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Abstract
Vaccination strategy is crucial in fighting the COVID-19 pandemic. Since the supply is still limited in many countries, 
contact network-based interventions can be most powerful to set an efficient strategy by identifying high-risk individuals or 
communities. However, due to the high dimension, only partial and noisy network information can be available in practice, 
especially for dynamic systems where contact networks are highly time-variant. Furthermore, the numerous mutations of 
SARS-CoV-2 have a significant impact on the infectious probability, requiring real-time network updating algorithms. In 
this study, we propose a sequential network updating approach based on data assimilation techniques to combine differ-
ent sources of temporal information. We then prioritise the individuals with high-degree or high-centrality, obtained from 
assimilated networks, for vaccination. The assimilation-based approach is compared with the standard method (based on 
partially observed networks) and a random selection strategy in terms of vaccination effectiveness in a SIR model. The 
numerical comparison is first carried out using real-world face-to-face dynamic networks collected in a high school, followed 
by sequential multi-layer networks generated relying on the Barabasi-Albert model emulating large-scale social networks 
with several communities.

Keywords  Network science · Data assimilation · COVID-19 vaccination · Centrality measure · Multi-layer networks

1  Introduction

The world is still in the midst of the COVID-19 pandemic. 
The World Health Organization (WHO) and partners are 
working together on the response, tracking the pandemic, 
providing recommendations on critical steps, delivering nec-
essary medical supplies to those in need and, finally, racing 
for the development and introduction of safe and reliable 
vaccines. By the end of July 2021, nearly 300 vaccine can-
didates for COVID-19 are currently in trials, and several 
of them, such as AstraZeneca, Pfizer, Moderna and Gama-
leya, have already been distributed in all countries to protect 
individuals. No other vaccine in human history has been 
so eagerly anticipated, especially given that until now no 
drugs are demonstrated to be available to treat COVID-19. 

By July 30th 2021, almost or above 50% of the population 
has been fully vaccinated in North America and European 
countries, including the USA(50.2% ), the UK(57.2% ) and 
Canada(59.6% ). However in some less developed nations 
the vaccination rate is worryingly low such as India(7.6% ) 
and Peru(14.7% ), both having experienced a major COVID 
crisis recently. Since the vaccination capacity in these coun-
tries remains limited until now, people who are most at risk, 
such as healthcare workers and older population (Mills and 
Salisbury 2021), are given priority (Kumar et al. 2021). The 
effectiveness of the current vaccinations in addressing newly 
developed virus variants (e.g.,B.1.617.2 (Delta) and C.37 
(Lambda)) has also been challenged (Bernal et al. 2021), 
leading to the possibility of requiring new vaccinations or 
doses.1 Vaccination strategies play an essential role in pre-
venting the rapid diffusion of COVID-19. Clustering analysis 
has investigated transmission cascades in local social com-
munities. Among all connecting clusters, particular atten-
tion has been given to educational settings, including high 
schools and universities (Ismail et al. 2020). Much effort 
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has been devoted to maintaining the possibility of face-to-
face teaching during the pandemic. However thousands of 
clusters and outbreaks of COVID-19 have been reported in 
educational establishments. As mentioned in Kumar et al. 
(2021), the Delta variant has become the dominant strain 
in the UK, spreading rapidly in schools since May 2021. 
Hence, finding an optimal vaccination strategy for students 
and staff has become vital to protecting children and young 
people since many countries, including India and the UK, 
plan to reopen colleges and schools, either in full or in part, 
from September 2021.

Continuous effort has been made for several decades 
to develop the simulation of infectious diseases based on 
observed social networks (Camacho et al. 2020), including, 
for instance, H1N1 influenza (face-to-face contact network) 
(Cauchemez et al. 2011) and HIV (sexual contact network) 
(Keeling and Eames 2005). Social network-based analysis 
for disease spread modelling has been widely implemented 
since the outbreak of COVID-19 (Mauras et al. 2020; Firth 
et al. 2020), with the help of SIR (Susceptible-Infected-
Recovered) or SEIR (Susceptible-Exposed-Infected-Recov-
ered) models. When the network structure of contacts is (at 
least) partially observable, network-based interventions are 
most helpful in determining an optimal vaccination strategy 
under a limited capacity, which has been proved in a vari-
ety of infectious diseases (Meyers 2006). These strategies 
are usually based on some individual-level measures, such 
as node degree or graph centrality, which require knowl-
edge of the full network. Furthermore, significant variance 
of COVID infection probability is also observed (Davies 
et al. 2020) according to ages and activities. Meanwhile, 
many connecting clusters of COVID-19 have been identi-
fied in schools and workplaces (Yong et al. 2020), where 
individuals share similar characteristics. Thus the infectious 
probability of intra-connections inside these clusters could 
be considered homogeneous. This fact leads to the idea of 
multi-layer network modelling where the infectious prob-
ability may vary from layer to layer.

Much effort has been given to using network-based infor-
mation for formulating optimal policy responses to COVID-
19 (De la Sen et al. 2020), including social distancing and 
countrywide lockdown. However, the observation of social 
networks is often noisy (with either missing connections or 
mistaken edge weights), and, most of the time, incomplete 
(Rushmore et al. 2014). Obtaining precise knowledge is 
particularly challenging since face-to-face contact networks 
are strongly time-variant. The noise-level could be up to 
74% (missing edges) for observed connection networks, as 
mentioned by (Koskinen et al. 2013). On the other hand, as 
pointed out by Alsdurf et al. (2020), contact tracing appli-
cations can significantly reduce the rate of infection in the 
studied population when the participation rate is above 60% . 
In other words, it is critical to maintaining an error level 

inferior to 40%. Therefore, a considerable gap can be found 
between the required precision and the available data on 
the temporal networks. real-time updatings of prior network 
knowledge is thus essential to improving vaccine efficiency.

In this paper, by investigating how the accuracy of 
network data could impact vaccination effectiveness, we 
propose a real-time network updating approach based on 
sequential data assimilation (DA) techniques (Carrassi et al. 
2018). Recently, sequential DA algorithms have also been 
used for real-time parameter identification in the SIR model 
for COVID spread simulation (Wang et al. 2020; Nadler 
et al. 2020). An important advantage of using DA, compared 
to other statistical models for network reconstruction(e.g 
Peixoto 2019) is that DA is widely used for large-dimension 
problems with noisy and limited prior data (Cheng et al. 
2022, 2021). As an example, Graph Neural Networks (GNN) 
(Wu et al. 2020) have been demonstrated to have high accu-
racy in network reconstructions with missing data (You et al. 
2020). However, this approach requires retraining for each 
temporal graph, leading to difficulties in real-time predic-
tions. DA and dynamic network data have been combined in 
Cheng et al. (2021) where the authors propose a graph clus-
tering approach for the efficient localization of error covari-
ances within an ensemble-variational DA framework. In this 
work, DA is employed for real-time updating of the network, 
including novel information from dynamic observations. 
This contributes to leveraging the information embedded 
in different noisy/incomplete observations using an optimi-
sation process to reconstruct the current network. This is 
computationally feasible for large-scale problems thanks to 
the sparsity of the contact networks. Here, we propose two 
DA models for different parametrizations: 

1.	 The first consists of reconstructing the complete contact 
network structures by observing the edges in temporal 
sub-networks;

2.	 The second adjusts inhomogeneous infectious probabili-
ties in a multi-layer network modelling.

These two models are respectively applied to 

1.	 A real-world dynamic network dataset describing the 
contacts of French high school students in a week 
(Génois and Barrat 2018), collected using wearable sen-
sors;

2.	 Generated scale-free multi-layer networks, where each 
layer represents a social community/cluster, determined 
by individual characteristics such as age or activity.

Preliminary analysis is performed to understand the data 
structure (clustering, classes, grades) of the high school 
contact networks and to demonstrate the time-variance. 
The same data set, collected in a high school in Lyon, has 
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been used to simulate a COVID outbreak and estimate the 
reproductive ratio R0 in Mauras et al. (2020). It is also shown 
in their work that the study of contact networks in schools 
or workplaces could lead to more optimal contact-limiting 
strategies, such as self-isolation or countrywide lockdown. 
In this work, we make similar assumptions to Mauras et al. 
(2020) in terms of infection rate (slightly higher regarding 
new SARS-CoV-2 variants) in the contact network. How-
ever, since the availability of the temporal network data 
is limited, we set a small value for the average recovery 
period (5 days) to simulate the highest number of infected 
in the SIR model. With regard to multi-layer systems, the 
dynamic networks are generated using the Barabasi-Albert 
model (Albert and Barabási 2002), with a power law degree 
distribution. The latter exists widely in real social networks. 
Since mutations of SARS-CoV-2 have continuously arisen, 
the infection probability in each network layer is supposed 
to be time-variant, following an additive stochastic process. 
In both cases, the SIR simulation is carried out with realis-
tic assumptions of COVID-19 to simulate the SARS-CoV-2 
propagation, while real-time observations are generated 
synthetically based on preliminary network analysis. The 
DA models proposed in this paper are general, and could 
be applied to various scenarios with different types of real-
world dynamic networks and observation data.

In summary, in this work we

•	 simulate the COVID-19 propagation and vaccination 
impact using real or generated multi-layer networks with 
the SIR model.

•	 propose a DA framework, with two different network 
parametrizations, to sequentially update the network 
structure based on noisy prior information and real-time 
observations.

•	 compare different graph measures, such as node degree 
and betweenness centrality for vaccination prioritization 
criteria of prior and assimilated networks.

The paper is organized as follows. Section 2 introduces the 
graph-based diffusion modelling and vaccination strate-
gies. Data assimilation principle and adaptation of graph 

data are presented in Sect. 3. Section 4 shows numerical 
experiments in real-world social contact networks, and 
Sect. 5 shows experiments with multi-layer networks. Sec-
tion 6 closes the paper with conclusions and future work.

2 � Graph‑based diffusion modelling 
and vaccination strategies

2.1 � SIR model

The analysis of the diffusion is conducted using a standard 
SIR model with an additional state describing the num-
ber of vaccinated people, as shown in Fig. 1. For each 
individual, S, I, R denote the susceptible, the infected and 
the recovered (patients who are not infectious anymore). 
The SIR assumption has been widely adapted to simulate 
COVID-19 propagation (Wang et al. 2020; Venkatasen 
et al. 2020) since reported COVID reinfection cases (e.g 
Tillett et  al. 2021) are still rare compared to the total 
number of reported cases thus far. The SIR model has 
also been broadly used in network-based disease simu-
lations via random-walk-based simulations (Keeling and 
Eames 2005). Each node symbolizes an individual in the 
social network, whose status can alter from susceptible to 
infected (S-I), or infected to recovered (I-R), according to 
the random walk through temporal edges (Durrett 2010). 
The transition from susceptible (S) to vaccinated (L) only 
takes place when required according to chosen vaccina-
tion strategies. In contrast to classical disease modelling, 
since recent research (Bernal et al. 2021) shows that cur-
rent COVID vaccinations can be significantly less effec-
tive when facing new variants (e.g.,B. 1.617. 2 (Delta)), 
the L-S and L-I transitions can be activated as shown in 
Fig. 1. More details about the transition probabilities are 
given in Sect. 2.2. In view of the fact that until these days 
the infection probability after vaccination is still unclear, 
L-S and L-I transitions are not considered in this study. 
Nevertheless, the developed model can easily incorporate 
these types of transitions when required.

Fig. 1   Illustration of network-
based SIR model with a vac-
cination state L 
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2.2 � Graph‑based vaccination strategy

Both disease spread simulation and optimal vaccination 
modelling based on social networks have been receiving 
increasing interest for different types of infectious diseases 
(Newman 2002). We consider an undirected graph G that is 
a pair of sets G = (V ,E) , where V = {v1, v2 … vn} represents 
the set of individuals (graph nodes) and the set E contains 
the edges, each connecting a pair of individuals. Each graph 
edge e ∈ E is represented by a triple e = (vi, vj,wi,j) where 
vi, vj are the two endpoints and wi,j ∈ ℝ is the edge weight. 
For unweighted graphs wi,j ∈ {0, 1} , while for weighted 
graphs wi,j could represent the frequency or the intimacy 
of the contact. In epidemic spread modelling, the infec-
tious probability pi,j from the individual i to j (and vice 
versa) is often in function of wi,j , pi,j = IP(wi,j) . We also 
note that pi,j may depend on individual-level characteris-
tics of vi and vj , such as age or activities. The connecting 
graph can be fully represented by the associated adjacency 
matrix A = {Ai,j}i,j=1,…,n . We use three Boolean vectors 
{It,Lt,Rt} ∈ {{0, 1}n}3 to indicate the status of each indi-
vidual, either infected, vaccinated or recovered in the SIR 
model, at time t. The recovery period T� ∈ ℕ is an uniform 
distributed random variable generated individually for each 
individual.

If we adopt the edge-wise function IP(.) in the whole 
network,

the infectious probability vector Ipt ∈ (0, 1)n at time t in this 
SIR model reads

where 1n = [1, 1… 1]T and ⊙ denotes the vector-wise Had-
amard product. Following a uniform probability distribution, 
the vector of infections It is simulated using Ipt  and It−1 . The 
only controllable variable in Eq. 2 is the vaccination vector 
Lt.

Different graph-based vaccination strategies can be 
employed to enhance the immunization impact with a lim-
ited vaccination capacity. The state of the art approaches 
are usually determined by observed individual- or commu-
nity- level social connections, often involving classical graph 
measures, for instance, graph degree, betweenness central-
ity (Freeman 1977) or community links (Chen et al. 2008). 
Much efforts have also been made to use these strategies 
in practical settings where significant positive impacts have 
been observed (Harling and Onnela 2018). Since the avail-
able graph data often include non-negligible uncertainties 
(missing vertices or edges), statistical models are commonly 
employed to provide an optimal estimation of these graph 

(1)IP(G)i,j = IP(Ai,j),

(2)
I
p

t =
(
IP(At−1) It−1

)
⊙ (1n − Rt)⊙ (1n − Lt−1)⊙ (1n − It−1),

measures. Practical approaches involve, for example, fixed 
choice designs (FCD) (McCarty et al. 2007) and the nomi-
nation strategy (Fernández-Gracia et al. 2017), both based 
on an estimation of the graph degree. Even with partially 
observed dynamic networks, the vaccination strategy could 
be significantly improved in terms of reducing the maxi-
mum infected number and delaying the disease propagation, 
compared to a random choice (Yang et al. 2019). Neverthe-
less, precise knowledge of the network structure is crucial 
to determining an efficient vaccination strategy. It is essen-
tial to use community-based approaches (e.g Génois et al. 
2014; Chen et al. 2008), since graph clustering algorithms 
can be sensitive to noises. However, the data collection of 
dynamic social networks remains cumbersome, especially 
for large dimensional problems. In this paper, we conducted 
our analysis based on three classical strategies, considered 
less sensitive to data noise, compared to community-based 
approaches,

•	 Random: The individuals to be vaccinated are randomly 
chosen according to the number of doses limited, where 
no network knowledge is used.

•	 Highest degree: For each temporal network, we choose 
to vaccinate people with the most contacts based on prior 
knowledge. Only observable individuals are taken into 
account. The degree d(v) of node v in a network is simply 
defined as the sum of the column (or the row for undi-
rected graphs) of the adjacency matrix, 

•	 Highest Centrality: The betweenness centrality (Freeman 
1977) g(v) of node v is defined as the number of shortest 
paths of all pairs of nodes in the graph that pass by the 
node v, 

where �A
uq

 represents the total number of shortest paths from 
node u to node q and �A

uq
(v) is the number of those paths that 

pass through v. Other graph measures relying on detailed 
understandings of the network (e.g Chen et al. 2008) could 
also be used to establish a vaccine strategy. However, in real 
applications precise knowledge of the network is often out 
of reach. Here, our criteria for choosing graph-based vac-
cination strategies are two-folds: computationally efficient 
and non-sensitive to observation noise. The latter ensures 
the “validity” of the methodology even when working 
with incomplete networks. To enhance our estimation of 
dynamic contact networks, we make use of data assimila-
tion algorithms.

(3)d(v) =

n∑
k=1

|Ak,v|.

(4)g(v) =
∑
u≠q≠v

�A
uq
(v)

�A
uq

u, q ∈ V ,
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3 � Data assimilation principle 
and adaptation of graph data

In this section we introduce the variational data assimila-
tion concept and the resolution using a linear estimator. We 
also introduce the novel approach which combines DA tech-
niques with dynamic network data.

3.1 � Variational assimilation and BLUE

DA algorithms aim to combine different sources of noisy 
information in order to provide a more reliable estimation 
of the current system (Carrassi et al. 2018; Cheng et al. 
2021). The state variables could be either a physical field or 
a sequence of parameters. The true state, denoted by xtrue , 
stands for the theoretical value of the state at some given 
coordinates/time, often out of reach in real-world applica-
tions. The objective of the assimilation is to gain an optimal 
approximation xa of the true state xtrue , based on the prior 
information which are two parts: an initial state estimation 
xb (so-called the background state) and an observation vector 
y . The former is often issued from prior numerical simula-
tions/predictions while the latter can be obtained via physi-
cal measures of some control variables. Their tolerances, 
regarding theoretical values, are quantified by �b and �y,

where the observation operator H from the state space to 
the observable space is supposed to be known. The prob-
ability distributions of the prior error are supposed to be 
centred Gaussian, characterized respectively by the covari-
ance matrices B and O (Cheng and Qiu 2021).

The key idea in variational methods is to find a balance 
between the background and the observations using maxi-
mum a posteriori (MAP) method. This leads to the loss func-
tion weighted by the inverse of B and O,

The optimisation problem defined by the objective function 
of Eq. (5) is called three-dimensional variational method 
(3D-VAR), which can also be considered as the general equa-
tion of variational methods without considering the transi-
tion model error. The output of Eq. 5 is denoted as xa , i.e. 
xa = argmin

x

(
J(x)

)
 . If H can be approximated by some lin-

ear operator H , Eq. 5 can be solved via BLUE (Best Line-
arized Unbiased Estimator) formulation,

�b = xb − xtrue ∼ N(0,B), �y = y −H(xtrue) ∼ N(0,O),

(5)

J3D-VAR(x) =
1
2
(x − xb)TB−1(x − xb) + 1

2
(y −(x))TO−1(y −(x))

= 1
2
(

||x − xb||2
B−1 + ||y −(x)||2

O−1

)

.

where PA = Cov(xa − xtrue) is the analyzed error covariance 
and K is known as the Kalman gain matrix. In the rest of this 
paper, we denote H as the linearized transformation operator. 
The case when H is non-linear is more challenging for find-
ing the minimum of Eq. (5), especially for high-dimensional 
problems. The resolution often involves gradient descent 
algorithms (such as “L-BFGS-B” or adjoint-based numeri-
cal techniques).

3.2 � Online assimilation with graph data

The essential idea is to perform real-time updating of 
the partially observed dynamic networks based on other 
available information, such as sub-graph structures or the 
current number of those infected. To this end, the prior 
observed network Ab

t
 at time t is considered as the back-

ground state (i.e., xb
t
= Ab

t
 ), while other information is 

embedded in the observation vector yt.
Once the current contact network is updated based on 

Eq. 5, vaccination strategies can be implemented on the 
analyzed network xa

t
= Aa

t
 (i.e.,step 1 → step 2 in Fig. 2) 

which is a more accurate approximation of the true state. 
The degree and the betweenness centrality of the assimi-
l a t e d  n e t w o r k  i s  g i v e n  b y 

da
t
(v) =

∑n

k=1
�(Aa

t
)k,v�, ga(v) =

∑
u≠q≠v

�A
a

uq
(v)

�Aa

uq

 , where (Aa
t
)k,v 

denotes the element (k, v) of the adjacency matrix Aa
t
 . 

Similar expressions of db
t
(v) and gb(v) on the background 

state can be given using Ab and �Ab . The principle of real-
time assimilation with graph data is illustrated in Fig. 2 
where the virus propagation is simulated using the SIR 

(6)
xa = xb +K(y −Hxb),
PA = (I −KH)B, with K = BHT (HBHT +O)−1,

Fig. 2   Illustration of real-time DA updating for partially observed 
contact networks
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model, as described in Sect. 2.2 between two vaccination 
steps. Compared to the overlapped graph, the advantage 
of working with temporal networks is that the temporal 
correlation could be considered. In fact, an individual can 
be active for a relatively short period of time only, as 
shown below in Sect. 4.1. Therefore, instead of using an 
overlapped graph (if available), analysing temporal net-
works can result in an efficient real-time vaccination 
strategy.

A major challenge of implementing DA algorithms with 
graph data is the computational cost since the adjacency 
matrix At , considered as the state variable, is a two-dimen-
sional vector. We can rely on the assumption of graph spar-
sity and appropriate parameterization to reduce the computa-
tional burden. In this work, we propose two DA frameworks 
for dynamic networks updating, respectively introduced 
in Sects. 4 and 5. The former aims to reconstruct the full 
network with observations of sub-graphs, while the latter 
attempts to adjust the parameterized community-wise infec-
tious probability, relying on multi-layer modelling. These 
two modellings, relatively at the local and global scale, also 
show the flexibility of this data assimilation framework.

4 � Numerical experiments in real‑world 
social contact networks

4.1 � Assumptions and preliminary analysis

This study is based on recently (before the COVID outbreak) 
collected face-to-face contact data from a French high school 
(Génois and Barrat 2018), which has been used to simulate 
a COVID outbreak (Mauras et al. 2020). The connection 
networks of 329 students (coverage of 86% of the students) 
in a high school in Lyon are available for 7374 time steps in 
a week. For the sake of simplicity, we condense the dynamic 

graph to 78 time steps by overlapping every 100 consecutive 
networks. Each time condensed time step symbolizes 30–60 
min. The temporal networks remain sparse since the average 
graph density (i.e. number of non-zero edges divided by the 
number of node pairs) is equal to 0.76% . All contact net-
works are assumed to be undirected, which means the asso-
ciated adjacency matrices are all symmetric (i.e., At = AT

t
 ) 

and the virus could spread in both directions of an edge. 
According to Mauras et al. (2020), the infectious probability 
(of a 20-second contact) in this network can be estimated as 
p ≈ 0.1–1%. However, this estimated probability might be 
contested for the newly discovered SARS-CoV-2 variants 
(Hou et al. 2020). In this paper, in order to adequately inves-
tigate the optimality of different vaccination strategies, we 
fix the infectious probability to p = 2% . Since the temporal 
network data is only available for a week, the average recov-
ery period in the SIR model is set to 60 time steps (around 
4 to 5 days), following a uniform probability distribution, 
i.e. T� ∼ unif(55, 65) . Although the average recovery period 
can be longer in real cases, it should not impact the analysis 
qualitatively.

We begin by performing some preliminary analysis of 
the network data in order to better understand the underly-
ing graph structures. The overlapped network (i.e. 

∑78

t=1
At ) 

of all the time steps is shown in Fig. 3a where a clear com-
munity structure can be observed. Identifying these com-
munities is crucial to simulating the disease spread, espe-
cially for a highly infectious virus like SARS-CoV-2, and to 
determining optimal vaccination strategies. Much effort has 
been given to developing community-detection algorithms 
in social networks (Agbehadji et al. 2021; Parés et al. 2018). 
In this work, we make use of the Fluid community detection 
algorithm proposed by Parés et al. (2018), which is advanta-
geous for sparse graphs since the algorithm complexity is 
linear to the number of non-zero edges in the network, i.e. 
O(|E|).

(a) (b) (c)

Fig. 3   Preliminary analysis of the l high-school connection network: a overlapped contact network. b Performance rate pr(C) against assumed 
community number. c Reordered adjacency matrix after clustering
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In real applications, specifying the number of commu-
nities is usually difficult. Here, we apply several times the 
community detection algorithms against different assumed 
community numbers kc , before evaluating the performance 
rate pr(C) (Fortunato 2010) of the obtained partition C . The 
latter is defined as

where |Ec|, |Ec̄| indicate the number of edges of intra- and 
inter-clusters respectively. The performance rate is com-
monly used as an indicator for finding the optimal commu-
nity number. According to the result presented in Fig. 3b, 
where we clearly observe a stationary performance rate 
starting from kc = 4 , we choose to proceed with the opti-
mal number of clusters ko

c
= 3 . The final clustering result 

is displayed in Fig.  3a where clusters/communities are 
shown in red, green and blue. The three detected communi-
ties are equivalently distributed, as shown by the reordered 
adjacency matrix (Fig. 3c), with 106, 110 and 111 nodes 
respectively. From a practical perspective, these communi-
ties could be considered as different grades or classes in 
the high school, with a similar structure to the graph data 
presented in Guclu et al. (2016).

4.2 � DA modelling and numerical results

Since it is infeasible to collect contact networks via wire-
less equipment in all educational settings post lockdown, 
the objective of this study is to enhance the vaccination 
strategy when only partial/noisy information is available, 
for instance, via tracing applications. For this reason, the 
full contact networks Atrue

t
 are supposed to be out of reach. 

In terms of background states and observations, we sup-
pose that the temporal network is only partially observ-
able a priori where 50% to 70% of nodes are missing in 
the background estimation of the network Ab

t
∈ ℝ

329×329 . 
The missing nodes are selected randomly and kept invariant 

(7)pr(C) =
|Ec| +

(
n(n − 1) − |Ec̄|

)
1

2
n(n − 1)

.

at all time steps. In reality, the missing nodes could refer 
to, for example, people who haven’t installed the tracing 
application on their smartphone. We also use an observa-
tion vector yt , which contains the sub-networks for each 
of these three detected clusters. Thus, we suppose that the 
intra-community contacts of students in each class/grade 
are fully observable with yt . The objective is to perform 
DA algorithms sequentially to correct the knowledge of the 
background network relying on the observed sub-networks. 
The transformation operator H is thus linear (sub-Identity 
matrix) and the DA problem is solved via BLUE, as shown 
in Eq. (5). xt

b
= vect(Ab

t
) and yt are vectorized with Identity 

error covariances B and O.
After each vaccination, the SIR model is applied to 

simulate the virus propagation until the next time step, as 
summarized in Eq. (2). An essential advantage of BLUE-
type formulation with invariant prior covariances is that the 
Kalman gain matrix can be computed offline a priori since 
it is invariant to the current xb and y . The computational 
cost of DA can thus be considerably reduced. The vaccina-
tion capacity is fixed 2% (= 6 individuals of all students for 
all strategies (random, highest degree, highest centrality) 
presented in Sect. 2.2, based on prior or assimilated graphs. 
The evolution of the number of infected |It| , according to dif-
ferent vaccination strategies, is displayed in Fig. 4, where the 
percentage of missing nodes in the background state is fixed 
as 50% , 60% and 70% respectively. To acquire robust numeri-
cal results, each type of simulation with or without vaccina-
tions is repeated 10 times and the average values are drawn 
in solid or dashed curves in Fig. 4. Standard deviations of 
the simulations (except dashed lines) are also displayed in 
transparent shades to ensure the robustness of the compari-
son. The averaged maximum number of infected for each 
strategy is shown in Table 1. We note that vaccinations take 
place at every time step for 6 selected students ( ≈ 2% of the 
population) after the simulation of virus propagations with 
a infectious probability of 2% for each temporal edge. The 
initial infected It=0 , commonly used for all simulations, is 

(a) (b) (c)

Fig. 4   Evolution of infected against different prior error level (percentage of unobserved vertices): a 50%, b 60%, c 70%. Standard deviations are 
also displayed by transparent shades
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randomly simulated with a probability of P
(
(It=0)k)

)
= 10% 

for k = 1,… , 329.
From Fig. 4, we observe that almost all averaged curves 

rise to a high point and peak around t = 50–60 when all indi-
viduals are either infected or vaccinated. Since the vaccina-
tion process takes place in a relatively short period (a week), 
we suppose that the infected individuals are not detected in 
real-time. As a consequence, a student can be vaccinated 
after being infected by the virus, leading to vaccine fail-
ure. This fact emphasizes the importance of the vaccination 
strategy chosen. What can be clearly observed from Fig. 4 
is the decreasing infected number according to the vaccina-
tion strategy in the order of free (no vaccination) → random 
→ background → assimilated (DA). This order is globally 
consistent regardless of time. First, all vaccination strate-
gies manage to significantly reduce the number of infected 
and delay virus propagation compared to the free simula-
tion (green curve). In terms of maximum infected number, 
for all three cases, the peak value is reduced on average 
by 26%, 34%, 34%, 40% and 37% , respectively for random, 
background with highest degree, background with highest 
centrality, assimilated with highest degree and assimilated 
with highest centrality. All other strategies are dominated by 
the assimilated curves, especially when proceeding with the 
highest degree strategy. The difference, in particular between 
background and assimilated curves, is more significant when 

working with large-scale networks. On the other hand, for 
background-network-based strategies, a growth of maxi-
mum infected number against prior error level is noticed 
in Table 1 while the results based on assimilated networks 
remain robust. This fact promotes the use of data assimi-
lation on network data when prior error level can not be 
precisely specified. We note that the missing nodes at each 
time step are generated independently with no temporal 
correlation, explaining why reasonably good results can 
be obtained with 70% missing nodes. In summary, numeri-
cal results show that the DA-based real-time updating of 
networks considerably improves the impact of vaccination, 
resulting in reducing virus spread.

In these experiments, the use of node degree (solid 
curves) and centrality, for both background (red) and assimi-
lated (blue) cases, exhibits a similar performance. Such fact 
suggests a high-level (non-negligible) inter-clusters connec-
tions where a contrary case can be found in Sect. 5.

5 � Experiments with multi‑layer networks

5.1 � Multi‑layer modelling of scale‑free networks

As stated in recent research (Levin et al. 2020), the infec-
tious probability of COVID-19 can differ significantly for 
different populations, based on, for instance, their age, gen-
der, and activities. For example, both the transmissibility and 
the mortality rate is reported to be higher for aged people, 
necessitating appropriate strategies to protect this fraction 
of the population. SARS-CoV-2 variants may also vary geo-
graphically (Baric 2020), leading to inhomogeneous transi-
tion probabilities. Since the outbreak of the COVID-19 pan-
demic, continuous effort has been made to understand the 
behaviour of the virus infection with respect to individual-
level (e.g. aged people Mueller et al. 2020) and community-
level (e.g. healthcare workers Shaukat et al. 2020) charac-
teristics. These phenomena have led to the idea of using 
multi-layer networks, where different types of connections 

Table 1   Maximum number of infected (in percentage) against differ-
ent vaccination strategies

Strategy Prior error level

50 (%) 60 (%) 70 
(%)

Free 88 88 88
Random 62 62 62
Background (hd) 51 55 56
Background (bc) 52 55 55
Assimilated (hd) 47 50 47
Assimilated (bc) 51 52 50

Fig. 5   a Illustration of multi-
layers network modelling 
where the infectious probability 
depends on the layer of the 
reception node. b Different 
layers in one temporal contact 
network where, for example, the 
yellow layer could represent the 
community of academic staff in 
the department of Computing 
at Imperial College London and 
the other layers stand for stu-
dents of different grades ( CIa) (a) (b)
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exist between graph nodes (see Fig. 5a) to simulate the virus 
spread in social networks. In general, multi-layer networks 
(De Domenico et al. 2016) are widely used to study graph 
diffusion problems (Gueuning et al. 2019). Recently, multi-
layer modelling has also been applied to COVID-19 spread 
simulation (Scabini et al. 2021) where each layer refers to a 
potential contamination community, such as school, work-
place or transport. Appropriate use of the information on 
these layers can optimise vaccination strategies as mentioned 
in Buckner et al. (2020), by prioritising the populations with 
high risk and high transmissibility.

Since the collection of large-scale face-to-face contact 
multi-layer dynamic networks is extremely complicated, 
we rely on conceptual modelling in this work to further 
examine the performance of the novel approach. Dynamic 
contact networks of 1000 individuals and 5 layers (each of 
200 nodes) are synthetically generated, where each layer 
suggests a specific group in the population, according to 
their age or activities (e.g. students, healthcare workers). 
Assuming all the edges in the temporal networks are fully 
observable, our objective is to calibrate the time-variant 
infection probabilities {pi,t}i=1,…,5 based on the observa-
tion of infected number in each of the layers {Ii,t}i=1,…,5 . 
The temporal variance of {pi,t}i=1,…,5 can be a consequence 
of SARS-CoV-2 mutations. More precisely, the values of 
{pi,t}i=1,…,5 update every 5 time steps, following a stochas-
tic process, pi,5tm+1 = max(pi,5tm + �p,m, 0) for tm ∈ ℕ , 
where �p,m ∼ unif (−0.04%, 0.04%) and the observa-
tion vector consists of incremental infected numbers 
�Ii,t = Ii,t − Ii,t−1 . For inter-layer connections, the infectious 
probability is determined by the layer of the receiving nodes, 
IP(Gt)i,j = IP

(
(At)i,j × pi,t

)
, as shown in Fig. 5a. It is worth 

mentioning that the associated adjacency matrix At is no 
longer symmetric under this assumption. Nevertheless, the 
network virus spread modelling in Sect. 2.2 remains valid.

As for the generation of temporal networks, we depend on 
the concept of scale-free networks where the degree distribu-
tion follows a power law, Psf(k) ∼ k−� , where Psf(k) stands 
for the probability of a node to have k connections while 
2 ≤ � ≤ 3 is a chosen parameter. To simulate intra-connections 
in each layer, we use the Barabasi-Albert (BA) model (Albert 
and Barabási 2002), which is scale-free with � = 3 , incorpo-
rating two important concepts in graph theory: growth and 
preferential attachment (Krapivsky and Krioukov 2008), which 
exist widely in social networks. Therefore, the BA model is a 
reference tool to generate real-world-like networks, including 
web connections or citation networks. To generate a BA net-
work, nodes are added to the network consecutively where the 
probability of the new node to be connected with the existing 
node v writes PBA(v) = d(v)∕

∑
j d(j). The denominator here 

represents twice the current number of edges in the network. 
Individuals with a higher degree have a stronger ability to 
grab links added to the BA network, which is an adequate 

assumption for social networks. Moreover, the inter-layer 
connections are generated randomly with a density of 0.5% , 
much sparser than intra-layer edges. Eventually, an example 
of a complete temporal network is drawn in Fig. 5b where the 
five layers are shown in different colors.

Since temporal edges are supposed to be known in this 
modelling, we aim to estimate {pi,t}i=1…5 based on the evolu-
tion of the infected number in all five layers. In fact, we can 
predict �{Ii,t}i=1…5 via a prior estimation of {pi,t} , establishing 
a state-observation mapping H ∈ ℝ

5×5 for DA algorithms. The 
DA problem could be addressed as

where

The simulation/vaccination framework is similar to the one 
in Sect. 4 with a vaccination rate of ≈ 2% of the popula-
tion at each time step. This means that all people will be 
vaccinated before t = 50 . For all assimilations, the error 
covariances are set to be identity matrices, as in Sect. 4. Our 
goal is to determine an optimal vaccination order based on 
available noisy information. In order to cover more possible 
scenarios, we set various initial probabilities {pi,0} , as shown 
in Table 2, denoted as CIa,… ,CIf  . For the sake of simplic-
ity, {pi,0} always follow a decreasing order from layer 1 to 
layer 5. Typically, the initial probabilities in CIf  are more 
homogeneous compared to CIa or CIe . To give an example, 
CIa could be used to simulate, for instance, a scenario in the 
department of computing at Imperial College where nearly 
800 students plus faculty members can be found. The layer 

(8)

xb =

⎛⎜⎜⎜⎜⎜⎝

pb
1,t

pb
2,t

pb
3,t

pb
4,t

pb
5,t

⎞⎟⎟⎟⎟⎟⎠

, y =

⎛⎜⎜⎜⎜⎜⎝

𝛥I1,t
𝛥I2,t
𝛥I3,t
𝛥I4,t
𝛥I5,t

⎞⎟⎟⎟⎟⎟⎠

, H = 200 × N (AtIt)⊙ (1n − Lt)

(9)N =

⎛
⎜⎜⎜⎜⎜⎝

11×200, 01×200, 01×200, 01×200, 01×200
01×200, 11×200, 01×200, 01×200, 01×200
01×200, 01×200, 11×200, 01×200, 01×200
01×200, 01×200, 01×200, 11×200, 01×200
01×200, 01×200, 01×200, 01×200, 11×200

⎞
⎟⎟⎟⎟⎟⎠

.

Table 2   Initial infectious probability {pi,0} in different layers

Layer 1 
(%)

Layer 2 
(%)

Layer 3 
(%)

Layer 4 
(%)

Layer 5 (%)

CIa 2.5 1 1 1 1
CIb 3.5 1.5 1 0.5 0.5
CIc 2.5 2.5 2.5 0.5 0.5
CId 4.5 1.5 1 0.5 0.5
CIe 3.5 2.5 1 1 0
CI f 2 2 1.5 1 1%



1990	 S. Cheng et al.

1 3

with high infectious probability may consist of professors, 
(senior) researchers and HR officers, while the other four 
layers can represent graduate or undergraduate students of 
different grades. The former community has a much higher 
average age, in contrast to the latter. Furthermore, each 
community holds a dense intra-connections, coherent with 
our model assumption. The diversity of the initial condi-
tions ( CIa,… ,CIf  ) ensures the robustness of the proposed 
approach.

The experiments set-up is similar to the one in Sect. 4. 
While computing the node degree and the betweenness 
centrality, the graph edges are weighted by either the 
background ( {pb

i,t
} ) or the analyzed ( {pa

i,t
} ) layer prob-

abilities. Since the layer information is unattainable a 
priori, background networks are set to be homogeneous 
(i.e.,{pb

1,t
≡ pb

2,t
≡ pb

3,t
≡ pb

4,t
≡ pb

5,t
} ). The evolution of the 

infected number, issued from a Monte Carlo test of 10 

simulations, is illustrated in Fig. 6. The stand deviation is 
represented by colored transparent zones. We also display 
the result of using exact {pi,t} (instead of {pb

i,t
} (red) or {pa

i,t
}

(green)) for vaccination in yellow. This curve is thus con-
sidered as the optimal target for the assimilation-based strat-
egy. When vaccinating the nodes with the highest degree, a 
substantial advantage of the DA approach (solid green line) 
compared to the background one (solid red line), can be 
noticed in all 6 sub-figures of Fig. 6. In fact, both the maxi-
mum infected number and the average standard deviation 
have been significantly reduced, as confirmed in Tables 3 
and 4. On the other hand, DA has much less impact when 
selecting the individuals with the highest centrality, as 
shown by the dashed lines in Fig. 6. A reasonable explana-
tion for this could be the phenomenon of brokerage (Kwon 
et al. 2020). The endpoints of the few inter-layer edges play 
an essential role in virus spread. These nodes, also known as 

(a) (b) (c)

(d) (e) (f)

Fig. 6   Evolution of infected number (average of 10 simulations) following initial conditions CIa... CIf

Table 3   Averaged maximum 
infected number and averaged 
standard deviation when 
using node degree as order of 
vaccination priority

Highest degree

max std

Prior (%) DA (%) True (%) Prior (%) DA (%) True (%)

CIa 44.9 23.2 21.5 10.5 3.7 1.7
CIb 43.8 23.9 22.6 10.9 2.4 1.4
CIc 49.1 29.8 21.0 8.1 2.8 1.7
CId 45.8 22.8 21.1 9.7 2.9 1.8
CIe 48.6 29.8 22.7 8.4 3.2 2.0
CI f 47.8 30.9 21.1 9.1 3.6 1.6
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“broker”, do not necessarily have a high degree in the graph. 
However, since many of the shortest paths pass by them 
from one layer to another, the betweenness centrality may 
peak at these nodes with or without adjusting {pi,t} . This fact 
shows that when precise knowledge about inhomogeneous 
infectious probability is out of reach, proceeding with the 
highest centrality might be a robust choice. Nevertheless, 
both the dashed green line and the dashed red line are domi-
nated by the solid green line (assimilated networks with the 
highest degree) in all 6 sub-figures.

We also note that for Fig. 6a, b, d where the five layers 
exhibit more variance for the initial probabilities, the assimi-
lated curve is much closer to the optimal one. In fact, opti-
mally vaccinating an inhomogeneous network requires less 
accurate knowledge of layer probabilities so long as the most 
infectious layers can be identified. For example, proceeding 
with (5%, 1%, 1%, 1%, 1%) and (7%, 0.5%, 0.5%, 0.5%, 0.5%) 
for vaccine priorities may lead to similar results.

The evolution of the normalized true layer probabilities 
is pi,t∑

k pk,t
 , while their posterior (analyzed) estimation is 

pa
i,t∑

k p
a
k,t

 . 

The gap between the estimated and the true ratio of proba-
bilities is rapidly reduced with the increasing of pa

1,t
 , which 

results in a more optimal vaccination strategy. Since vacci-
nating infected individuals is ineffective, the early phase 
(around the first 20 time steps) of the outbreak is crucial to 
delaying the COVID spread because the most active indi-
viduals (either in terms of degree or centrality) can be 
infected very quickly. Therefore, the DA correction at the 
start of the vaccination process plays an essential role in 
reducing the propagation speed. On another note, we also 
observe that a strong oscillation in the values of 

pa
i,t∑

k p
a
k,t

 which 

implies high instability of the observation vector 
yt = [�Ii,t]i=1..5 due to sampling uncertainties.

In summary, the assimilation-based vaccination strategy 
shows competitive performance in this multi-layer mod-
elling even though the assimilated layer probabilities are 
just approximations. Using the assimilated temporal net-
works with “highest degree” dominates other approaches, 

with a smaller average infected number and lower standard 
deviation.

6 � Conclusion and future work

Despite the continuous efforts, including vaccination and 
countrywide lockdown, it remains unclear how the COVID-
19 pandemic will play out. Determining an efficient vac-
cination strategy is essential for combating the COVID 
long-term, especially with arising numbers of SARS-CoV-2 
mutations. For the moment, it remains difficult to vaccinate 
the entire population in many countries. Using temporal 
contact network information can significantly improve the 
vaccination impact on slowing down disease propagation. 
This is crucial to alleviating the burden on hospitals and 
emergency clinics. In this paper, we propose a data assimi-
lation framework to monitor the evolution of social contact 
networks based on different information sources. The assim-
ilated networks are used to govern vaccination strategies by 
prioritising high-risk individuals. An important strength of 
this framework compared to other network reconstruction 
methods, is the flexibility of dealing with available data and 
the efficiency for large-scale networks. We have applied the 
proposed approach to real high school contact networks with 
synthetic observations and real-world-like dynamic multi-
layer networks generated using the Barbasi-Albert model. 
The latter is used to simulate virus propagation with inho-
mogeneous community-level infectious probabilities. In 
both applications, the proposed method exhibits a significant 
advantage in terms of effectiveness (smaller infected num-
ber) and robustness (lower deviation). The choice of graph 
measures for identifying high-risk individuals, such as node 
degree or betweenness centrality, has also been discussed 
through numerical results. Data assimilation-based surrogate 
models have been recently developed in many fields (Cheng 
et al. 2022; Peyron et al. 2021; Cheng et al. 2022; Xiao et al. 
2018; Liu et al. 2022) to release the system computational 
burden. This idea can be used to improve the efficiency of 
our model proposed in this paper. We note that some recent 

Table 4   Averaged maximum 
infected number and averaged 
standard deviation when using 
betweenness centrality as order 
of vaccination priority

Highest centrality

max std

Prior (%) DA (%) True (%) Prior (%) DA (%) True (%)

CIa 32.6 30.8 23.3 6.0 5.1 1.6
CIb 27.3 28.6 22.5 2.8 2.6 2.2
CIc 32.7 32.6 23.6 4.4 3.4 2.0
CId 31.3 32.8 22.7 30.0 30.0 18.0
CIe 35.1 31.6 22.9 36.3 24.3 17.8
CI f 34.0 34.7 23.5 3.8 3.9 2.2
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work focuses on establishing data-driven models to predict 
individual- or community-level infection probability by 
learning personal data, including height, weight and health 
records (Zoabi et al. 2021; Quilodrán-Casas et al. 2022). 
Computational fluid dynamics (CFD) simulations are also 
being developed to simulate SARS-CoV-2 transmission 
in schools and offices. Future work can be considered to 
improve individual-level modelling by incorporating these 
features in the contact networks. Our work opens promising 
perspectives on governing efficient vaccination strategies, 
especially for countries with a relatively low vaccination 
rate, or, if new vaccinations (e.g., against specific SARS-
CoV-2 variants) are disseminated. The current modelling 
could be extended when more network information (e.g. 
from tracing applications Basmi et  al. 2021) becomes 
available.
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