM 0.9554 0.9219 0.8323 0.9772 0.9593 0.9085
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7  Conclusions

A new approach was introduced for the automatic design 
of W-operators using membership functions to solve the 
generalization problem in the case of multi-class segmen-
tation. W-operators designed with the proposed approach 
were applied to segment magnetic resonance images. The 
experiments were carried out with different numbers of 
training and test images, different windows sizes and dif-
ferent noise levels. The error of the designed W-operators 
increases as the window size increases, obtaining the 
smallest error for a 3 × 3 window. The classification error 
also increase as the noise level does.

The proposed method, using membership functions, had 
good performance in all experiments when working with 
windows of size 3 × 3 , solving the generalization problem 
and achieving the segmentation of each tissue in images 
in gray levels with class ranges with overlap and fuzzy 
boundaries. As future work, the proposed method will be 
applied to real magnetic resonance images.
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