
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:7795–7811
https://doi.org/10.1007/s12652-023-04592-y

ORIGINAL RESEARCH

Reputation based proof of cooperation: an efficient and scalable
consensus algorithm for supply chain applications

Aaliya Sarfaraz1 · Ripon K. Chakrabortty1 · Daryl L. Essam1

Received: 17 April 2022 / Accepted: 16 March 2023 / Published online: 15 April 2023
© The Author(s) 2023

Abstract
The growing interest in blockchain technology has gained a lot of attention in Supply Chain Management (SCM) and
sparked the quest for decentralized, scalable, efficient and trustworthy consensus schemes. Traditional blockchains rely on
computationally expensive consensus mechanisms with low throughput and high latency. This paper conducts a performance
evaluation of several existing consensus protocols to illustrate blockchain’s shortcomings in terms of consensus and propose
a new consensus algorithm: Reputation based proof of cooperation (RPoC). The RPoC algorithm uses a layered architecture
to segment the nodes that participate in the consensus phase in order to improve scalability and efficiency while maintaining
trust among peers. The layered design addresses the issues of flexibility and scalability and breaks down the extensive mining
process into segments. Rather than choosing a few nodes for mining, the proposed consensus process involves all network
nodes, making it more efficient, decentralized and scalable. Through extensive theoretical analysis and experimentation, the
suitability of the proposed algorithm is established in terms of scalability and efficiency.

Keywords  Blockchain · Supply chain · Consensus algorithm · Efficiency · Decentralization

1  Introduction

Blockchain has gained a lot of attention in the Supply Chain
Management (SCM) domain recently, mostly due to the
emergence of digitization and growth of the industry 4.0
context across industries. The emergence of Bitcoin Naka-
moto and Bitcoin (2008) has further fueled this recognition.
Over time, blockchain technology has evolved to meet a vari-
ety of applications, resulting in three types of blockchains.

•	 Public blockchains: Anyone can join and participate in
the blockchain network. Examples include Bitcoin Naka-
moto and Bitcoin (2008) and Ethereum.

•	 Private blockchains: Only selected transactions from
authorized participants are allowed on a private block-

chain, and the administrator has the authority to overrule,
alter or delete any entries.

•	 Consortium blockchains: Instead of being governed by
a single organization, the platform is governed by sev-
eral organizations. An example is Hyperledger Fabric
Androulaki et al. (2018).

Although cryptocurrencies have been the most well-known
use of blockchain technology, several researchers have also
identified the usage of blockchain and cryptocurrencies
in different supply chain applications Longo et al. (2019)
Sarfaraz et al. (2021b) Saberi et al. (2019). Private block-
chains are ideal for supply chains Biswas et al. (2017) due
to the nature of how private blockchains work. The pro-
posed framework is based on a private blockchain solution.
However, integrating blockchain technology into traditional
SCM is a significant challenge, particularly with the absence
of tailored consensus algorithms to tackle or embed within
supply chain problems Xu et al. (2021).

The blockchain architecture validates information through
a consensus mechanism among network nodes, removing the
need for intermediaries. The consensus mechanism ensures
a tamper-proof environment and ensures that the informa-
tion stored is reliable and valid Mingxiao et al. (2017). In

 *	 Aaliya Sarfaraz
	 a.sarfaraz@student.unsw.edu.au

	 Ripon K. Chakrabortty
	 r.chakrabortty@adfa.edu.au

	 Daryl L. Essam
	 d.essam@adfa.edu.au

1	 School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT​, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-023-04592-y&domain=pdf

7796	 A. Sarfaraz et al.

1 3

a blockchain, all nodes must agree on the current state of
the ledger, making it difficult for adversaries to insert tam-
pered blocks. Many challenges continue to affect blockchain
technology, including insufficient transactions per second
(TPS), transaction latency and decentralization Zheng et al.
(2018). The throughput of existing blockchains is relatively
low due to the complex consensus process; for instance, in
a public blockchain with the proof-of-work (PoW) consen-
sus algorithm, all nodes must perform hash calculations and
are only allowed to broadcast their blocks after spending a
great deal of energy for their computation Bach et al. (2018).
Consequently, high consensus latency, low throughput and
high energy consumption make it difficult to use existing
algorithms in complex or large supply chain systems.

Considering all those shortcomings in existing consensus
algorithms, a proper and customized consensus algorithm
should be designed for typical SCM problems, particularly
to resolve the TPS, latency and centralization issues. Most
current consensus algorithm research focuses on improving
mainstream consensus algorithms, even though only a few
are relevant to SCM, which are highlighted in the literature
review section. While the dynamic SC sector has enormous
development potential, it is challenged by several other
SCM issues. The Bullwhip Effect (BWE) Lee et al. (2004)
is one of them and has been discussed in the literature in
recent years. BWE occurs by order oscillations at each SC
stage. Blockchain can mitigate BWE by providing real-time
information and coordination among stakeholders. Shar-
ing appropriate demand data throughout an SC is crucial
because it may help the upstream echelons with resource and
material scheduling. Furthermore, inventory requirements
might be directly linked to inconsistencies between demand
over time and actual demand fulfillment. In this research, we
offset the traditional SCM phenomenon of BWE with BC
by providing total visibility and exchanging demand data
across all stakeholders. This would keep business transac-
tions tamper-proof and available to stakeholders without
the need for a centralized control body, as long as business
practices and negotiated data processing contracts between
firms were followed.

To address the aforementioned challenges, we first choose
a few existing proofs-based (PoW, DPOS) and voting-based
(PoI, PoC, Ripple, BPFT) consensus algorithms to test
their performance in our proposed blockchain-based SCM
framework. Based on the performance of those existing
consensus algorithms, the second layer of this work pro-
poses a reputation-based consensus mechanism by redesign-
ing some existing approaches while complementing their
strengths and eliminating some of their weaknesses. We
name this proposed approach the reputation-based Proof-
of-Coordination (RPoC) consensus mechanism. It reaches
consensus by coordinating between two layers of nodes. The
first layer consists of high authority nodes chosen based on

a combination of their reputation score and verified identity.
In contrast, the second layer comprises subordinate nodes
selected using a random selection algorithm and grouped
in clusters with a master node for each. By the performance
evaluation (see section 5), each of the six existing consen-
sus algorithms decreases blockchain efficiency by limiting
blockchain throughput and increasing transaction latency.
Whereas RPoC is made up of layers, each with its own set
of nodes operating in parallel, thus increasing efficiency,
decreasing latency and eliminating the centralization issue.

1.1 � Problem motivation

While having numerous benefits, traditional blockchains are
not immediately relevant in SCM. This is because they oper-
ate in a dynamic and unpredictable environment that cre-
ates millions of transactions per second Serdarasan (2013),
whereas traditional blockchains have low throughput.

In a blockchain, all nodes must agree on the current state
of the ledger, making it difficult for adversaries to insert
tampered blocks. The consensus algorithm is the most sig-
nificant component of a blockchain system as its efficiency
significantly influences each blockchain’s overall efficiency
Mingxiao et al. (2017). Based on the diverse deployment
types of blockchains, existing blockchain consensus algo-
rithms may be divided into two categories: Proof-of-X
(PoX) and Byzantine Fault Tolerant (BFT) consensus algo-
rithms. PoX consensus algorithms, such as PoW and PoS,
are appropriate for public blockchains with low efficiency
and high processing power requirements. BFT consensus
algorithms Yin et al. (2019); Kotla et al. (2010) necessitate
significant communication resources and therefore have lim-
ited scalability. A further significant disadvantage is that
the PBFT consensus algorithm’s performance decreases
drastically as the number of nodes in a network grows Yu
et al. (2020). Furthermore, the entire consensus process is
disrupted if the principal node fails. To overcome these chal-
lenges, an additional in-depth research is required. On the
other hand, private blockchains are highly centralized and
have fast processing speeds, making them ideal for adop-
tion in SCM. Nevertheless, the consensus algorithms sug-
gested in the literature are mostly intended for public crypto
blockchains and so cannot be deployed for private networks,
particularly SCM. In SCM, businesses can construct permis-
sioned chains among themselves, and depending on their
degree of decentralization and context, they often prefer to
compromise the degree of decentralization and use algo-
rithms with higher operating speeds and scalability. Honey-
BadgerBFT Miller et al. (2016) has a greater cryptographic
overhead than PBFT. Ripple Schwartz et al. (2014) requires
more than 80% of nodes for transaction verification, result-
ing in low throughput and high latency. With the growing
adoption of blockchain in the SCM domain, a number of

7797Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

consensus algorithms have been developed to solve these
issues. For example, Zhang et al. (2021), however, its short-
coming is that it compromises system decentralization by
treating nodes differently depending on their trust scores.

To solve these problems, we propose a new scalable,
decentralized consensus algorithm, known as RPoC, for
permissioned blockchains that meets both performance and
security requirements to boost blockchain adaption in SCM.
We utilize a sharding technique and design a two-layer con-
sensus protocol, where nodes are assigned to distinct con-
sensus layers. Expanding the consensus groups allows both
TPS and scalability to be linearly boosted while keeping the
system decentralized.

1.2 � Contributions

This paper provides a blockchain-enabled SCM framework
to provide visibility and coordination along with blockchain
consensus processes. We propose a two-layer consensus
algorithm that combines a reputation and random selection
algorithm appropriate for SCM. The Preprint publications
of this study can be found at Sarfaraz et al. (2021a). The
following are the paper’s key contributions:

i	 An information-sharing framework is implemented
based on a permissioned blockchain for a complex SC
scenario. The use of BC technology in SCM is consid-
ered in terms of mitigating BWE.

ii	 A reputation-based consensus algorithm has been pro-
posed by combining the advantages of existing algo-
rithms, and throughput, scalability and latency were
verified and validated for the improved algorithm.

iii	 The proposed algorithm is compared to the existing con-
sensus algorithms and significantly improves TPS and
scalability for SCM applications.

The rest of this article is laid out as follows. Section 2 offers
a comprehensive literature review, and section 3 introduces
the RPoC consensus algorithm. Section 4 presents the com-
putational results and discussion along with different per-
formance comparisons. In section 5, the security analysis is
presented and the conclusion is in section 6.

2 � Related work

Consensus algorithms are critical for improving and auto-
mating business and vendor customer logistics between vari-
ous stakeholders in SCM. They do this by accelerating the
delivery of manufactured products while also reducing costs.

According to the literature, most consensus algorithms
are created specifically for cryptocurrency Bach et al.
(2018). However, the trend is shifting and SCM is embracing

blockchain for various reasons, including traceability, effi-
ciency, security and trust. Following POW, one of the earli-
est consensus algorithms is Bitcoin-NG Eyal et al. (2016),
a blockchain system based on the same trust paradigm as
Bitcoin, but that improves latency and bandwidth over it.
Delegated Proof of Stake (DPoS) Yang et al. (2019); Kang
et al. (2019) is an improved and optimized version of Proof
of Stake (PoS); however, there is a chance that delegated
clients will be fraudulent, and there is no way to punish mali-
cious nodes in the system. Practical Byzantine Fault Toler-
ance (PBFT) Li et al. (2020) is a scalable multi-layer con-
sensus mechanism. It has been presented with hierarchically
arranged nodes at different levels and restricted communi-
cation. However, ensuring data consistency among nodes
requires significant communication resources. The PBFT
algorithm is fast at processing transaction requests, but the
overhead of communication limits its scalability Zamani
et al. (2018). Following that, a great deal of work was done
in improving BFT Guo et al. (2020); Crain et al. (2021).
Another Byzantine-based consensus mechanism is Hon-
eyBadgerBFT Miller et al. (2016), the first asynchronous
BFT consensus system created specifically for a blockchain.
However, it leads to a significant increase in communication
complexity, and some financial scenarios are vulnerable to
latency and scalability, demanding more in-depth analysis
to resolve such situations. Moreover, HoneyBadgerBFT has
a larger cryptographic overhead than PBFT. Hyperledger
Fabric Androulaki et al. (2018), and Zilliqa Barrett (2017)
are two projects presently employing PBFT. Yin et al.
(2019) introduced HotStuff, which uses a three-phase com-
mit mechanism to allow the protocol to establish agreement
at the speed of actual network latency. Nevertheless, such
techniques are difficult to scale up and suffer from trust dif-
ficulties created by botnets Dai et al. (2018).

Proof of Importance (PoI) Bozic et al. (2016) is an
advanced consensus mechanism that eliminates the disad-
vantage of the wealthy being even wealthier. Each node’s
‘importance scale’ decides which nodes are qualified to add
a block to its blockchain. However, the concern with this
is that nodes would accumulate as many coins as possible
to reap the benefits of block formation. This behavior con-
centrates capital and reduces transaction activity. In Proof-
of-Capacity (PoC) Zheng et al. (2018), a miner’s storage is
prioritized over hashing power. The aim of this mechanism
is to reduce the amount of computing energy used. Instead
of computing the hash in every block, PoC allows the list
of potential solutions to be stored even before a block is
mined. PoC is scalable, efficient and cost-effective, however,
with the rise of cloud providers and large corporations, the
mining process is becoming increasingly centralized and
monopolized Sankar et al. (2017). Proof of Trust (PoT) Zou
et al. (2018) calculates a node’s trust based only on the total
number of transactions it has completed, the number of

7798	 A. Sarfaraz et al.

1 3

times it has participated in validation processes and the num-
ber of times it has received complaints from other nodes dur-
ing those operations. Giving service coins to reward honest
behavior and assigning a low trust value to dishonest activity
are among its incentive and penalty mechanisms. However,
such rewards and punishments are often excessively biased.
Additionally, the procedure of PoT consensus algorithms is
similar to that of classical techniques, besides the selection
of trustworthy nodes. Work has been done to improve PoT
Zhang et al. (2021) by classifying nodes as accounting, vali-
dating or propagating based on their trust values. However,
because nodes are treated differently based on their trust
scores, the system cannot lead to total decentralization.

Integrating a reputation system with blockchain has
received much attention in the last few years and is still
being investigated. A reputation mechanism is primar-
ily used to facilitate delegated consensus, which reduces
message complexity and resource usage by reducing the
number of consensus participants Do et al. (2019). Gai
et al. (2018) presented Proof-of-Reputation, a reputation-
based consensus method for permissioned blockchain that
relies only on reputation incentives and trustworthy reg-
istries for quick bootstrapping. Yu et al. (2019) calculated
users’ reputations based on their behavior and developed
a reputation based consensus algorithm to reduce PoW
computation costs. RepuCoin, the suggested algorithm,
is still classified as PoW, which means it has all of the
same shortcomings as PoW, such as power inefficiency,
probabilistic consensus and low throughput Bou Abdo
et al. (2021). Zhuang et al. (2019) proposed a reputation-
based consensus mechanism that may be used in any set-
ting, e.g. public or private network. Because it is a hybrid
reputation/leader-based consensus algorithm, it is prone
to all of the flaws of leader-based consensus algorithms,
such as access fairness and denial of service attacks. A

permissionless hybrid reputation/proof-of-reputation-X
consensus mechanism was proposed by Bou Abdo et al.
(2021). This approach substitutes the trusted identity
database in proof-of-reputation-X with a new admission
process to make it compatible with permissionless block-
chain. However, the algorithm is centralized as a third
party handles user registration.

Table 1 summarizes our discussion of the state-of-the-
art consensus algorithm in the blockchain. Nevertheless,
existing algorithms rely on resource-based or voting-based
mechanisms, which increase communication costs by requir-
ing several interactions. Moreover, some reputation-based
algorithms achieve security and scalability while reducing
fault tolerance or being semi-centralized. Even though our
terminology is based on a reputation mechanism, we have
significant distinctions. Accordingly, we present a consen-
sus mechanism that preserves peer trust. Instead of picking
a few nodes for mining, we propose that all network nodes
participate and cooperate in the consensus mechanism, mak-
ing it scalable, efficient and decentralized. Second, a high
reputation score is not only a metric for consensus nodes; in
order to be chosen for mining, they must put their identity
at stake. Moreover, our proposed system relies on signature
verification to minimize communication overhead rather
than relying on a voting mechanism to verify new blocks.

3 � System model and consensus scheme

This section demonstrates how we employ our Reputation-
based Proof-of-coordination approach to build a supply
chain architecture that minimizes the bullwhip effect. In
addition, the selection of consensus nodes and the block
confirmation mechanism in our RPoC are detailed.

Table 1   Comparison of state-of-the-art consensus algorithms in Blockchain

Article identifier Mechanism Use-case Applicable block-
chain type

Platform Security Scalability Fault tolerance

Eyal et al. (2016) Resource-based BC network Permissionless Bitcoin core Y N Y
Yang et al. (2019) Voting based BC network Permissionless Java Y Y N
Li et al. (2020) Voting based IoT devices in BC Permissioned MATLAB Y Y Y
Zhang et al. (2021) Trust based BC network Consortium Block-

chain
Ganache Ethereum Y Y Y

Gai et al. (2018) Reputation-based BC network Permissioned Python Y Y N
Yu et al. (2019) Hybrid reputation/

resource-based
BC network Permissionless BFT-SMaRt Y N Y

Zhuang et al. (2019) Hybrid reputation/
leader-based

BC network Permissionless/per-
missioned

Not specified Y N Not specified

Bou Abdo et al.
(2021)

Hybrid reputation/
proof-of-reputa-
tion-X

BC network Permissionless Not specified Y Y N

7799Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

3.1 � Blockchain based SCM framework

This section describes two models: network and threat
models. The first is a blockchain-based information-shar-
ing framework for a complex Supply Chain (SC) scenario
that minimizes BWE and the second is a threat model that
includes assumptions about the number and behavior of
adversaries. The proposed system architecture is depicted
in Fig. 1, where any stakeholder who wishes to join the
network must first register with a Certificate Authority
(CA) while using their original identity. After verification,
the CA generates a certificate for each stakeholder. Since
a CA is registered in BC, all of its operations are open
to the public. A minimal trust score will be assigned to
stakeholders joining the network for the first time (with-
out a prior reputation score). Upon receiving their certifi-
cates, each stakeholder can start conducting transactions
on BC. The detailed BC-coordinated SCM framework can
be found in Sarfaraz et al. (2023).

In the proposed model, manufacturing and non-man-
ufacturing stakeholders are part of a multi-tier supply
network. In addition to vertical information sharing and
cooperation, this method requires horizontal communica-
tion between stakeholders on the same SC tier. Suppliers
and producers who use BC will collaborate by exchanging
demand data and stock levels. The collaboration can be
done through a permissioned BC, so only those members
of the SC have access. It is easy to measure the effect
of demand data because all supply chain layers share the
same demand data and inventory policy. The system model
and assumptions are given below:

3.1.1 � Assumptions

The following assumptions are provided in the SC model.

•	 The retailer tracks the demand of the end consumer and
places orders at the top tier (e.g., distributor or manufac-
turer) using the (Q, R) inventory policy.

•	 Any number demanded by the retailer can be generated
indefinitely by the producer.

•	 Out-of-stock orders are not lost at any point; instead, they
become backlogs that will be executed as soon as the
inventory is replenished.

•	 The actual demand cannot be predicted ahead of time.
•	 Orders might be positive or negative, and cancellations

are permitted.

The credentials are obtained from a CA, consisting of a set
of public and private keys and a digital signature. If a situ-
ation occurs, a CA has access to individuals’ identities and
may disclose the true identities of the stakeholders and their
relationships. The following is an overview of our block-
chain-coordinated SCM framework.

i	 Stakeholders will be assigned a minimum reputation
score after receiving keys and joining the network.

ii	 When an order arrives at the retailer, the stock inventory
is initialized. The demand quantity is reported in the
blockchain to calculate the demand deviation. The sup-
plier then determines whether the demand quantity can
be met based on the current inventory level. If the inven-
tory is greater than or equal to the demand quantity, the
demand quantity is then removed from the inventory.
Alternatively, if demand exceeds supply, the order will

Fig. 1   Blockchain based SCM architecture

7800	 A. Sarfaraz et al.

1 3

be sent to the upper echelon (e.g., distribution centre or
manufacturer).

iii	 When the relative inventory amount is less than or equal
to the reorder point (ROP), an order is placed at the
next higher echelon. Request ID and order quantity
are among the details sent to the next higher echelon.
The next upper echelon sends back information on
this order’s lead time and information about the order,
including order ID, date of release, lead time and order
quantity, which are also documented on the BC.

iv	 An order is shipped when the delivery date arrives. The
upper echelon would also receive information about the
order ID and actual delivery date. The stock amount is
adjusted, and the order is removed from the order receipt
list.

v	 The replenishment quantity is added to the existing
inventory as the lower echelon receives order delivery
information from the next upper layer. If the estimated
lead time differs from the order lead time, the estimated
lead time is then updated.

vi	 The bullwhip effect (BWE) ratio is calculated by the
difference between the order placed and the demand
received and recorded on the blockchain.

vii	 After every order is received/shipped; inventory analysis
is conducted to see if the relative amount of inventory is
less than or equal to ROP.

viii	All of the above steps are repeated when any stakehold-
ers receive a demand quantity from their lower echelon.

This paper proposes a new consensus method, known as
RPoC, for improving the throughput and scalability of a
blockchain-based SCM architecture. A blockchain’s con-
sensus algorithm is at its core and significantly influences
its security and efficiency. The essential features required
for SCM applications are scalability, security and efficiency.
RPoC utilizes a two-layer design that allows for quick con-
sensus and scalability. By distributing the mining operations
to all participating nodes, layering decreases the workload
on individual nodes and increases consensus performance.

3.2 � Network model

We assume the network is partially synchronous, which
is the same assumption as Bitcoin Nakamoto and Bitcoin
(2008). A distributed peer-to-peer network of authorized
nodes communicates via the network and maintains a shared
state update. The connectivity between the honest nodes is
well established, and the transmission time � between them
is well-defined and minimal. Once a user broadcasts a mes-
sage, the rest of the honest nodes will receive the message
within the specified delay Δ . Byzantine faults are also con-
sidered, as some network nodes may not be honest. The
total number of nodes in the network is denoted by n, while

the number of faulty nodes is denoted by f. We limit the
adversary’s control to a maximum of f faulty nodes where
�� + 1 ≤ � . Xiao et al. (2019) Xiao et al. (2020) provide
detailed proofs for interested readers.

3.3 � Security properties

In order to prove the security of the consensus algorithm,
we must prove the safety and liveness of the algorithm. To
begin with, RPoC is completely safe. Forks cannot occur as
long as the number of Byzantine nodes is limited to f, even
if no assumptions about network synchrony are made (i.e.,
there will not be a situation in which different nodes com-
mit different blocks in the same round). The second point
is that RPoC is live. RPoC achieves (eventual) liveness in a
partially synchronous network, which means that new blocks
are (eventually) added to the blockchain in a finite amount
of time.

Given a blockchain network with a set of validators
� = {�

�
⋯�

�
} , we define as pending transaction Tx ∈ � and

a pending block � ∈ Ω subject to these properties are valid:

Integrity (safety): If a Tx is confirmed to the blockchain,
it has already been published by a legitimate �

�
 and Tx

is only committed to the blockchain once, so there is no
duplication.
Finality (safety): If a valid � has been appended to the
blockchain at time � , it becomes definitive, and transac-
tions within it cannot be reversed.
Validity (safety): If a valid � commits a transaction Tx in
a block � , then Tx is committed, in the same block � , by
every valid �.
Termination (liveness): For every transaction Tx , if a valid
�
�
 commits Tx then all valid � eventually commit Tx.

3.3.1 � Safety

Even with a slow and unstable communication network,
RPoC is designed to offer safety. Once a block has been
published to the blockchain by an honest node � , no other
honest nodes � will ever append a different block for that
round. The security of RPoC is dependent on the security of
its underlying PoR protocol Gai et al. (2018).

Claim 1 (RPoC is safe): Assume that the nodes running
RPoC are � = {�

�
⋯�

�
} . We take note of Rt , node {�} ’s

reputation score, which gives it decision-making authority.
Let � and �

�
 be blocks appended to blockchain by honest

nodes I, j ∈ [n − 1] , respectively, in round k. Then � = �
�

in this case.
Proof: RPoC guarantees consensus safety If:

1.	 the adversary controls no more than f validators

7801Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

2.	 or the validators compromised by the attacker have a
total reputation score of Rt .

Therefore, an attacker cannot violate the safety requirement
unless one of the conditions is not true.

3.3.2 � Liveness

Liveness is a key feature of a decentralized system that
ensures that the algorithm runs correctly in time and that
valid and honest transactions are eventually complete. Even
if a conflict sometimes occurs, a liveness-favoring network
will continue to run.

Claim 2 (RPoC is live): RPoC continues to proceed
among n nodes, implying that regardless of the inner state
of the nodes, some honest node will publish a new block to
the blockchain within a finite time

Proof: We guarantee that all honest nodes’ Tx will appear
in some rounds and that all honest peers in the network will
accept them. Assume that �

�
 has a high reputation and pub-

lishes � to the network, one of two things can happen: � will
either be or not be, received by peer nodes.

1.	 � has been received: because of the asynchronous envi-
ronment, liveness is achieved for the �

�
 node.

2.	 There has been no notification of � : This occurs when
�
�
 is malicious or shut down during the transmission.

3.4 � Encryption mechanism

Public key cryptography, such as elliptic curve cryptogra-
phy, uses a public and a private key for each user. The math-
ematical operations of ECC are dispersed over an elliptic
curve. A private key is a random number, whereas a public
key is a point on the curve. By multiplying the private key in
the curve by a generator point G, the public key is created.
G is the starting point, also referred to as the generating
point. The two parties that want to communicate information
must first agree on using a curve and its parameters, such as
the coefficients of a and b and the base point G to be used,
before beginning the ECC process. The elliptic curve equa-
tion can be written as

where 4a3 + 27b2 ≠ 0.
Elliptic curve encryption algorithms are preferred

because they demand fewer processing resources and use
smaller key sizes. ECC has a reduced growth rate and time
complexity of (O√X) . It also has a higher resilience to

(1)�(t) =

∑�V�
i=1

R(ΔT)

3

(2)Y2 = X3 + AX + B

attack, reduced CPU and content utilization, lower network
consumption and faster encryption Sarfaraz et al. (2021b).

3.5 � Threat model

The threat model describes the system’s resilience to Byzan-
tine behavior. There are two sorts of adversaries in a block-
chain system developed for SCM applications. It could be
external: participants may attempt to join the network or
mimic an existing authorized entity. Or internal: malware
or hacking can cause nodes that are correctly registered
and have valid signatures to go renegade. In either case,
an attacker’s goal would be to get an invalid transaction
approved and broadcast to the ledger Hassan et al. (2019).
Any attempt to prevent a legitimate transaction or block from
being recorded in a blockchain is known as a blockchain
attack. We assumed that our protocol is used in permissioned
blockchains, where participants can communicate in a secure
environment, but that the reputation-based protocol is itself
vulnerable to exploitation Gai et al. (2018). We use current
public key infrastructure for key management and as a state-
of-the-art secure encryption technique. A variety of threats
can target the blockchain network, we consider the following
attacks in our system:

Attack 1: The adversary attempts two simultaneous
transactions with two different nodes in the network.

Attack 2: An attacker repeatedly engages in byzantine
behavior.

Attack 3: An attacker creates numerous identities, offer-
ing network redundancy while lowering system security.

Attack 4: An attacker tries to destabilize the services of a
targeted node by sending a large number of fake transactions
and thence make it unavailable.

Attack 5: An attacker tries to control the network nodes
to influence the consensus mechanism.

Attack 6: A malicious node pretends to be a legitimate
node. It attacks the system only once its reputation score
reaches a high threshold.

We assume the attacker is computationally limited, pre-
venting it from exploiting cryptographic protocols. Fur-
thermore, our proposed system does not consider terminal
attacks or key hijacking.

3.6 � Design of the proposed RPoC algorithm

The DPOS method is not decentralized, as the authority
continues to be concentrated in the hands of a small group
of users. For scalability, DPoS foregoes decentralization.
Therefore, executing an attack is easier because fewer indi-
viduals are in charge of maintaining the network. Like-
wise, Ripple, PoC and PoI have decentralization issues.
Therefore, they are not viable choices for SCM. On the
other hand, the PBFT algorithm’s consensus model only

7802	 A. Sarfaraz et al.

1 3

works efficiently when the number of nodes in the distrib-
uted network is limited. PBFT does not scale efficiently
because of its high communication cost that grows expo-
nentially with each extra node in the network. The PoC
protocol, from the proof-based consensus category, can
be an adequate alternative for SCM because it does not
require any resources or coins to invest. However, malware
may have the ability to disrupt mining operations.

The algorithm has been designed considering the above
evaluation. The acronyms and abbreviations used in this
work are listed in Tables 2 and 3, respectively.

The proposed blockchain consensus algorithm has two
steps, from the creation of a block to its confirmation:
consensus node selection and transaction confirmation
(block confirmation). A rigorous identity verification pro-
cess must be completed before a node may join the net-
work. If a node wishes to be a Vala , it must confirm its true
identity and agree to share it with the rest of the network.
Second, the system generates the node’s reputation value
using a reputation algorithm and then analyses the node’s
credibility. Third, nodes that choose not to stake their real
identification are pushed to the pool of Vals.

As a result of the fair node selection method, the block
addition procedure is optimized, and blocks can be added
to the blockchain instantaneously after verification. Fig-
ure 2 depicts the algorithm’s overall structure. There are
two layers of Ni : Vala and Vals . To generate blocks, Ni are
operating in parallel. Vals is in charge of generating micro
blocks and sending them to Vala . These small blocks will
be received by Vala , who will verify them before combin-
ing them into a single block. The algorithm’s fundamen-
tal feature is the ability to accurately and efficiently pick
consensus nodes to work in parallel. Consensus nodes are
chosen randomly from many nodes based on their reputa-
tion score, their willingness to stake their identity and the
random selection algorithm that selects a subset of nodes
for each cluster at random.

3.6.1 � Consensus node selection

A Blockchain network is characterized as a peer-to-peer
network made up of Ni . In this algorithm, we are classi-
fying validators into two layers: Vala and Vals . In order to
determine node allocation into each layer, the layering setup
requires the use of different methods. Therefore, to establish
a consensus node selection mechanism, the algorithm com-
bines a random number-generating approach with the node’s
reputation score system.

Table 2   Frequently used notations

Notion Meaning

Ni Participating nodes in blockchain
Vala Higher authority validators
Vals Subordinate validators
fi Faulty nodes
Tnx Transaction generated by Ni
Hatn total number of nodes in higher authority layer
Satn total number of nodes in subordinate layer
Atk Malicious nodes

Table 3   Frequently used abbreviations

Abbreviation Definition

BC Blockchain
SCM Supply chain management
CA Certification authority
BWE Bullwhip effect
TPS Transactions per second
PoW Proof of work
PoA Proof-of-authority
RPoC Reputation-based proof-of cooperation
DPoS Delegated proof of stake
PBFT Practical byzantine fault tolerance
PoI Proof of importance
PoC Proof-of-capacity
PoT Proof of trust
PBFT Practical byzantine fault tolerance
ECC Elliptic curve cryptography

Fig. 2   Layer structure of the proposed mechanism

7803Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

3.6.2 � Transactions broadcasting

The stakeholder who provides a particular service during
a transaction is known as the provider, whereas the stake-
holder who assesses the service is known as the rater. During
the transmission, the provider sends the requested service,
which is signed using the provider’s private key. The rater
checks the data’s integrity and prepares a transaction with
the reputation score, which is broadcast to the rest of the net-
work using digital signatures. The reputation score, denoted
by R, can take values in the range Rj

i
∈ (0, 1) . For example,

a manufacturer rates 1 to a supplier if it is satisfied with the
service and 0 if it is not. In RPoC Vala are chosen not only on
the basis of their reputation (adopted from Gai et al. (2018))
but also based on their proven identity. When a stakeholder
joins the network for the very first time, it has no previous
reputation score. So, an initial reputation score Repmin is
assigned to the stakeholder, which is the minimal reputa-
tion score to continue operating in the network. H ∈ (0, 1)
represents the stakeholder’s honesty, which is set to "1" for
each new joiner and to "0" if a stakeholder has misbehaved.
When a stakeholder is selected as a validator, it is considered
to be misbehaving if it sends conflicting signed messages
to other consensus group members or commits mini blocks
with conflicting transactions. The stakeholder’s aggregate
reputation R(ΔT) at time ΔT is calculated by combining the
stakeholder’s current and past reputation score.

(3)R(ΔT) =

t=i∑

t=0

RepVAL(T)

where RepVAL(t0) is the initial reputation score of the stake-
holder and RepVAL(ti) is the current reputation score of the
stakeholder, happening at ΔT . The stakeholder’s reputation
can be calculated regularly, with the time determined by the
system’s administration. A stakeholder must stay in the sys-
tem long enough and conduct themselves honestly to build
a high reputation score.

We must classify nodes to perform different roles accord-
ing to their reputation score. The node selection procedure is
shown in Algorithm 1. The execution flow of Algorithm 1 is
to select the nodes with the highest reputation scores (lines
2–8) for the higher authority layer. Along with reputation,
we also use the value of identities in our algorithm, which
implies that Vala stake their real identities rather than any
other resources. For Vala , we will consider a small number of
validators, so we can make a scalable system. The Hatn layer
contains Ni with higher reputation scores and verified iden-
tity. The remaining nodes are grouped into clusters using
a separate random selection procedure (lines 9–14). Each
sub-layer cluster has a master node, which is chosen based
on its reputation score. The master node oversees validating
transactions and forwards them in a small block. In the case
that the primary validator goes down or becomes unrespon-
sive, the cluster’s next highest reputation score node serves
as a replacement. It is important to remember those node
roles are not fixed. A higher authority node’s status changes
as its reputation score change after its tenure. Consider a
higher authority layer node, and it may become a validating
or propagating node if its reputation score drops. A validat-
ing or propagating node may also become a higher authority
node if its reputation score rises.

Algorithm 1 Algorithm of Selecting Consensus Nodes

1: procedure ConsNodeSELT(NodesN,AuthSTD)
2: AuthNodeLst(len(n)) ← 0
3: ClusLst(len(n)) ← 0
4: MasterNodesLst(len(n)) ← 0
5: for all i, n ∈ N do
6: AuthState ← AuthProcess(n)
7: if (AuthState = T ∧ getRepScr(n) > Repmin) then
8: AuthNodesLst(i) ← n
9: else

10: ClusLst(i) = Random(n /∈ AuthNodeLst)
11: end if
12: end for
13: for all i, nC ∈ ClusterLst do
14: MasterNodesLst(i) = Random(nC)
15: end for
16: end procedure

7804	 A. Sarfaraz et al.

1 3

3.6.3 � Block confirmation

The steps for block confirmation are as follows:

•	 A node initiates a transaction ( Tnx, Sigc, Ts ), where Tnx is
transaction, Sigc is the client’s signature and Ts indicates
the timestamp.

•	 The cluster nodes receives and verifies Sigc and Ts . If the
verification is successful, the transaction ( Tnx, Sigc, Ts ) cls
is forwarded to the master node in the cluster, where cls is
the signature of the cluster node.

•	 The transaction must be verified by the master node. It
verifies that the cluster node’s signature is correct and
that the transaction has not been registered in the block-
chain. As soon as the verification is completed, the trans-
action is signed ( Tnx, Sigc, Ts ) cls , m , where m is the master
node signature.

•	 After signing, the transaction is pushed to the waiting
pool. When there are a specific number of transactions
in the pool, the master node packs each of them into
a small block ( SmallblockTX ) m and broadcasts it to the
same layer.

•	 After receiving (SmallblockTX)m , other cluster nodes
verify the transactions included in the block. Upon
successful verification, the master node receives
CONSENT , (SmallblockTX)SL.

•	 The master node can send ( CONSENT , SmallblockTX
,SigSL)m to the higher authority consensus group. Where
SigSL is all the signatures from subordinate nodes.

•	 There may still be some Tnx left in the pool after packing
a small block; these Tnx will be verified first in the new
round of consensus.

•	 After receiving a small block from Vals , the nodes in the
authority layer must validate the signatures and transac-
tions of the small block.

•	 Once its verified, the higher authority nodes send an
acknowledgment ( ACKaccepted, SmallblockTX auth to the
subordinate nodes. In some cases, if verification fails,
rejection ( ACKrejected, SmallblockTX auth is sent back to
subordinates.

•	 The small blocks are put in chronological order after the
verification is successful. A large block will be packaged
and added to the blockchain after receiving a minimum
of 10 small blocks.

Algorithm 2 presents the module for reaching a consensus
on the verification of a block. Ni in our system are equally
responsible for confirming Tnx throughout the entire block-
chain and work for hand in hand to boost system throughput.
By distributing the transaction verification process to every
node in the network, our approach enhances consensus per-
formance while lowering the workload on miners.

Algorithm 2 Algorithm of Reaching a Consensus

1: procedure ReachCons(MasterNodesML,AuthNodeAN)
2: SmallLst(len(SL)) ← 0
3: AuthSmallLst(len(SL)) ← 0
4: BlockChain ← 0
5: Block ← 0
6: for all i,m ∈ SL do
7: SmallLst(i) ← generateSmallBlock(m)
8: AuthSmallLst(i) ← SmallLst(i)
9: if thenAuthState ← AuthProces(AuthSmallLst)

10: AuthNodeLst(i) ← m
11: Block ← AuthState
12: BlockChain ← Block
13: end if
14: end for
15: end procedure

7805Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

4 � Simulation and result analysis

4.1 � Simulation design

The development of the proposed framework and all the
results were obtained using Python 3.9 on a Windows 10
computer with an Intel Core i7 processor running at 2.21
GHz and 16 GB of memory in Visual Studio Code. Tradi-
tional PoW, DPoS, Ripple, PBFT and PoI consensus algo-
rithms were also simulated and their experimental results are
compared with the RPoC algorithm in order to justify the
experimental results. There are several options available that
can be taken into consideration for implementing private and
permissioned blockchains. Since high performance is a key
need for our use case, we employ an x86–64 CPU system.
Although it is technically possible to mimic the network
using an i3 processor and 4GB of RAM, some components
can be slower, but the ratio of benefits remains the same for
our approach.

4.2 � Result analysis

This section compares the experimental results of PoW,
DPoS, Ripple, PBFT, PoI and RPoC consensus algorithms.
The provided results are an average of 10 simulation runs.
Throughput efficiency, latency and scalability are the three
primary elements that we use to evaluate the performance
of the RPoC consensus algorithm.

1.	 Throughput: Throughput efficiency is expressed by TPS
(Transactions Per Second), which can be measured by
calculating how many transactions are completed w.r.t.
time. It is used to measure how much processing a
blockchain network is doing and how much scalability
it has.

2.	 Latency: This measure is used to calculate the time it
takes for a transaction to go from being sent to the net-
work to being written to the ledger. This metric is calcu-
lated by comparing the time transactions take from when
they were submitted to the time they were validated and
stored using their timestamps.

3.	 Scalability: This metric evaluates the algorithm’s capac-
ity to continue to perform properly when its size or vol-

Fig. 3   Average Throughput with a varying number of transactions

Fig. 4   Average Throughput of PoI, DPOS and RPoC with varying
number of transactions

Fig. 5   Impact of the different number of transactions on latency

Fig. 6   Comparison of average latency among PoI, DPOS and RPoC

7806	 A. Sarfaraz et al.

1 3

ume is modified. The re-scaling is usually to a bigger
size or volume.

4.2.1 � Throughput

For measuring a system’s efficiency, throughput is an
important performance indicator. Starting with the initial
transaction deployment time, throughput is defined as the
number of executed transactions per second, where the
average throughput is the total throughput divided by the
execution time. In this set of experiments, the TPS value
of all algorithms was obtained and compared. The graph of
the average throughput of consensus algorithms for various
numbers of transactions is shown in Fig. 3. As the number
of Tnx grows from 1 to 100, the average throughput of all
algorithms grows. PoI, DPOS and the RPoC algorithms have
the highest throughput under 100 Tnx , whereas PoW, PoC,
PBFT and Ripple had the lowest. The average throughput
of all algorithms drops after 1000 Tnx as the number of Tnx
grows. Figure 4 presents a chart of the average throughput
for DPOS, PoI and RPoC with varying numbers of Tnx . As
the number of Tnx grows, RPoC’s average throughput always
exceeds that of DPOS and PoI. The PoI algorithm’s TPS
ranged between 6500 and 7000, while the DPOS algorithm’s

fluctuated between 3000 and 5000 and the RPoC algorithm’s
oscillated between 10400 and 95000.

4.2.2 � Latency

Latency is a key metric for assessing a network’s perfor-
mance and determining an algorithm’s delays between
nodes. A system with minimal latency is advantageous
since it can return transaction processing results more
quickly. For instance, the block processing time frame for
the PoW algorithm is around 10 min, which means that a
transaction is successfully written to the blockchain after
an average waiting period of 5 min Laurence (2019).

In this test, we investigate the average latency perfor-
mance of all consensus algorithms with the same amount
of Tnx s, ranging from 10 to 10000. When dealing with a
limited number of Tnx , all algorithms have low latency.
For instance, while there are 100 Tnx in the system, all
algorithms have a low transaction processing latency,
but as the number of Tnx grows, the latency increases, as
shown in Fig. 5. In comparison to all other algorithms,
PoW’s average latency dramatically increased after 100
Tnx . PoW’s average latency when dealing with 10,000 Tnx
is 1307.56 s, which is 900 times higher than RPoC. The
RPoC algorithm offers a more consistent transaction pro-
cessing latency that does not vary significantly as the num-
ber of Tnx grows. We compared the PoI, DOPS and RPoC
algorithms in Fig. 6 to gain a clearer understanding. DPOS
has a lower latency of 1.7 s at 1000 Tnx , compared to 1.5 s
at the same Tnx for RPoC. In terms of latency performance,
the DPOS and RPoC algorithms are competitive. In con-
clusion, the PoW and RPoC algorithms have significant
latencies, whereas the DPOS and RPoC algorithms have
shorter latencies.

4.2.3 � Scalability

Scalability allows a system to respond dynamically depend-
ing on the latest settings. The scalability of a distributed sys-
tem is determined by how the consensus mechanism allows
for flexible joining and removal of nodes. The impact of
increasing or decreasing the number of nodes during the
operation of the consensus algorithm was investigated in the
scalability test. Each system’s TPS and transaction latency
was investigated with various numbers of nodes. This analy-
sis was applied to the PoI, DPOS and RPoC algorithms.
Figure 7 shows the transaction processing performance of
the system under varying numbers of nodes. It is obvious
from the plot that the performance of the DPOS and PoI
algorithms degrades with higher numbers of nodes. When
there are 50, and 100 nodes in the system, the TPS values of
the DPOS algorithm are around 4500 and 3500, respectively.
PoI has a little better performance than DPOS. However,

Fig. 7   Average throughput with the varying number of nodes

Fig. 8   Average latency with varying number of nodes among PoI,
DPoS and RPoC

7807Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

with 50 and 100 nodes, our proposed algorithm outperforms
8500 and 6900 TPS, respectively.

Figure 8 compares the average latency of the DPOS, PoI
and RPoC algorithms with the same number of nodes. It is
apparent that as the number of nodes increases, the average
latency of each algorithm rapidly increases. The average
latency for all three algorithms is identical for a set of 10
nodes. But as the number of nodes grows, the latency starts
to increase for both the DOPS and PoI algorithms. On the
other hand, when the number of nodes is increased from 50
to 100, the average latency of PoI and DPOS increases about
2 times faster than that of RPoC. In this set of experiments,
PoI, DPOS and the proposed algorithm all perform reasona-
bly well. The performance of the consensus algorithms is not
greatly affected by the growth in the number of nodes. The
DPOS algorithm was found to have low scalability, but the
other two algorithms have relatively high scalability. In some
cases, PoI and DPoS performance is close to RPoC. It should
be noted that the PoI and DPoS protocols are lottery-based
Consensus algorithms to encourage coin circulation. The
two algorithms could be a perfect match for cryptocurrency
use cases, where it is crucial to maintain coin circulation,

instead of keeping them in a hoarded state. However, in the
use case of the supply chain, trust in the network is highly
desired.

4.3 � Model validation

In the previous section, we compared our RPoC algorithm to
the conventional consensus algorithm; however, to evaluate
against proof of reputation consensus algorithms, we chose
to test and validate the proposed RPoC against the Proof-
of-X-Repute (PoXR) algorithm Wang et al. (2020). PoXR
proposes a consensus mechanism that relies on the reputa-
tion of a system’s nodes to lessen the difficulty of reaching
PoX consensus in a public chain. In terms of how they work,
the proposed RPoC and PoXR are polar opposites. RPoC
is purely based on reputation scores, whereas POXR, like
PoW, uses a mainstream protocol with a reputation layer. In
PoXR, the likelihood of receiving the next honest block rises
with an increase in reputation, making the process iterative.
Furthermore, PoXR has issues with privacy preservation as
each user protects their identity, which allows them to avoid
being punished for malicious behavior.

In order to provide validation for the RPoC algorithm and
an unbiased comparison, both algorithms are evaluated in
the same setting (public network). We compared both mod-
els in terms of throughput and security. We compare the
average throughput performance of both consensus algo-
rithms with the same number of Tnx s, ranging from 10 to
10000. Figure 9 shows the throughput performance com-
parison. Note that, unlike PoXR, RPoC does not require
resources to mine a block.

Table 4 summarizes the important conclusions from the
comparison of PoXR and the proposed RPoC in terms of
attack resistance. In conclusion, our method works satisfac-
torily in terms of security and outperforms PoXR consider-
ably in terms of throughput efficiency.

5 � Security analysis

In this section, we investigate the security of RPoC against
the variety of malicious attacks described in section 3.5. We
assume that state-of-the-art secure encryption mechanisms are
in place and that Atk will not be able to crack them. Below, we
look at different types of threats:

5.1 � Safety and liveness

To demonstrate the consensus algorithm’s BFT characteristic,
we should first prove the algorithm’s safety and liveness. In
RPoC, attackers cannot use their mining power to break the
system; instead, they must develop a reputation and thereby
contribute to the blockchain.

Fig. 9   Average latency comparison between PoXR and RPoC algo-
rithms

Table 4   Attack resilience

Attacks POXR RPoC

Liveness ✓ ✓

Selfish mining attack ✓ ✓

Denial of services attack ✓ ✓

Double spending attack ✓ ✓

Sybil attack ✓ ✓

51% attack ✓ ✓

7808	 A. Sarfaraz et al.

1 3

An attacker could never be among the top reputed miners in
a network where there are trustworthy miners Vala . For exam-
ple, if the number of trustworthy miners is great enough, they
all have a reputation score. However, an outside attacker who
does not have a reputation score can never become a member
of the consensus group. Therefore, the system’s safety and
liveness are always assured.

5.1.1 � Double spending attack:

When Atk tries to do a second Tnx with the same data that
was already confirmed on the network, this is known as
a double-spend attack. It assumes that Atk uses a double
spending attack to transfer the same resource to two nodes
in the network.

Defense: In RPoC, storing new blocks does not require
solving a challenge or expending resources, it is predicted
that a large number of validators will work in parallel.
Since RPoC has two consensus layers, the network’s large
participating nodes will eventually recognize the double
spending attack. Secondly, the blockchain’s distributed
nature itself prevents double spending attacks. Because
all Tnx are broadcast, validators will eventually receive
blocks containing the double spend Tnx and will be able
to detect them during block verification. In this situation,
Atk is removed from the validators list and node details are
sent to CA, preventing them from rejoining the network.

5.1.2 � Attacks in consensus groups

Assume those malicious nodes present across both layers
that control the block generation and validation processes.

Defense: When the number of Atk in a cluster is less
than 1/3, this consensus cluster has no effect on the gen-
eration of correct blocks. When the proportion of Atk in a
subordinate cluster approaches 2/3, the Atk have the abil-
ity to package a fabricated mini-block. In this case, the
higher authority nodes will create the correct large block,
and then the fabricated mini-block will be recognized and
excluded from large blocks, and the subordinate cluster
will be eliminated from the cycle after a certain amount of
time. Consider that the ratio of Atk in the higher authority
layer, which is responsible for appending blocks to the
blockchain, is greater than 1/3. No matter how many fake
mini-blocks are received, our proposed consensus protocol
will only include correct mini-blocks. This is supported
by the fact that our protocol takes reputation into account
when selecting block validators and creating blocks.

In addition to increasing liveness, RPoC is designed in
such a way that it guarantees fairness by default, owing to
its randomized validator selection process. Furthermore,
RPoC distinguishes between safety, which is based on the

reputation scores of the validators and liveness, which is
determined by the framework.

5.1.3 � Sybil attack:

Sybil Attack is a sort of threat in which a Atk in the net-
work deliberately operates several identities to compro-
mise the legitimacy of reputation systems.

Defense: As previously stated, RPoC is a two-layer
consensus mechanism in which Ni work together with a
CA. Every node that wishes to join the network requires a
unique id issued by the CA. Furthermore, Vala are required
to provide documents in order to identify themselves, and
their true identities are visible to the entire network and are
at stake; if they engage in any malicious conduct and are
exposed, they will be unable to rejoin the network and will
lose their reputation in the business community. As a result,
RPoC defends against this attack. Furthermore, let’s assume
that Atk has the ability to generate several accounts. How-
ever, each time the Atk starts a new account, it will be given

Fig. 10   Block creation with 20% Malicious nodes

Fig. 11   Block creation with 45% Malicious nodes

7809Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

a low default reputation score. With a lower reputation score
per account, the Atk becomes non-competitive.

5.1.4 � Denial‑of‑service attacks:

In order to disrupt the operations of a targeted network node
and make it unavailable, Atk sends a high number of Tnx to
block it.

Defense: It is feasible to protect against this attack using
the RPoC mechanism: As block generation rights can only
be assigned to nodes that can withstand DoS attacks since
network nodes are pre-authenticated. In the case of when
a validator is offline for an extended period of time, it can
be removed from the validating node list. RPoC safeguards
against this attack while also taking advantage of the block-
chain’s distributed nature.

5.1.5 � Under 51% attack

The 51% attack demands that Atk gains control of 51% of
nodes in the network.

Defense: Getting control of the nodes in a permissioned
blockchain network is far more challenging than controlling
nodes in a public blockchain network. In a permissioned
setting, the adversary cannot control the majority of nodes.
Hence the honest majority assumption holds.

To further evaluate our algorithm and analyze the
behavior of existing protocols, we ran a set of experiments
with a proportion of malicious nodes in the network. For
the experiments, we have two scenarios: one with 20%
malicious nodes and the other with 45% malicious nodes in
the network. We did not take 51% proportion into account
due to the fact that, in a permissioned ledger, malicious
nodes can not control the majority of nodes, as described
above. Figures 10 and 11 depict the presence of malicious
nodes in the network. Existing consensus protocols focus
on computational capacity, simple selection algorithms
or voting for selecting a validator node without taking
reputation into account. Therefore, if a malicious node is
chosen as a validator, it will generate a block, solve the
cryptographic puzzle and broadcast the block for valida-
tion to others. Other nodes will validate the hash values
and keys of the produced block and validate the blocks,
disregarding the block creator’s reliability. These find-
ings demonstrate that as the number of malicious nodes
increases, all existing algorithms’ resiliency declines. On
the other hand, the results show that no matter how many
malicious nodes are present in the network, the proposed
RPoC will only publish valid blocks to the ledger. This
occurs because RPoC takes reputation into account when
selecting validators for both layers. Along with that, the
generation of blocks in our protocol does not rely solely on
a single validator. Consider the scenario where a malicious

node gains a high reputation score by remaining honest for
a long time and so is then able to become a master node
in a subordinate layer. Further, assume that that node then
generated incorrect/fake mini blocks; our higher authority
layer’ validators would then not allow that mini block to
be included in the ledger.

Fault tolerance The capability of a design to resist the
failure of one of its nodes is a part of what is referred to as
fault tolerance. Since validators are in charge of storing new
blocks, their failure might compromise an algorithm’s fault
tolerance. Multiple validators work together in our approach
to append blocks at the higher authority node layer, increas-
ing the process’s fault tolerance. These validators are cho-
sen at random based on their reputation scores and willing-
ness to put their identities at stake, and they change over
time to maintain the system’s fairness. For the subordinate
node layer, if any master node in a cluster fails, the algo-
rithm chooses a high-reputation node in the same cluster to
immediately resume the verification process, as mentioned
in Sect. 3.6.1. As a result, a master node’s failure has little
influence on the transactions in that consensus cluster. This
consistency, in terms of safety and liveness across the layers,
leads to network reliability.

6 � Conclusion

With the right consensus algorithm, blockchain technol-
ogy can assist stakeholders in managing an SCM more
effectively. Scalability, low latency, high throughput and
decentralization are desirable characteristics of a success-
ful consensus algorithm and directly impact a blockchain’s
performance. However, many existing blockchain consen-
sus protocols are incompatible with SCMs. In this paper, a
new consensus algorithm, namely Reputation based proof
of cooperation (RPoC), is proposed for blockchain-based
SCM that does not involve validators to solve any math-
ematical puzzle before storing a new block. The RPoC algo-
rithm is an efficient and scalable consensus algorithm that
dynamically selects the consensus node and permits many
nodes to participate in the consensus process. The algorithm
decreases the workload on individual nodes while increas-
ing consensus performance by distributing the transaction
verification process to every node. Furthermore, this paper
highlights some current blockchain consensus algorithms
and compares them to the proposed algorithm. Rigorous
experiments against those existing consensus algorithms
show the efficacy of the RPoC consensus algorithm in terms
of TPS, latency and scalability.

However, the proposed methodology has the following
limitations: According to the well-known "blockchain scal-
ability trilemma," it is impossible to create consensus algo-
rithms that simultaneously accomplish security, scalability

7810	 A. Sarfaraz et al.

1 3

and decentralization. Due to the fact that we treat nodes
differently based on their trust values, we cannot ensure
complete decentralization. Our proposed framework also
lacks detailed access control and identity management
components, which are necessary to implement a practical
reputation-based system effectively.

To sum up, we want to highlight that the content of this
paper is not just limited to the RPoC incentive mechanism.
In terms of economics, incentive design is a component that
builds on the value proposition of a platform and constructs
the system for which a platform’s tokens will be built. In the
future, we intend to work on the economics of blockchain-
based SCM, to add a credit incentive mechanism to consen-
sus nodes.

Funding  Open Access funding enabled and organized by CAUL and
its Member Institutions.

Declarations 

 Compliance with ethical standards:  Mentioned authors have no con-
flict of interest in this article. This article does not contain any studies
with human participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger
fabric: a distributed operating system for permissioned block-
chains. In Proceedings of the thirteenth EuroSys conference, pages
1–15, 2018

Leo Maxim Bach, Branko Mihaljevic, and Mario Zagar. Compara-
tive analysis of blockchain consensus algorithms. In 2018 41st
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages
1545–1550. IEEE, 2018

P Barrett. Zilliqa technical whitepaper, 2017
Kamanashis Biswas, Vallipuram Muthukkumarasamy, and Wee Lum

Tan. Blockchain based wine supply chain traceability system. In
Future Technologies Conference (FTC) 2017, pages 56–62. The
Science and Information Organization, 2017

Bou Abdo J, el Sibai R, Demerjian J, Jacques Bou Abdo (2021) Per-
missionless proof-of-reputation-x: a hybrid reputation-based

consensus algorithm for permissionless blockchains. Trans Emerg
Telecommun Technol 32:e4148

Nikola Bozic, Guy Pujolle, and Stefano Secci. A tutorial on blockchain
and applications to secure network control-planes. In 2016 3rd
Smart Cloud Networks & Systems (SCNS), pages 1–8. IEEE, 2016

Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: a
secure, fair and scalable open blockchain. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 466–483. IEEE, 2021

Qianyi Dai, Kaiyong Xv, Song Guo, Leyu Dai, and Zhicheng Zhou. A
private data protection scheme based on blockchain under pipeline
model. In 2018 1st IEEE International Conference on Hot Infor-
mation-Centric Networking (HotICN), pages 37–45. IEEE, 2018

Thuat Do, Thao Nguyen, and Hung Pham. Delegated proof of reputa-
tion: A novel blockchain consensus. In Proceedings of the 2019
International Electronics Communication Conference, pages
90–98, 2019

Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert
Van Renesse. Bitcoin-ng: A scalable blockchain protocol. In 13th
{USENIX} symposium on networked systems design and imple-
mentation ( {NSDI} 16), pages 45–59, 2016

Fangyu Gai, Baosheng Wang, Wenping Deng, and Wei Peng. Proof of
reputation: A reputation-based consensus protocol for peer-to-peer
network. In International Conference on Database Systems for
Advanced Applications, pages 666–681. Springer, 2018

Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo: Faster asynchronous bft protocols. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 803–818, 2020

Hassan Muneeb Ul, Rehmani Mubashir Husain, Chen Jinjun (2019)
Privacy preservation in blockchain based iot systems: Integration
issues, prospects, challenges, and future research directions. Futur
Gener Comput Syst 97:512–529

Kang Jiawen, Xiong Zehui, Niyato Dusit, Ye Dongdong, Kim Dong
In, Zhao Jun (2019) Toward secure blockchain-enabled internet of
vehicles: optimizing consensus management using reputation and
contract theory. IEEE Trans Vehicular Technol 68(3):2906–2920

Kotla Ramakrishna, Alvisi Lorenzo, Dahlin Mike, Clement Allen,
Wong Edmund (2010) Zyzzyva: Speculative byzantine fault
tolerance. ACM Transactions on Computer Systems (TOCS)
27(4):1–39

Tiana Laurence. Introduction to Blockchain Technology: The many
faces of blockchain technology in the 21st century. Van Haren,
2019

Hau L Lee, Vineet Padmanabhan, and Seungjin Whang. Comments on
information distortion in a supply chain: The bullwhip. Manage-
ment science, 50(12_supplement): 1887–1893, 2004

Li Wenyu, Feng Chenglin, Zhang Lei, Hao Xu, Cao Bin, Imran
Muhammad Ali (2020) A scalable multi-layer pbft consen-
sus for blockchain. IEEE Transa Parallel Distributed Sys
32(5):1146–1160

Longo Francesco, Nicoletti Letizia, Padovano Antonio, d’Atri Gian-
franco, Forte Marco (2019) Blockchain-enabled supply chain: an
experimental study. Comput Ind Eng 136:57–69

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
pages 31–42, 2016

Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen
Qijun. A review on consensus algorithm of blockchain. In 2017
IEEE international conference on systems, man, and cybernetics
(SMC), pages 2567–2572. IEEE, 2017

Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash sys-
tem. Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 4, 2008

Saberi Sara, Kouhizadeh Mahtab, Sarkis Joseph, Shen Lejia (2019)
Blockchain technology and its relationships to sustainable supply
chain management. Int J Product Res 57(7):2117–2135

http://creativecommons.org/licenses/by/4.0/

7811Reputation based proof of cooperation: an efficient and scalable consensus algorithm for…

1 3

Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. Survey of
consensus protocols on blockchain applications. In 2017 4th Inter-
national Conference on Advanced Computing and Communication
Systems (ICACCS), pages 1–5. IEEE, 2017

Aaliya Sarfaraz, Ripon Chakrabortty, and Daryl L Essam. Rpoc: An
efficient and scalable consensus algorithm for scm applications,
2021a. URL https://​doi.​org/​10.​36227/​techr​xiv.​16601​546.​v1

Sarfaraz Aaliya, Chakrabortty Ripon K, Essam Daryl L (2021) A tree
structure-based improved blockchain framework for a secure
online bidding system. Comput Secur 102:102147

Sarfaraz A, Chakrabortty RK, Essam DL (2023) The implications
of blockchain-coordinated information sharing within a supply
chain: a simulation study. Blockchain Res Appl 4(1):100110.
https://​doi.​org/​10.​1016/j.​bcra.​2022.​100110

Schwartz David, Youngs Noah, Britto Arthur et al (2014) The rip-
ple protocol consensus algorithm. Ripple Labs Inc White Paper
5(8):151

Serdarasan Seyda (2013) A review of supply chain complexity drivers.
Computers & Industrial Engineering 66(3):533–540

Wang Eric Ke, Sun RuiPei, Chen Chien-Ming, Liang Zuodong, Kumari
Saru, Khan Muhammad Khurram (2020) Proof of x-repute
blockchain consensus protocol for iot systems. Comput Secur
95:101871

Xiao Yang, Zhang Ning, Li Jin, Lou Wenjing, Thomas Hou Y (2019)
Distributed consensus protocols and algorithms. Blockchain Dis-
tributed Syst Secur 25:40

Xiao Yang, Zhang Ning, Lou Wenjing, Thomas Hou Y (2020) A survey
of distributed consensus protocols for blockchain networks. IEEE
Commun Surv Tutor 22(2):1432–1465

Xiaolong Xu, Zhu Dawei, Yang Xiaoxian, Wang Shuo, Qi Lianyong,
Dou Wanchun (2021) Concurrent practical byzantine fault toler-
ance for integration of blockchain and supply chain. ACM Trans
Internet Technol (TOIT) 21(1):1–17

Yang Fan, Zhou Wei, QingQing Wu, Long Rui, Xiong Neal N, Zhou
Meiqi (2019) Delegated proof of stake with downgrade: a secure
and efficient blockchain consensus algorithm with downgrade
mechanism. IEEE Access 7:118541–118555

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and respon-
siveness. In Proceedings of the 2019 ACM Symposium on Princi-
ples of Distributed Computing, pages 347–356, 2019

Ge Yu, Bin Wu, and Xinxin Niu. Improved blockchain consensus
mechanism based on pbft algorithm. In 2020 2nd International
Conference on Advances in Computer Technology, Information
Science and Communications (CTISC), pages 14–21. IEEE, 2020

Jiangshan Yu, Kozhaya David, Decouchant Jeremie, Esteves-Verissimo
Paulo (2019) Repucoin: Your reputation is your power. IEEE
Trans Comput 68(8):1225–1237

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-
chain: Scaling blockchain via full sharding. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 931–948, 2018

Peiyun Zhang, Mengchu Zhou, Qixi Zhao, Abdullah Abusorrah, and
Omaimah Bamasak. A performance-optimized consensus mech-
anism for consortium blockchains consisting of trust-varying
nodes. IEEE Transactions on Network Science and Engineering,
2021

Zheng Zibin, Xie Shaoan, Dai Hong-Ning, Chen Xiangping, Wang
Huaimin (2018) Blockchain challenges and opportunities: a sur-
vey. Int J Web Grid Serv 14(4):352–375

Qianwei Zhuang, Yuan Liu, Lisi Chen, and Zhengpeng Ai. Proof of
reputation: A reputation-based consensus protocol for blockchain
based systems. In Proceedings of the 2019 International Electron-
ics Communication Conference, pages 131–138, 2019

Zou Jun, Ye Bin, Lie Qu, Wang Yan, Orgun Mehmet A, Li Lei (2018) A
proof-of-trust consensus protocol for enhancing accountability in
crowdsourcing services. IEEE Trans Serv Comput 12(3):429–445

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.36227/techrxiv.16601546.v1
https://doi.org/10.1016/j.bcra.2022.100110

	Reputation based proof of cooperation: an efficient and scalable consensus algorithm for supply chain applications
	Abstract
	1 Introduction
	1.1 Problem motivation
	1.2 Contributions

	2 Related work
	3 System model and consensus scheme
	3.1 Blockchain based SCM framework
	3.1.1 Assumptions

	3.2 Network model
	3.3 Security properties
	3.3.1 Safety
	3.3.2 Liveness

	3.4 Encryption mechanism
	3.5 Threat model
	3.6 Design of the proposed RPoC algorithm
	3.6.1 Consensus node selection
	3.6.2 Transactions broadcasting
	3.6.3 Block confirmation

	4 Simulation and result analysis
	4.1 Simulation design
	4.2 Result analysis
	4.2.1 Throughput
	4.2.2 Latency
	4.2.3 Scalability

	4.3 Model validation

	5 Security analysis
	5.1 Safety and liveness
	5.1.1 Double spending attack:
	5.1.2 Attacks in consensus groups
	5.1.3 Sybil attack:
	5.1.4 Denial-of-service attacks:
	5.1.5 Under 51% attack

	6 Conclusion
	References

