
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:9383–9402 
https://doi.org/10.1007/s12652-023-04607-8

ORIGINAL RESEARCH

Deep face segmentation for improved heart and respiratory rate 
estimation from videos

Marc‑André Fiedler1  · Philipp Werner1 · Michał Rapczyński1 · Ayoub Al‑Hamadi1

Received: 22 June 2022 / Accepted: 4 April 2023 / Published online: 23 May 2023 
© The Author(s) 2023

Abstract
The selection of a suitable region of interest (ROI) is of great importance in camera-based vital signs estimation, as it rep-
resents the first step in the processing pipeline. Since all further processing relies on the quality of the signal extracted from 
the ROI, the tracking of this area is decisive for the performance of the overall algorithm. To overcome the limitations of 
classical approaches for the ROI, such as partial occlusions or illumination variations, a custom neural network for pixel-
precise face segmentation called FaSeNet was developed. It achieves better segmentation results on two datasets compared to 
state-of-the-art architectures while maintaining high execution efficiency. Furthermore, the Matthews Correlation Coefficient 
was proposed as a loss function providing a better fitting of the network weights than commonly applied losses in the field 
of multi-class segmentation. In an extensive evaluation with a variety of algorithms for vital signs estimation, our FaSeNet 
was able to achieve better results in both heart and respiratory rate estimation. Thus, a ROI for vital signs estimation could 
be created that is superior to other approaches.

Keywords Camera-based monitoring · Heart rate · Remote photoplethysmography · Respiratory rate · Vital signs

1 Introduction

In recent years, considerable efforts have been invested by 
the research community to further enhance methods for cam-
era-based estimation of vital signs. Since it was discovered 
in 2008 that subtle color changes can be measured in human 
skin pixels of frames from video sequences based on the 
principle of photoplethysmography (PPG) (Verkruysse et al. 
2008), great progress has already been made in the develop-
ment of these techniques. These color changes occur due to 
cardiac-synchronous variations in the amount of reflected 
light, which are caused by the changing blood volume in the 
arteries with every heartbeat (Poh et al. 2010). In turn, these 
cardiac-synchronous variations are linked to respiration via 
the phenomenon of respiratory sinus arrhythmia, which 
results in a rise of heart frequency during inhalation and a 
fall during exhalation (Zhao et al. 1994). Thus, remote PPG 

(rPPG) systems can be used to capture important health-
related information to assess and diagnose cardiovascular 
diseases (Castaneda et al. 2018). From the obtained rPPG 
signal, two of the most important vital signs, namely the 
heart rate (HR) and the respiratory rate (RR), can be cal-
culated (Elliott and Coventry 2012). Both are important 
biomarkers for the prevention and diagnostics of various 
illnesses (Moraes et al. 2018). For example, the HR is a 
measure of physiological activity and has the ability to indi-
cate a person’s state of health (Fel and Malik 1994). The RR, 
for instance, can be used to determine whether a patient is in 
critical condition and is therefore part of many risk scores 
(Becker et al. 2017).

The processing pipeline of algorithms for vital signs esti-
mation can usually be divided into three main processing 
steps: Firstly, a suitable Region of Interest (ROI) has to be 
selected and tracked across each frame of a video sequence. 
Subsequently, a rPPG signal can be generated by averaging 
the color values from the ROIs, possibly with the help of 
some signal processing methods. Finally, the vital signs can 
be estimated from the obtained signal. A general schematic 
diagram of this processing pipeline is shown in Fig. 1. As 
the detection of the ROI is the first of these stages, it is cru-
cial for the later performance of the overall system. In this 
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work, we focus on approaches that are using as ROI (partial) 
areas of the face, since we believe that they have the great-
est potential for future applications. This is for two reasons: 
First, the face exhibits significantly higher PPG signal ener-
gies than other body regions due to the high density of blood 
vessels and the relatively thin layer of skin (Nilsson et al. 
2007). Second, the region needs to be permanently visible 
and uncovered by clothing, making the face the most suit-
able body area for this purpose.

The goal in selecting the ROI is to capture as many skin 
pixels as possible with only a very small percentage of non-
skin pixels, because they will create undesirable artifacts in 
the rPPG signal. If the ROI is chosen too small, the quantiza-
tion noise of the cameras may not be sufficiently attenuated 
by averaging the pixel intensities, which is why larger ROIs 
often have positive impact on the signal-to-noise ratio (Wang 
et al. 2018). In order to define the ROI accurately, most rPPG 
algorithms employ a face detection module upstream and 
subsequently localize the ROI on the basis of the resulting 
face crop. Most methods in prior work use static geomet-
ric regions as ROI based on the face bounding box and/or 
facial landmarks, such as the forehead (Sanyal and Nundy 
2018; Blöcher et al. 2017) or cheeks (Feng et al. 2015; Nisar 
et al. 2016), or utilize pixel-based skin segmentation with 
color thresholds inside the face crop (Rapczynski et al. 2018; 
Wang et al. 2017b; Fouad et al. 2019). However, predefined 
static ROIs have the disadvantage that they are unable to 
react to interfering pixels caused by hair, beard, glasses, 
headgear and others. This can have significant negative 
effects on the estimation performance. Threshold-based skin 
segmentation methods can deal with this type of problem 
through pixelwise skin/non-skin mapping, but will fail under 
skin tone variations (e.g. for strong redness) and changing, 
too weak or too strong ambient illumination scenarios.

To overcome those limitations of previous ROI 
approaches, we present in this paper a framework for deep 
face segmentation to improve the quality of the rPPG sig-
nal generated out of video frames and to enable better 

estimations for the vital signs HR and RR. By segmenting 
all pixels of the image into the three classes face, hair and 
background and by taking advantage of semantic informa-
tion, we aim to achieve pixel-precise segmentation results 
even in case of partial face occlusions and illumination 
variations. This should guarantee that only pixels contain-
ing photoplethysmographic information are included in 
the computation of the rPPG signal. In addition, we take 
care to ensure that the convolutional neural network (CNN) 
employed maintains high execution efficiency, allowing face 
mask generation to be performed in real-time on a conven-
tional graphics processing unit (GPU) and thus to be suitable 
for usage in real-world applications. The contributions of 
this paper can be summarized as follows: 

1. We propose a custom CNN architecture for real-time 
face segmentation that outperforms other state-of-the-
art models in terms of segmentation performance while 
maintaining high execution efficiency.

2. A novel approach for the loss function in multi-class 
semantic segmentation was developed. It is based on the 
Matthews Correlation Coefficient, which is particularly 
well suited for handling imbalanced datasets.

3. A modular framework for rPPG algorithms was created, 
where the individual processing steps of the pipeline 
(see Fig. 1) can be easily interchanged.

4. Comprehensive experimental validation was performed 
by comparing different CNN architectures for semantic 
segmentation in terms of performance and execution 
efficiency, as well as evaluating the impact of the appli-
cation for multiple ROIs in several vital signs estimation 
algorithms for HR and RR.

Our paper is structured in the following way: In Sect. 2, 
methods are described outlining our newly proposed CNN 
architecture, the designed loss function, the applied training 
details, and the generation of the rPPG signal. Subsequently, 
the experiments are reported in Sect. 3 specifying the used 

Fig. 1  General schematic pipeline of algorithms for vital signs estimation in remote photoplethysmography (rPPG)
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datasets, evaluation metrics, and state-of-the-art bench-
marking algorithms. In Sect. 4, the experimental results are 
presented and discussed. Finally, a conclusion is drawn in 
Sect. 5.

2  Methods

In this section, our newly proposed face segmentation net-
work (FaSeNet) is presented in detail. It is designed to accu-
rately segment faces of humans in video frames to facilitate 
most precise estimations of their vital signs. First, the net-
work architecture is introduced. Next, we elaborate the novel 
loss function employed and the details of our training. The 
generation of rPPG signals from the segmented face masks 
is outlined at the end of this section.

2.1  Network architecture

The architecture of our FaSeNet consists of the fusion of 
two encoder branches for feature extraction and the remain-
ing decoder layers for spatial recovery of the input image 
resolution. The two paths for encoding are referred to as 
spatial branch and context branch. The goal of running the 
two branches in parallel is to produce high quality feature 
maps with shallow spatial detail as well as global contextual 
information, without having a huge negative impact on the 

inference speed of the network. Our overall architecture is 
shown in Fig. 2.

The aim of the spatial branch is to encode rich spatial 
information. We try to achieve this by not downsampling 
the feature maps excessively compared to the original 
resolution of the input image. For this purpose, a cascade 
of four custom-designed blocks is adopted. Each of them 
is made up of a depthwise convolution and a later convo-
lutional layer, both followed by batch normalization and 
rectified linear unit (ReLU) activation. This design was 
inspired by MobileNet (Howard et al. 2017). Batch nor-
malization is adopted after convolution and before activa-
tion to improve generalization while accelerating training. 
ReLU is then employed to enhance the nonlinear fitting 
ability of the model. Both types of convolutions use ker-
nel size 3 × 3. We refer to this block as “DepthConv + 
Conv” and plot it in Fig. 3. The advantage of depthwise 
convolution is that it reduces the number of parameters, 
thus lowering the computational cost while maintaining 
similar performance. Therefore, a higher number of filters 
and a stride = 1 are used for this depthwise convolution in 
order to increase modeling capacity. Compared to the later 
convolution the filter amount is tripled (48, 96, 192 and 
384). The downsampling is performed by the subsequent 
convolutional layers with less filters (16, 32, 64 and 128) 
and stride = 2. By combining depthwise convolutions with 
many filters and convolutions for downsampling with few 
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Fig. 2  Network architecture of FaSeNet: Each block describes one or more layers and specifies the corresponding output feature map size
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filters, better run-time properties can be generated for the 
network architecture without reducing the quality of the 
features. The output of the last of these four “DepthConv 

+ Conv” blocks is upsampled and concatenated with the 
one of the third. This branch structure yields high quality 
spatial information at manageable computational cost.

The context branch is employed for providing a large 
receptive field to encode valuable semantic context infor-
mation. For this purpose, we apply ResNet50V2 (He et al. 
2016b) as lightweight backbone for downsampling the fea-
ture maps. The weights are initialized with values trained on 
ImageNet (Deng et al. 2009). ResNet50V2 was chosen to be 
the backbone because of its excellent run-time characteris-
tics in combination with its high performance capability. A 
schematic representation of the ResNet50V2 backbone with 
labels for the individual blocks and layers can be found in 
Fig. 4. At the tail of the backbone with the maximum recep-
tive field, the resulting feature map is upsampled and con-
catenated with the output of layer “conv4_block6_1_relu”. 
For ResNets (He et al. 2016a), each convolutional layer is 
followed by a batch normalization and a ReLU subsequently. 
The feature maps are tapped after non-linear activation. This 
procedure is repeated accordingly to concatenate the feature 
map with output of layer “conv3_block4_1_relu”. Thus, the 
high-level feature maps from different dimensions are com-
bined and upsampled accordingly to enhance the model’s 
capability.

Fig. 3  “DepthConv + Conv” 
Block of FaSeNet
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Fig. 4  Schematic representation of the ResNet50V2 backbone with labels for the individual blocks and layers



9387Deep face segmentation for improved heart and respiratory rate estimation from videos  

1 3

The combination of good spatial information and suffi-
cient receptive field are crucial for achieving high perfor-
mance in semantic segmentation. To accomplish this within 
our model by merging the two encoder branches, we employ 
the feature fusion module (FFM) created by Yu et al. (2018). 
It was explicitly designed to fuse different levels of feature 
representation, while focusing on important features and 
suppressing unimportant ones. For this purpose, the two 
input branches are first concatenated and processed by a 
layer consisting of convolution, batch normalization and 
ReLU. This convolution combines the information and con-
denses it to three channels. Subsequently, a global pooling 
layer and two convolutional layers with ReLU and sigmoid 
activation, respectively, are run through for computing an 
attention weight vector. In addition, skip connections are 
used, which allow information flow between feature hierar-
chies (Ulku and Akagündüz 2022). These additional paths 
are beneficial for model convergence. Thus, the FFM input 
feature maps are linked to the outputs via multiplication and 
addition, respectively.

Following the FFM module, the decoder branch begins, 
which is responsible for restoring the original image reso-
lution from the beginning. Only details for fine-tuning are 
learned during this process, the intrinsic features originate 
from the encoder. For this reason, fast bilinear upsam-
pling with a factor of 8 takes place to save computational 
expenses. Then, pointwise 1 × 1 convolution is performed 
for feature pooling. At the end, softmax is applied for gen-
erating the output class probabilities.

2.2  Loss function

The particular choice of the loss function has a great impact 
on the later performance of the Deep Learning model, as it 
needs to ensure that the objective is learned accurately and 
rapidly. In semantic segmentation, the main distinction is 
between distribution-based and region-based loss functions 
(Jadon 2020). In particular, when choosing a loss for pixel-
based classification, the problem of imbalanced class distri-
bution must be considered. The analysis of literature surveys 
shows that (distribution-based) Cross-Entropy and (region-
based) Dice loss functions are mostly used for training models 
in semantic segmentation (Garcia-Garcia et al. 2018).

In this paper, we propose a novel approach for the loss 
function by calculating it based on the Matthews Correla-
tion Coefficient (MCC). To the best of our knowledge, we 
are the first to introduce MCC loss ( L

MCC
 ) in multi-class 

semantic segmentation and classification. It has been shown 
in other works that it is a more reliable metric for evaluat-
ing classification performance (Chicco and Jurman 2020; 
Chicco et al. 2021) and particularly suitable for handling 
data imbalance (Boughorbel et al. 2017; Zhu 2020). It is 
generally considered as a balanced measure that can be 

used even with classes of very different sizes (Zhu 2020), 
and has been mainly employed in various bioinformatics 
applications as a performance metric for classifiers in order 
to guarantee better generalization results (Song et al. 2006; 
Wang et al. 2015; Huang et al. 2010). Compared to Dice 
loss, the advantage of MCC is that it involves the number of 
true negative samples in the calculation. Additionally, the 
eight most relevant derived ratios obtained by combining all 
components of a confusion matrix are integrated together in 
MCC (Lever et al. 2016).

MCC is defined as follows:

indicating the number of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN) predicted 
pixels.

Since we apply this loss to a multi-class problem, we 
compute the mean MCC (mMCC) as follows:

where

Let pij be the total number of pixels belonging to class i but 
classified to class j and N the total number of classes.

The final loss function is thus obtained as follows:

where ŷ denotes the model prediction and y the ground truth.

2.3  Training details

For training our FaSeNet model, images and masks are 
zero padded to be square and resized to 256 × 256 pixels, 

(1)
MCC =

TP × TN − FP × FN
√

(TP + FP)(TP + FN)

(TN + FP)(TN + FN)

(2)
mMCC =

1

N

N∑

i=1

TPi × TNi − FPi × FNi√
(TPi + FPi)(TPi + FNi)

(TNi + FPi)(TNi + FNi)

(3)TPi = pii

(4)TNi =

N∑

j=1

pjj, j ≠ i

(5)FPi =

N∑

j=1

pji, j ≠ i

(6)FNi =

N∑

j=1

pij, j ≠ i

(7)LMCC(y, ŷ) = 1 − mMCC(y, ŷ)
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if this is not already the case. As training data is limited, 
several data augmentation operations are conducted on the 
inputs: random horizontal flipping, vertical flipping with 
probability of 10%, random rotation in range [-30◦ , 30◦ ], 
random horizontal and vertical shifting in range [-20%, 
20%] of the image, and adjusting brightness, contrast, 
hue and saturation. Details on the training datasets can be 
found in Sect. 3.1.1.

All training is performed on a NVIDIA RTX 2080 Ti 
using TensorFlow framework with Python. The batch size 
is set to 32. Our model is trained for 300 epochs in total. 
As optimizer stochastic gradient descent (SGD) is 
employed with momentum of 0.98. The “poly” learning 
rate policy is utilized by multiplying the initial learning 
rate by (1 − iter

max_iter
)power . The initial learning rate is set to 

0.0025 and the power is set to 0.9. All layers for which it 
is possible use L2 regularization with factor 0.00002. The 
total training time for our final model (see Sect. 2.4) was 
8 h and 23 min.

2.4  rPPG signal generation

The generation of the rPPG signal from video frames is 
carried out as it is standard practice in the field of rPPG. 
The exact procedure of the algorithm is illustrated below.

First, a face crop is determined for each frame of the 
video sequence by applying CNN based face detection. 
RetinaFace (Deng et al. 2020) is employed for this purpose. 
In case multiple faces are detected in a single frame, the 
one with the highest confidence score is selected. Subse-
quently, the ROI is determined within this face crop. For our 
FaSeNet, the crop is initially padded with zeros to become 
square and then resized to 256 × 256 pixels, if this is not 
already the case. This serves as input to our FaSeNet model, 
which was previously trained on the LFW-PL trainval set 
and the full CelebHair dataset. Details on the training pro-
cess can be found in Sect. 2.3. In Sect. 3.1.1, information 
on the training datasets is provided. As output we obtain the 
predicted mask which assigns each pixel to one of the three 
classes. This mask is then resized to the shape of the initial 
face crop. Based on the resized mask, the average skin color 
is calculated with each frame over the entire video length 
for each RGB channel. Thereby, only the crop color values 
of face pixels are included in the calculation, the hair and 
background pixels are discarded. It is very important to note 
that the color values are taken from the initial face crop and 
that the face crop is not resized to the output mask shape, as 
resizing images can lead to the loss of important small color 
variations which are essential in rPPG (Rapczynski et al. 
2019). For this reason, the size of the output pixel mask is 
adjusted and not vice versa. The resulting RGB signals are 

used as starting point for the HR (see Sect. 3.3.3) and RR 
estimation algorithms (see Sect. 3.3.4).

3  Experiments

This section describes the used datasets, evaluation metrics 
and benchmark algorithms in detail. The datasets and met-
rics are distinguished between those for face segmentation 
and those for camera-based vital signs estimation. In order 
to perform a detailed benchmark evaluation, various techni-
cal submodules and entire algorithms from the current state 
of the art were re-implemented to allow robust analysis and 
interpretation of the individual steps within the processing 
pipeline. In this context, lightweight CNN architectures for 
real-time segmentation, ROIs for generating rPPG signals 
from video images and algorithms for estimating HR and 
RR are addressed. Details about the training process can be 
found in Sect. 2.3.

3.1  Datasets

The datasets used for face segmentation and vital signs esti-
mation are presented in the following subsections.

3.1.1  Datasets for face segmentation

For face segmentation two publically available datasets are 
used which contain segmentation masks classifying each 
pixel of an image into the three classes face, hair or back-
ground. Both were originally designed for hair detection and 
hair color recognition. However, the data is also suitable for 
ROI selection in rPPG systems. Especially the hair class is 
helpful to exclude interfering pixels caused by beard or hair 
hanging into the face from the generation of rPPG signals.

The Labeled Faces in the Wild Part Labels (LFW-PL) 
(Kae et al. 2013) database is an extension of the original 
Labeled Faces in the Wild (LFW) dataset, which provides 
segmentation masks for a subset of 2927 images from LFW. 
All images with a resolution of 250 × 250 pixels were col-
lected from the internet in unconstrained conditions. LFW-
PL data is divided into 1500 images for training, 500 for 
validation and 927 for testing.

The CelebHair (Borza et al. 2018) dataset supplies seg-
mentation annotations for 3556 images from Large-scale 
CelebFaces Attributes (CelebA). The 218 × 178 images 
taken from celebrities in unconstrained conditions are char-
acterized by their large head pose variations. No specifi-
cations were made by the authors for a split into training, 
validation and test data.
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Both datasets were specifically post-processed for our 
application. A face detection algorithm was applied to 
the images and their face bounding boxes were cropped. 
Segmentation masks were created based on the generated 
bounding box locations. We only use cropped images and 
masks in our work for training and evaluation of the CNNs. 
The pixel class distribution of the cropped ground truth 
masks from both datasets can be found in Fig. 5.

3.1.2  Datasets for vital signs estimation

For comparison of estimation results for HR and RR, two 
databases for each vital sign were analyzed. Special care was 
taken to select only losslessly compressed video recordings, 
since compression removes important small changes in color 
information not visible to the human eye, which, nonethe-
less, are an elementary prerequisite for high quality vital 
sign estimates (Rapczynski et al. 2019).

The MMSE-HR dataset is a subset of the BP4D+ data-
base published by Zhang et al. (2016) and was specifically 
designed to evaluate camera-based HR estimation algo-
rithms. The subset consists of 102 video recordings of 40 
subjects (23 females, 17 males), which were recorded with 
a resolution of 1392 × 1040 pixels at 25 frames per sec-
ond (fps). The mean video length is 42.3 s. The interval 
of the reference HRs is [50, 128] bpm. Since the subjects 
performed different tasks, the video images contain large 
amounts of head movements.

The PURE (Stricker et al. 2014) data-set for HR estima-
tion comprises 60 recordings of ten subjects (two females, 
eight males) while they performed the following six tasks: 
Steady, talking, slow translation, fast translation, small rota-
tion and medium rotation. The mean duration of the record-
ings is 69.6 s. The images were recorded at 640 × 480 pixels 

with 30 fps and the reference HR signal was captured with 
a finger pulse oximeter at 60 Hz. The range of HRs lies 
between [44, 140] bpm. The experimental setup was illu-
minated by daylight through a large window, causing the 
ambient lighting to change over the duration of the videos 
due to varying cloud coverage.

For evaluation of RR algorithms, BP4D+ (Zhang et al. 
2016) is employed as one of the two databases. The dataset 
was originally designed for emotion recognition and thus 
contains many more modalities in addition to 2D videos 
with 1392 × 1040 pixels and respiratory signals. A total of 
140 subjects (82 females, 58 males) of various ethnic ances-
tries were filmed during ten different tasks, resulting in 1400 
videos. Since the RR signals acquired via chest belt were 
heavily corrupted by movements during the different tasks, 
a large amount of them had to be sorted out, as no ground 
truth could be derived with certainty due to the artifacts. At 
the end of this process, 269 videos with clean ground truths 
from 124 subjects (72 females, 52 males) remained. The 
video length is 68.3 s on average. The interval for the RRs 
is [11, 29] brpm. More details on this sorting can be found 
in Fiedler et al. (2020).

Additionally, we used our own database for RR esti-
mation. It was first introduced in Fiedler et al. (2020) and 
includes videos from twelve subjects (two females, ten 
males). For each subject, four recordings with varying res-
piratory patterns were performed: Spontaneous respiration, 
fixed 10 breaths per minute (brpm), fixed 15 brpm and fixed 
20 brpm. This results in a total of 48 videos with a resolution 
of 1388 × 1038 pixels at 25 fps. Each video has a uniform 
duration of 3 min. The respiratory pattern to perform was 
displayed on a monitor in front of the subjects. The ground 
truth was captured via a chest belt at 512 Hz. The reference 
RR range lies between [7, 21] brpm.

Fig. 5  Pixel class distribution of 
the cropped ground truth masks 
from the (a) LFW-PL and (b) 
CelebHair dataset

(a) LFW-PL (b) CelebHair
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3.2  Evaluation metrics

Different metrics were employed in order to compare and 
validate the results obtained within the face segmentation 
and within the vital signs estimation. These error measures 
will be presented in the following for both tasks.

3.2.1  Metrics for face segmentation

The two main metrics applied for the evaluation of face 
segmentation are the F1 Score and the Intersection over 
Union (IoU). Both can also be deployed as loss function.

The F1 Score, also known as Dice coefficient, is the 
ratio of two times the overlapping area between segmented 
area and ground truth of a particular class to the total value 
of segmented area and ground truth. For multi-class clas-
sification we calculate the mean F1 (mF1) as follows:

where pij is the total number of pixels belonging to class i 
but classified to class j and N is the total number of classes.

The IoU, often known as Jaccard index, is the ratio of 
the intersection area between predicted segmentation and 
ground truth to the union of these areas for every class. 
The mean IoU (mIoU) is obtained as follows:

In addition, the frequency weighted IoU (fwIoU) is given, 
which includes the weighting of the pixels of each class:

Furthermore, the Pixel Accuracy (PA) which indicates the 
percentage of correctly classified pixels in the whole image 
is computed

and the mean PA (mPA) value over all classes

Since we are particularly interested in the segmentation per-
formance for the class face, as it provides the pixels for the 
subsequent generation of the rPPG signal, metrics F1face , 
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IoUface and PAface are also given each of them calculating the 
respective error measure only for the class face.

3.2.2  Metrics for vital signs estimation

As metrics for evaluating the vital signs estimates, the 
commonly employed mean absolute error (MAE) and 
root-mean-square error (RMSE) are calculated. This 
involves computing the difference between estimated value 
(EST) and ground truth (GT). They are defined as follows:

where N denotes the total number of signal windows.
In addition, a further metric is given depending on the 

respective vital sign.
In case of estimating the HR, the IEC Accuracy is addi-

tionally applied. It originates from the IEC standard 60601-
2-27, which is used for benchmarking medical electrocar-
diogram devices. Therefore, it is well suited for the given 
purpose and has already been employed in other works 
(Rapczynski et al. 2018, 2019). It gives the percentage of 
correctly determined windows, whereby a window is clas-
sified as correctly determined as soon as the error between 
estimated HR and ground truth is smaller than 10% of the 
ground truth or smaller than 5 beats per minute (bpm), 
depending on which of both is higher.

When estimating the RR, the detection rate (DR) is used 
as a further metric indicating the percentage of correctly 
estimated windows out of the total number of windows. A 
window is assumed to be correct if the error between esti-
mated value and ground truth is less or equal than 2 brpm. It 
was similarly introduced by Charlton et al. (2018) and addi-
tionally utilized in other studies (Fiedler et al. 2020, 2021).

3.3  Benchmarking

For evaluation, the algorithms will be benchmarked against 
state-of-the-art procedures to allow high quality conclusions 
about the obtained results. The methods employed for this 
benchmark are therefore further explained in this section. 
First, it starts by describing lightweight architectures for 
real-time semantic segmentation. Afterwards, ROIs from 
the area of rPPG estimation are presented. At the end, algo-
rithms for estimating vital signs are explained further by 
dividing them between the estimation of HR and RR.

(13)MAE =
1

N

N∑

i=1

|ESTi − GTi|

(14)RMSE =

√√√√ 1

N

N∑

i=1
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3.3.1  Lightweight semantic segmentation architectures

Most of the popular Deep Learning based models for seman-
tic segmentation utilize some kind of encoder-decoder archi-
tecture (Minaee et al. 2021). We focus exclusively on light-
weight networks, as only these are reasonably applicable for 
the usage as ROI in rPPG, which requires the segmentation 
masks to be rendered in real-time for each frame of a video. 
Details on the training process of the CNNs can be found 
in Sect. 2.3.

The first end-to-end trainable lightweight network for 
semantic segmentation without any extra post-processing 
steps was ENet (Paszke et al. 2016). It has been designed by 
connecting a large number of bottleneck layers in series to 
reduce the computational cost and is inspired by the ResNet 
(He et al. 2016a) architectures. BiSeNet (Yu et al. 2018) 
combines the output of a shallow network to encode rich 
spatial information together with deep network features 
to provide sufficient receptive field. LEDNet (Wang et al. 
2019) applies in its encoder special residual blocks with 

(a) face crop (c) FaceMid (d) forehead (e) cheeks
0

0.2

0.4

0.6

0.8

1

(f) skin segmentation(b) face by FaSeNet

Fig. 6  Example of different ROIs on the MMSE-HR/BP4D+ dataset: (a) showing the face crop from the face detection, (b) the face segmented 
by FaSeNet, (c) the FaceMid, (d) the forehead, (e) the cheeks and (f) the skin segmentation with corresponding probabilities (see color bar)

(a) face crop (c) FaceMid (d) forehead (e) cheeks
0

0.2

0.4
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0.8

1

(f) skin segmentation(b) face by FaSeNet

Fig. 7  Example of different ROIs on the PURE dataset: (a) showing the face crop from the face detection, (b) the face segmented by FaSeNet, 
(c) the FaceMid, (d) the forehead, (e) the cheeks and (f) the skin segmentation with corresponding probabilities (see color bar)

(a) face crop (b) face by FaSeNet (c) FaceMid (d) forehead (e) cheeks
0

0.2

0.4

0.6

0.8

1

(f) skin segmentation

Fig. 8  Example of different ROIs on our own database: (a) showing the face crop from the face detection, (b) the face segmented by FaSeNet, 
(c) the FaceMid, (d) the forehead, (e) the cheeks and (f) the skin segmentation with corresponding probabilities (see color bar)
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channel split and shuffle operations and in its decoder an 
attention pyramid network. In DFANet (Li et al. 2019), sub-
network and sub-stage aggregation cascades are used to join 
discriminative features while reducing the number of param-
eters. Fast-SCNN (Poudel et al. 2019) introduces a “learning 
to downsample” module for computing features on multiple 
resolution branches simultaneously in order to combine spa-
tial detail with deep receptive fields. In HLNet (Feng et al. 
2020), an information fusion network is proposed which 
integrates high-dimensional and low-dimensional feature 
maps in parallel.

3.3.2  Region‑of‑interests (ROIs)

Selecting the ROI is a crucial step in any vital signs estima-
tion algorithm, as it determines which pixels of an image 
sequence are used as source for the rPPG signal. If a signal 
of poor quality is already generated at this early stage in the 
processing chain, this will lead to bad performance in the 
downstream estimation of HR and RR. To enable compari-
son of the proposed CNN-based ROI using FaSeNet, several 
popular ROIs from existing research were re-implemented. 
This includes multiple face regions. All ROIs are shown in 
Figs. 6, 7 and 8.

All ROIs obtain as starting point face crops generated by 
CNN from the face detection algorithm RetinaFace (Deng 
et al. 2020) for further processing. Based on these face crops 
the exact ROI is computed for every frame. In addition, the 
face crop is also used as an individual ROI without fur-
ther segmentation. Thereby, all pixels within the crop are 
included in the average calculation for the rPPG signal.

The following ROIs which are based on static geometric 
regions are provided: The forehead is a commonly used 
region in rPPG (Verkruysse et al. 2008; Sanyal and Nundy 
2018; Blöcher et al. 2017). Its width is defined by setting 
0.5 of the crop width and its height by calculating 0.3 of the 
distance between eye corners and bottom of nose. It is placed 
above the eyebrows. Another popular ROI is FaceMid  
(Poh et al. 2010, 2011; Monkaresi et al. 2017), which takes 
the full height of the face bounding box but only 0.6 of the 
centered width. Additionally, the cheeks are applied as 
ROI which was originally introduced by Feng et al. (2015).  
It is calculated by employing an affine transformation and 
tracking speeded-up-robust-feature points in the center of 
the face to estimate its motion.

Furthermore, a pixel-based skin segmentation was pro-
posed as ROI by Rapczynski et al. (2018). It uses a lookup 
table approach which provides for each pixel a relative 
probability of being skin. This skin probability forms the 
weighting factor by which the color values of each pixel are 
included in the average calculation of the rPPG signal. Thus, 
thresholding and binary masking are avoided. The lookup 

table for skin segmentation was trained on the ECU (Phung 
et al. 2005) dataset.

3.3.3  Algorithms for HR estimation

Some prior work algorithms, which are widely used in other 
research studies, were re-implemented in order to be able 
to investigate the influence of differing ROIs. For this pur-
pose, the subsequent processing with the estimation of HR 
from the rPPG signals generated out of these ROIs remains 
unchanged for analyzing exclusively the photoplethysmo-
graphic information present in the signals and their suit-
ability for estimation methods of vital signs.

In the following, the algorithms are briefly explained. But 
their functional principle is only roughly described, exten-
sive details can be found in the original papers. It should 
be noted that the ROI applied in the respective paper is not 
employed, instead each of the ROI approaches presented in 
Sect. 3.3.2 are executed. The window length is uniformly set 
to 30 s with a step size of 10 s.

One of the first publications addressing video-based HR 
estimation was by Poh et al. (2011). Thereby, the RGB 
channels are smoothed and decomposed into independent 
source signals with the help of an independent component 
analysis (ICA). Afterwards, filtering and interpolation of 
the signal with the highest power spectrum peak takes 
place to derive the inter-beat intervals (IBIs).

Feng et al. (2015) utilize an adaptive green/red color 
difference (aGRD) operation to calculate the desired rPPG 
signal. From this signal the HR frequency can be estimated 
and an adaptive bandpass filter is created to further remove 
noise and motion artifacts.

Wang et al. (2017a) transform the RGB color channels 
into the frequency domain and later reconstruct the rPPG 
signal back to the time domain under consideration of the 
frequency range by using defined color-channel combina-
tions and underlying weights of their skin model.

A graph-based HR estimation algorithm was presented 
by Rapczynski et al. (2016) which applies an adaptive 
bandpass on the signal window. Different kind of rPPG 
signals are used by the authors like the green channel or 
one of the two signal extraction techniques normalized 
green (normG) (Stricker et al. 2014) or chrominance-based 
method (CHROM) (de Haan and Jeanne 2013). Subse-
quently, smaller signal windows are analyzed and band-
pass filtered in a smaller range, whereby the previously 
determined HR frequency forms the center of this pass 
band. Out of this, the signal peaks are isolated and all 
possible connections are plotted in a graph to find out the 
sequence which minimizes the error based on IBI analysis.
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Sanyal and Nundy (2018) transform the pixels of the 
ROI from RGB into HSV color space. Only the hue chan-
nel and pixel values in a predefined range are used to form 
the rPPG signal. After bandpass filtering the HR is deter-
mined in the frequency spectrum.

3.3.4  Algorithms for RR estimation

Similar to the previous subsection, methods for estimating 
the RR with fixed window length of 60 s and step size of 
10 s are also provided:

When determining the RR, Poh et al. (2011) additionally 
analyze the generated IBIs in the Lomb periodogram within 
the range of human respiration (see Sect. 3.3.3).

Sanyal and Nundy (2018) adopt appropriately adjusted 
bandpass cutoff frequencies corresponding to possible RR 
frequencies instead of HR as in 3.3.3.

Furthermore, FuseMod (Fiedler et al. 2020) was intro-
duced as a method which modulates seven signal param-
eters influenced by respiration, including one amplitude 
modulation, three baseline modulations, and three frequency 
modulations. These signal parameters are derived from the 
respective rPPG signal being employed, such as the green 
channel, normG (Stricker et al. 2014) or CHROM (de Haan 
and Jeanne 2013). The final RR is received by calculating 
the median of the seven RR estimates afterwards.

FuseModV2 (Fiedler et  al. 2021) is an extension of 
FuseMod (Fiedler et al. 2020) that adds as eighth modularity 
the interpolation of differences between rise and fall times of 
the rPPG signal, making the method more robust.

4  Results and discussion

In this section, the experimental results are presented in 
detail and afterwards discussed. First, the segmentation 
performance of the individual networks for the given seg-
mentation task is considered and compared. Subsequently, 
the speed of the architectures along with their accuracy dur-
ing inference is examined in order to analyze the execution 
efficiency. Thereafter, the usage of the MCC loss function 
is compared with commonly applied loss functions. At the 
end, the application of a wide variety of ROIs in several 
rPPG algorithms is evaluated for both HR and RR estima-
tion methods.

4.1  Segmentation performance

The segmentation performance of our FaSeNet network 
was compared with other commonly used state-of-the-art 
semantic segmentation architectures on both LFW-PL and 
CelebHair datasets. The results for LFW-PL are shown in 
Table 1, where training was performed on the two subsets 
train and validation followed by inference on the test subset. 
In Table 2 the results for CelebHair are provided as 5-fold 
cross-validation, since the authors did not specify a database 
split.

For LFW-PL, our FaSeNet outperforms all other archi-
tectures across all performance metrics (see Sect. 3.2.1), the 
only exception builds PAface where BiSeNet (Yu et al. 2018) 
performs better by 0.05%. However, for our main measure 
the F1face score only FaSeNet achieves a value above 97%, 

Table 1  Results comparison 
on LFW-PL test set in % of 
our FaSeNet and other network 
architectures trained on 
LFW-PL trainval

Network F1face mF1 IoUface mIoU fwIoU PAface PA mPA

DFANet (Li et al. 2019) 95.43 84.31 91.61 77.09 87.99 97.43 93.13 84.87
Fast-SCNN (Poudel et al. 2019) 96.15 86.53 92.78 79.57 89.59 96.13 93.83 89.74
ENet (Paszke et al. 2016) 96.17 85.89 92.90 79.03 89.32 97.43 93.96 85.91
LEDNet (Wang et al. 2019) 96.41 86.92 93.26 80.26 89.99 97.53 94.29 87.68
HLNet (Feng et al. 2020) 96.43 86.93 93.30 80.20 90.03 97.50 94.27 87.62
BiSeNet (Yu et al. 2018) 96.95 88.60 94.22 82.53 91.53 98.07 95.29 88.80
FaSeNet (ours) 97.21 89.48 94.69 83.72 92.16 98.02 95.65 89.88

Table 2  5-fold cross-validation 
results comparison on 
CelebHair in % of our FaSeNet 
and other network architectures

Network F1face mF1 IoUface mIoU fwIoU PAface PA mPA

DFANet (Li et al. 2019) 95.89 85.55 92.24 77.40 87.46 97.52 92.85 87.13
HLNet (Feng et al. 2020) 96.20 86.17 92.79 78.37 88.29 97.66 93.28 87.41
ENet (Paszke et al. 2016) 96.29 85.70 92.96 77.70 87.92 96.43 92.96 88.42
Fast-SCNN (Poudel et al. 2019) 96.36 86.04 93.08 78.27 88.44 96.92 93.26 89.32
LEDNet (Wang et al. 2019) 96.38 87.14 93.13 79.60 88.85 97.92 93.63 89.34
BiSeNet (Yu et al. 2018) 97.02 88.16 94.28 80.98 90.07 97.87 94.40 90.20
FaSeNet (ours) 97.06 88.79 94.34 81.89 90.50 98.04 94.68 91.21
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the others are all below. In addition, a value of 89.48% is 
achieved for mF1, which is about 0.9% above BiSeNet (Yu 
et al. 2018) and the other networks perform significantly 
worse here with values below 87%. These observations are 
also reflected in the different IoU parameters. DFANet (Li 
et al. 2019) is clearly the worst performer, while Fast-SCNN 
(Poudel et al. 2019), ENet (Paszke et al. 2016), LEDNet 
(Wang et al. 2019), and HLNet (Feng et al. 2020) are on an 
equal level.

These findings are also confirmed by the results on Cel-
ebHair. DFANet (Li et al. 2019) performs worst across all 
metrics, while FaSeNet ranks best for each of them. BiSeNet 
(Yu et al. 2018) is again in second place with a difference 
of approximately 0.1−1.0% depending on the particular 
measure.

Overall, it is clear to see the dominance of our FaSeNet 
network over the others when considering the segmentation 
results for both only the face and all three classes. Incorrect 
pixel classifications occur mainly between the two classes 
hair and background, which becomes evident through the 
weaker results for the averaged metrics (mF1, mIoU and 
mPA) compared to those focusing on the face (F1face , IoUface 
and PAface ). False positive and false negative segmented pix-
els for the face class are primarily found at the edges of 
the face. Other error-prone cases are male beards, although 
a full beard is usually not a problem for FaSeNet. Correct 
classification is particularly difficult for less dense beards, 
where skin remains slightly visible through the structure of 
the beard.

4.2  Inference time comparison

Besides evaluating solely the segmentation performance, 
this was also considered in relation to the inference speed, 
since it is of special importance when using CNNs as ROI in 
rPPG algorithms that they must be able to capture the pulse-
synchronous color changes of the skin in real-time. For this 
purpose, the number of floating point operations (FLOPs) 
and the total number of model parameters (Params) are listed 
for all architectures in addition to the speed and some per-
formance measures in Table 3. The test environment was 
identical to the one used for training, running a NVIDIA 
RTX 2080 Ti along with the TensorFlow framework (see 
Sect. 2.3).

Fast-SCNN (Poudel et al. 2019) and HLNet (Feng et al. 
2020) have the fastest inference speeds with 33.42 fps, 
while FaSeNet with the best segmentation results is in the 
mid-table with 27.06 fps still ensuring real-time capability. 
DFANet (Li et al. 2019) has the fewest FLOPs, ENet (Paszke 
et al. 2016) the fewest Params. Nevertheless, it can be seen 
that the meaningfulness of FLOPS and Params in terms of 
inference efficiency is very limited, since these two networks 
are the ones with the lowest speed.

Looking at the final execution efficiency, it can be stated 
that FaSeNet ensures a good trade-off between speed and 
best segmentation. If higher frame rates above 30 fps are 
required, Fast-SCNN (Poudel et al. 2019) and HLNet (Feng 
et al. 2020) can represent good alternatives.

Table 3  Results comparison in 
terms of execution efficiency of 
our FaSeNet and other network 
architectures

Network Speed (fps) FLOPs (G) Params (M) F1face (%) mF1 (%)

LFW-PL CelebHair LFW-PL CelebHair

DFANet 21.80 0.08 0.43 95.43 95.89 84.31 85.55
ENet 23.20 0.94 0.37 96.17 96.29 85.89 85.70
LEDNet 23.85 3.28 2.30 96.41 96.38 86.92 87.14
FaSeNet 27.06 11.27 24.23 97.21 97.06 89.48 88.79
BiSeNet 28.48 2.70 26.38 96.95 97.02 88.60 88.16
Fast-SCNN 33.42 0.41 1.62 96.15 96.36 86.53 86.04
HLNet 33.42 0.94 1.23 96.43 96.20 86.93 86.17

Table 4  Results comparison 
on LFW-PL test set in % of our 
FaSeNet using different loss 
functions trained on LFW-PL 
trainval

Loss function F1face mF1 IoUface mIoU fwIoU PAface PA mPA

Dice 96.96 89.01 94.24 83.05 91.69 98.01 95.38 89.16
Jaccard 97.12 89.28 94.52 83.40 91.99 98.10 95.55 89.46
Cross-entropy 97.16 88.52 94.61 82.53 91.79 97.80 95.05 87.81
MCC 97.21 89.48 94.69 83.72 92.16 98.02 95.65 89.88
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4.3  Loss function comparison

Using the FaSeNet architecture, the application of different 
loss functions and their impact on the overall performance 
of the network was investigated. The results after training 
on the LFW-PL trainval set and testing on the LFW-PL test 
set can be found in Table 4. These were listed exemplarily, 
but are also consistent with other network architectures as 
well as on the CelebHair dataset. The standard loss functions 
Dice, Jaccard, and Cross-Entropy, which are certainly the 
most commonly used ones in the vast majority of papers in 
the field of CNN-based segmentation, were employed for 
comparison purposes.

The MCC (see Sect. 2.2) outperforms all other losses 
across all metrics except for PAface where Jaccard is bet-
ter by 0.08%. However, MCC is superior to Jaccard in the 
remaining scores by 0.1–0.4%. Jaccard is in turn superior 
to Dice in all metrics, while Cross-Entropy is only able to 
outperform Jaccard in F1face and IoUface , but does not reach 
the values of MCC. It is interesting to observe that the MCC 
loss even performs better on the metrics F1 and IoU than 
the respective version optimized exactly for this parameter 
(with Dice and Jaccard loss respectively). This is a striking 
illustration of how well the MCC is suited as a training loss 
and how powerful the inclusion of true negative samples into 
the metric is affecting the results.

Altogether, the great potential of the MCC as a loss func-
tion in multi-class segmentation becomes apparent. This is 
especially valid in case of datasets which are characterized 
by an imbalance in the occurrence probabilities of individual 
classes, as it is the case in our work.

4.4  Vital signs estimation performance

We have evaluated the ROI approaches in extensive experi-
ments with a variety of algorithms for vital signs estimation. 
See Sect. 3.3 for details about the ROI and vital signs estima-
tion approaches. A distinction was made between methods 
for measuring HR and RR. For each of the two modalities, 
experiments were conducted with two different databases 
to obtain generally valid results. Therefore, in addition to 
MAE and RMSE, the IEC Accuracies for the different ROI 
approaches have been calculated for each HR method, they 
can be found for PURE in Tables 5, 6 and 7 and for MMSE-
HR in Tables 8, 9 and 10. The same was done for the MAE, 
RMSE and DR results for RR estimation on BP4D+ and 
our own database, which are shown in Tables 11, 12 and 13 
and 14, 15 and 16 respectively. In addition, for each ROI the 
mean � and standard deviation � across all rPPG algorithms 
were computed and reported.

For PURE the findings are obvious: FaSeNet achieves the 
lowest MAE and RMSE as well as the highest IEC Accu-
racy over all algorithms, which reaches its MAE minimum 

with 2.82 bpm and DR maximum with 95.77% for Sanyal 
and Nundy (2018). For RMSE, Wang et al. (2017a) per-
formed best with 9.92 bpm compared to second best Sanyal 
and Nundy (2018) with 10.15 bpm. The mean values for 
the three metrics MAE, RMSE and IEC Accuracy are also 
significantly better than that of skin segmentation with a 
plus of approximately 1.4 bpm, 2.8 bpm and 4.2% respec-
tively. But skin segmentation still performs better than the 
other remaining ones. This dominance of FaSeNet can be 
explained by the significantly poorer lighting conditions in 
PURE, which cause difficulties for the skin segmentation, 
as it can be seen in Fig. 7f. Regarding the constantly high 
standard deviations, it should be noted that the algorithm of 
(Poh et al. 2011 struggles with this dataset regardless of the 
ROI, which however was not investigated in more detail.

On MMSE-HR, the algorithms of Rapczynski et  al. 
(2016) with normG, Wang et al. (2017a), and Sanyal and 
Nundy (2018) perform best for the IEC Accuracy, while the 
one of Feng et al. (2015) performs worst. But it is interest-
ing to observe that Poh et al. (2011) is the top performer for 
metric RMSE with 5.54 bpm and in second place for MAE 
with 3.16 bpm. This points to the importance of evaluating 
various error measures in order to be able to draw generally 
valid conclusions. In particular, Poh et al. (2011) appears 
to report smaller errors relative to the ground truth for cor-
rectly as well as incorrectly estimated windows, which is not 
taken into account by the IEC Accuracy. Thus, the method 
demonstrates a high degree of robustness. There are vari-
ations in the ROIs that have the highest IEC Accuracy for 
each method: FaSeNet is ahead three times, skin segmenta-
tion twice, and face crop and forehead once each. A similar 
behavior is observed for MAE and RMSE, but in this case 
the skin segmentation is ahead only once, the number of top 
positions for the others remains unchanged. Considering the 
mean IEC Accuracy, FaSeNet and skin segmentation are 
also in front with values above 88%, while the others do not 
even reach 86%. The same can be observed for MAE and 
RMSE, where only FaSeNet and skin segmentation are in 
the mean under 5 bpm and 11 bpm, respectively. FaSeNet is 
on average 0.14% better for the IEC Accuracy than skin seg-
mentation, but the individual results deviate more strongly 
from one another which is reflected in a 1.32% higher stand-
ard deviation. This is also consistent with the results of MAE 
and RMSE. The only exception is the standard deviation for 
RMSE, which is 0.16 bpm lower for FaSeNet than for skin 
segmentation. This suggests that more outliers occur when 
using skin segmentation. Overall, the results for MMSE-HR 
indicate that the ROIs FaSeNet, skin segmentation, and face 
crop are close to each other. We explain this effect by the fact 
that strong movements of the subjects occur in MMSE-HR, 
which leads to steady changes of the head pose. As a result, 
skin pixels disappear from the visible area of the image, 
while others reappear. ROIs that include a large number of 
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Table 7  HR estimation results comparison on the PURE dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as IEC Accuracy in %

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 17.69 41.92 20.77 29.62 15.77 37.31
Feng et al. (2015) aGRD 76.15 92.31 86.15 86.54 81.12 91.54
Wang et al. (2017a, b) RGB 88.46 92.31 86.92 86.15 84.73 91.15
Rapczynski et al. (2016) CHROM 73.46 79.62 71.54 78.08 73.41 67.31

normG 79.62 91.92 81.54 91.15 80.65 85.77
Sanyal and Nundy (2018) hue 91.92 95.77 95.00 94.62 91.88 95.38
� 71.22 82.31 73.65 77.69 71.26 78.08
� 27.17 20.55 27.02 24.20 27.84 22.31

Table 6  HR estimation results comparison on the PURE dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as RMSE in bpm

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 29.15 22.47 28.24 28.27 29.93 22.48
Feng et al. (2015) aGRD 13.41 10.37 12.58 18.77 13.09 10.65
Wang et al. (2017a, b) RGB 18.94 9.92 21.68 13.46 20.41 15.50
Rapczynski et al. (2016) CHROM 22.10 21.63 22.54 24.60 22.02 26.18

normG 19.97 16.15 18.25 18.12 20.56 20.86
Sanyal and Nundy (2018) hue 11.75 10.15 11.22 10.60 11.95 10.44
� 19.22 15.12 19.09 18.97 19.66 17.89
� 6.28 5.86 6.44 6.62 6.56 6.51

Table 5  HR estimation results comparison on the PURE dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as MAE in bpm

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 24.92 16.48 22.84 22.35 25.88 16.93
Feng et al. (2015) aGRD 6.21 3.58 5.05 6.51 6.36 3.67
Wang et al. (2017a, b) RGB 6.22 2.92 7.03 4.62 6.72 4.66
Rapczynski et al. (2016) CHROM 10.48 10.24 10.64 10.35 10.43 13.63

normG 8.86 4.79 7.62 5.12 8.69 7.47
Sanyal and Nundy (2018) hue 3.64 2.82 3.09 2.95 3.72 2.86
� 10.06 6.81 9.38 8.65 10.30 8.20
� 7.66 5.49 7.07 7.16 7.96 5.79
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Table 8  HR estimation results comparison on the MMSE-HR dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as MAE in bpm

Algorithm rPPG signal ROIs

Face crop Face by 
FaSeNet

FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 4.31 3.16 4.08 4.14 4.52 3.31
Feng et al. (2015) aGRD 8.20 9.11 9.80 12.90 12.67 8.44
Wang et al. (2017a, b) RGB 4.37 3.53 5.40 3.46 4.80 3.70
Rapczynski et al. (2016) CHROM 9.67 5.72 12.83 7.66 10.04 6.76

normG 2.81 2.89 3.42 4.69 4.38 2.59
Sanyal and Nundy (2018) hue 5.31 3.68 5.16 3.90 5.89 3.86
� 5.78 4.68 6.78 6.13 7.05 4.78
� 2.61 2.39 3.71 3.64 3.48 2.29

Table 9  HR estimation results comparison on the MMSE-HR dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as RMSE in bpm

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 7.95 5.54 7.33 8.41 8.81 6.59
Feng et al. (2015) aGRD 16.01 17.08 18.34 23.36 22.56 17.40
Wang et al. (2017a, b) RGB 10.58 8.34 13.01 7.66 11.97 8.60
Rapczynski et al. (2016) CHROM 19.83 14.26 22.64 17.23 20.66 15.44

normG 9.63 9.80 11.29 12.59 12.45 8.45
Sanyal and Nundy (2018) hue 12.02 9.03 11.79 9.43 12.72 9.14
� 12.67 10.68 14.07 13.11 14.86 10.94
� 4.44 4.22 5.50 6.13 5.45 4.38

Table 10  HR estimation results comparison on the MMSE-HR dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as IEC Accuracy in %

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 85.03 89.82 85.63 86.83 84.07 89.22
Feng et al. (2015) aGRD 76.05 75.45 72.46 69.46 70.14 79.64
Wang et al. (2017a, b) RGB 89.82 92.81 89.22 93.41 89.60 91.62
Rapczynski et al. (2016) CHROM 77.84 86.83 68.26 83.23 75.42 83.83

normG 94.61 94.51 92.81 88.62 89.77 94.61
Sanyal and Nundy (2018) hue 88.02 92.53 88.62 92.22 87.48 92.22
� 85.23 88.66 82.83 85.63 82.75 88.52
� 7.15 7.01 10.02 8.74 8.16 5.69
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Table 11  RR estimation results comparison on the BP4D+ dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as MAE in brpm

Algorithm rPPG signal ROIs

Face crop Face by 
FaSeNet

FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 5.41 4.86 5.45 5.04 5.62 5.27
Sanyal and Nundy (2018) hue 7.08 7.48 7.31 7.73 7.55 7.47
FuseMod CHROM 2.34 1.97 2.30 2.29 2.49 2.00

normG 2.41 2.16 2.59 2.68 2.73 2.20
FuseModV2 CHROM 2.26 1.94 2.25 2.32 2.30 1.99

normG 2.35 2.11 2.49 2.73 2.68 2.18
� 3.64 3.42 3.73 3.80 3.90 3.52
� 2.09 2.29 2.14 2.18 2.18 2.32

Table 12  RR estimation results comparison on the BP4D+ dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as RMSE in brpm

Algorithm rPPG signal ROIs

Face crop Face by 
FaSeNet

FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 6.87 6.42 6.94 6.52 6.95 6.88
Sanyal and Nundy (2018) hue 8.05 8.40 8.33 8.54 8.52 8.38
FuseMod CHROM 3.40 2.95 3.37 3.26 3.48 2.97

normG 3.58 3.09 3.64 3.75 3.81 3.12
FuseModV2 CHROM 3.31 2.90 3.25 3.29 3.27 2.91

normG 3.50 3.03 3.55 3.85 3.69 3.12
� 4.79 4.47 4.85 4.87 4.95 4.56
� 2.11 2.37 2.21 2.17 2.22 2.42

Table 13  RR estimation results comparison on the BP4D+ dataset for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as DR in %

Algorithm rPPG signal ROIs

face crop face by FaSeNet FaceMid forehead cheeks skin 
segmen-
tation

Poh et al. (2011) ICA 33.25 40.93 34.03 36.26 33.01 37.01
Sanyal and Nundy (2018) hue 16.75 14.39 15.74 10.47 12.75 14.58
FuseMod CHROM 66.98 72.02 67.36 65.23 64.83 71.78

normG 65.09 69.11 62.04 60.93 60.56 68.22
FuseModV2 CHROM 68.40 73.23 68.98 64.49 65.14 73.08

normG 66.51 69.45 63.19 59.25 60.74 68.60
� 52.83 56.52 51.89 49.44 49.51 55.55
� 22.20 23.93 21.85 21.89 21.68 24.18
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Table 14  RR estimation results comparison on our own database for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as MAE in brpm

Algorithm rPPG signal ROIs

face crop face by FaSeNet FaceMid forehead cheeks skin 
segmen-
tation

Poh et al. (2011) ICA 3.90 2.73 3.78 3.42 3.94 2.81
Sanyal and Nundy (2018) hue 2.07 1.65 1.92 2.49 2.50 1.81
FuseMod CHROM 1.42 0.83 1.18 1.66 1.71 0.86

normG 1.65 1.05 1.88 1.97 2.00 1.06
FuseModV2 CHROM 1.40 0.75 1.18 1.64 1.67 0.79

normG 1.55 0.79 1.68 1.97 1.99 0.80
� 2.00 1.30 1.94 2.19 2.30 1.36
� 0.96 0.78 0.96 0.68 0.86 0.81

Table 15  RR estimation results comparison on our own database for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as RMSE in brpm

Algorithm rPPG signal ROIs

face crop face by FaSeNet FaceMid forehead cheeks skin 
segmen-
tation

Poh et al. (2011) ICA 5.50 4.42 5.30 5.08 5.41 4.46
Sanyal and Nundy (2018) hue 3.50 2.95 3.36 3.89 3.48 3.20
FuseMod CHROM 3.05 2.10 2.64 3.28 3.30 2.20

normG 3.26 2.46 3.48 3.69 3.78 2.49
FuseModV2 CHROM 2.88 2.08 2.50 3.13 3.22 2.10

normG 3.01 2.31 3.10 3.55 3.67 2.31
� 3.53 2.72 3.40 3.77 3.81 2.79
� 0.99 0.89 1.01 0.70 0.81 0.91

Table 16  RR estimation results comparison on our own database for several algorithms with our FaSeNet (trained on LFW-PL trainval and 
Celeb-Hair) and other state-of-the-art ROIs as DR in %

Algorithm rPPG signal ROIs

Face crop Face by FaSeNet FaceMid Forehead Cheeks Skin 
segmen-
tation

Poh et al. (2011) ICA 48.05 62.40 47.11 53.08 46.13 59.25
Sanyal and Nundy (2018) hue 74.10 80.19 76.91 68.41 67.99 78.63
FuseMod CHROM 82.37 89.86 84.40 76.45 75.37 87.68

normG 77.07 85.02 72.54 74.02 72.81 84.87
FuseModV2 CHROM 82.22 90.87 83.78 77.20 76.24 90.09

normG 78.32 90.11 75.20 72.71 75.55 90.09
� 73.69 83.08 73.32 70.31 69.02 81.77
� 12.95 10.92 13.68 9.00 11.61 11.83
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pixels can compensate for these effects better than smaller 
ones during averaging the rPPG signal.

The BP4D+ dataset is a very challenging database for 
RR estimation, as it is characterized by strong movements 
of the subjects because they had to complete certain tasks 
while being recorded. This difficulty particularly affects 
the method of Sanyal and Nundy (2018) which is not capa-
ble of compensating for these strong interferences at all. 
Its highest MAE, RMSE and DR is achieved for the face 
crop at just 7.08 brpm, 8.05 brpm and 16.75%, respectively. 
But this is the only algorithm that does not perform best 
together with FaSeNet. For the others, the familiar trend 
recurs with the skin segmentation ranking slightly behind. 
The best MAE, RMSE and DR is shown for FuseModV2 
(Fiedler et al. 2021) with CHROM using FaSeNet at 1.94 
brpm, 2.90 brpm and 73.23%, while skin segmentation is 
0.05 brpm, 0.01 brpm and 0.15% worse, respectively. Look-
ing at the DR mean values, FaSeNet is at the top by 56.52% 
with a difference of about 1% compared to skin segmenta-
tion. The other ROIs are clearly behind with face crop next 
with 52.83%. This is also in accordance with the results for 
MAE and RMSE.

Also for our own database, FaSeNet proves its dominance 
and performs best for each RR estimation method and all 
three metrics. Skin segmentation again follows in second 
place. FuseModV2 (Fiedler et al. 2021) is again at the top 
with DRs of 90.87% for CHROM and 90.11% for normG. 
MAE and RMSE are 0.75 brpm and 2.08 brpm for CHROM 
and 0.79 brpm and 2.31 brpm for normG, respectively. It is 
noticeable that for RMSE, FuseMod (Fiedler et al. 2020) 
with CHROM outperforms FuseModV2 (Fiedler et al. 2021) 
with normG by scoring a value of 2.10 brpm. But for the 
other two metrics, this is not the case. The skin segmentation 
in combination with FuseModV2 (Fiedler et al. 2021) also 
reaches DRs above 90% and is only closely behind FaSeNet. 
For the RMSE measure and the rPPG signal normG, 
FuseModV2 (Fiedler et al. 2021) even yields the exact same 
value of 2.31 brpm for both FaSeNet and skin segmenta-
tion. All other ROIs are clearly beaten and achieve a maxi-
mum of slightly more than 73% on average for DR. This is 
around 10% behind FaSeNet and around 8% behind skin 
segmentation. Furthermore, their MAE and RMSE scores 
exceed 1.90 brpm and 3.00 brpm, respectively, while they 
are approximately 1.30 brpm and 2.70 brpm for FaSeNet and 
skin segmentation. The gap between the two top perform-
ers face by FaSeNet and skin segmentation can possibly be 
explained by the fact that there was a slight shadow cast 
into the subjects’ faces, causing the skin segmentation not 
to classify some facial pixels correctly (see Fig. 8f). This 
illustrates the benefit of CNN-based segmentation, which 
incorporates semantic information and is resistant to illu-
mination variations.

All in all, it can be stated that classification models 
including the whole facial area (face by FaSeNet and skin 
segmentation) perform significantly better as ROI than 
static geometric regions of the face (FaceMid, forehead 
and cheeks). This was clearly shown over all three metrics 
for both HR and RR estimation as well as across all four 
employed databases. Our developed FaSeNet and the skin 
segmentation deliver the rPPG signals with the best photo-
plethysmographic information. In particular, in scenarios 
with suboptimal ambient illumination, CNN-based face 
segmentation can demonstrate its benefits. In video record-
ings with good and constant illumination, both achieve a 
similar level of performance for the vital signs estimation, 
but still with slight advantages for FaSeNet. Thus, it was 
finally demonstrated that the proposed FaSeNet is highly 
effective for segmenting faces and subsequently generating 
rPPG signals out of these frames. Hence, a ROI was cre-
ated that is superior to other approaches in camera-based 
vital signs estimation.

Our FaSeNet represents a contribution to the current 
state of the art, although it is not capable of solving all 
presently existing problems in the field of vital signs esti-
mation. The main challenge that still remains are head 
movements of subjects. Such movements cause skin pix-
els to disappear from the visible area of the image while 
others reappear, leading to artifacts in the rPPG signal. 
This in turn results in higher errors for the estimated vital 
signs. Therefore, the compensation of these motion arti-
facts is of immense importance for the further progress of 
the research in this area. Possible approaches for future 
work could be to integrate the head pose information into 
the rPPG signal generation process in order to learn how 
to compensate for it. For this purpose, the temporal head 
pose changes may be analyzed in a downstream network, 
which is supposed to use this knowledge for suppressing 
the motion artifacts in the rPPG signal.

5  Conclusion

Our newly proposed FaSeNet achieves better results in face 
segmentation than other commonly used architectures from 
the state of the art. This finding could be proven on the two 
datasets LFW-PL and CelebHair. In addition, it achieves 
a fast inference speed in real-time resulting in an overall 
high execution efficiency with respect to the segmentation 
performance. The newly applied loss function based on the 
MCC was able to provide a better fitting of the CNN weights 
for the face segmentation task than the loss functions Dice, 
Jaccard, and Cross-Entropy, which are commonly used 
in the field of multi-class segmentation. In particular, the 
MCC is well suited as a loss function for datasets that are 
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characterized by an imbalanced class distribution through 
its inclusion of true negative samples into the metric. In an 
extensive evaluation with a variety of algorithms for vital 
signs estimation, it was proven that by utilizing our FaSeNet 
as ROI better results could be achieved for both HR and RR 
estimation compared to static facial regions or a lookup table 
based skin segmentation as ROI. This enabled to overcome 
the limitations of those ROI approaches in the presence of 
partial occlusions by interfering pixels, caused e.g. by hair 
or headgear, in case of skin tone variations, as well as chang-
ing, too weak or too strong ambient illumination scenarios 
by employing CNN-based segmentation. For future work, it 
may be attempted to incorporate head pose information into 
the ROI processing to compensate for motion artifacts. In 
conclusion, by applying our FaSeNet, a new ROI superior 
to previous approaches was created for vital signs estimation 
from video images.
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