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Abstract

Predicting crimes before they occur can save lives and losses of property. With the help of machine learning, many research-
ers have studied predicting crimes extensively. In this paper, we evaluate state-of-the-art crime prediction techniques that
are available in the last decade, discuss possible challenges, and provide a discussion about the future work that could be
conducted in the field of crime prediction. Although many works aim to predict crimes, the datasets they used and methods
that are applied are numerous. Using a Systematic Literature Review (SLR) methodology, we aim to collect and synthesize
the required knowledge regarding machine learning-based crime prediction and help both law enforcement authorities and
scientists to mitigate and prevent future crime occurrences. We focus primarily on 68 selected machine learning papers that
predict crime. We formulate eight research questions and observe that the majority of the papers used a supervised machine
learning approach, assuming that there is prior labeled data, and however in some cases, there is no labeled data in real-world
scenarios. We have also discussed the main challenges found while conducting some of the studies by the researchers. We
consider that this research paves the way for further research to help governments and countries fight crime and decrease
this for better safety and security.

Keywords Machine learning - Artificial Intelligence - Feature selection - Crime prediction - Neural networks - Crime
analysis

1 Introduction

A crime is a form of violence or illegal act done by a perpe-
trator against another person that can cause harm or prop-
erty damage and is punishable by the law of the governing
state of authority in which the crime was carried out. Law
authorities apply crime-solving techniques to take preventive
measures but in many cases, they cannot deliver effective
results (Dakalbab et al. 2022). Over the years, crimes have
continued to increase within countries. In another study, it
is stated that the top three countries with the highest crimes
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as of 2021 were South Africa, Venezuela, and Papua New
Guinea (Matereke et al. 2021). As the population of a
country increases, crime rates within that country increase
(Walczak 2021), this also impacts the accurate prediction
of crime (Pratibha et al. 2020). The safety and security of a
country are a very important part of its growth and economic
development, crime prediction will decrease economic loss
and increase public safety in exchange (ToppiReddy et al.
2018; Rumi et al. 2018). Governments are responsible for
ensuring the safety of their citizens to control and maintain
crime incidents, threats, and data being collected to better
the lives of their citizens (Butt et al. 2020).

Data mining and ML are both versatile fields that involve
the use of computers and mathematics where the program-
ming is completed for the system to perform certain tasks,
these are both important parts of crime prevention and detec-
tion (Bandekar and Vijayalakshmi 2020). Data mining can
be considered as the process where discovers of new patterns
from large data sets involving methods from statistics and
Al but also database management.

Different techniques have been developed for crime pre-
diction and in recent years, more researchers are publishing
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papers and finding interest in the topic, which can be seen
in the upward trend of publications between 2021 and 2022
in Fig. 2. Crime is a growing pandemic that contributes to
social and economic issues which in turn negatively affect
the development of a country and its communities (Matereke
et al. 2021). Both social and economic elements, a.k.a., fea-
tures, contribute to a perpetrator committing a crime or a
victim being the subject of a crime, these features can be
used to predict the future occurrence of future crimes and
help decrease crime rates across many communities (Hajela
et al. 2020).

The availability of enormous volume of data being
made available by certain governments has given motiva-
tion to researchers to further pursue research in the field
of crime. Historical data has made it an interesting subject
that sparked attention in research, many researchers have
proposed several different models for predicting the future
occurrence of crimes (Pratibha et al. 2020). In some areas
law authorities have restrictions over their data and may not
make this available to researchers in the area, causing further
frustration and disappointment.

Governments and police have access to a large amount of
data that could be used to help reduce the crime rate (Yuki
et al. 2019). Crime pattern theory also suggests that offend-
ers prefer not to venture into unknown territories or areas
and that they would rather commit opportunistic and vio-
lent crimes by taking advantage of familiar areas they have
previously encountered (Jalil et al. 2017). Crimes are also
not distributed evenly and uniformly nor are they random
in an area or city. A hotspot is defined as an area or region
where crimes would commonly take place. Based on this
knowledge, it is worth noting that mapping crime hotspots
can help researchers understand the reasons behind frequent
crimes in a specific area (Kadar and Pletikosa 2018; Kadar
etal. 2019).

Machine learning (ML) is a subfield of Artificial Intel-
ligence being used across many different fields today to
predict the future occurrence of certain events as well as
better decision making. ML can be understood as the study
of computer algorithms that can automatically improve on
their own through experience/learning and by the use of
data. Deep Learning (DL) is a subset of machine learning
that is inspired by how our brains function, this technique
is an artificial neural network that includes many different
layers and layer types (e.g., pooling layer, convolution layer,
fully-connected layer, dropout layer) that attempt to replicate
the behavior of our brains. There exist four types of learning
types, which are supervised, semi-supervised, unsupervised,
and reinforcement learning. Al comprises both computer
and mathematics (i.e., statistics) aspects where the program-
ming is performed for the system to perform a certain action,
commonly associated with humans (He and Zheng 2021).
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To develop a highly accurate crime prediction model,
it is important to understand the nature of a crime (Elluri
et al. 2019). The nature of a crime could include features
relating to the crime such as the offender(s) age, gender,
location, number of offenders, education status, income,
the weapon used, victim(s) age, gender, location, eco-
nomic status, education status, time, date, day of the week,
year, month, to name a few.

In Fig. 1, we have identified the objectives for each of
the articles in our paper, the articles have been categorized
into 6 main objectives namely: Social media crime predic-
tion, Novel crime prediction, Suspect or Offender predic-
tion, Spatial-temporal crime hotspot prediction, Feature
selection, and Crime patterns and mapping. We need to
understand the objectives of the articles to draw accurate
findings from our research, understand the direction, gaps,
and challenges faced by other researchers in the study of
crime prediction, and motivate the research taken.

Researchers have made numerous amounts of contribu-
tions to crime investigation and prediction. Unlike most
industries; health care, transportation, agriculture, finance,
retail, and customer services, crime prediction has a lack
of comprehensive and systematic literature reviews, which
can help to organize, and summarize existing literature,
evidence, and challenges they encounter. This SLR study
focuses on the prediction of future occurrences of crime
using machine learning techniques between the years 2010
and 2022, to answer the identified research questions and
provide further research on the gaps that have been rec-
ognized in the field. We seek to broaden the opportunity
for further research on crime investigation and machine
learning and our motivation for this work was not to only
publish research on previous and current studies on crime
prediction, but to:

— Demonstrate the need for the availability of crime data
to researchers

— Help to decrease the crime rate in our communities by
synthesizing the existing knowledge

— Identify the gaps in current findings

— Help to improve existing models

The purpose of this paper is to provide a better under-
standing of ML algorithms used in crime prediction and
analysis. Contributions to crime prediction are ongoing.
This SLR aims to cover literature between the Jan 2010
and August 2022 and is guided by the work (Catal 2012;
Ligthart et al. 2021; Kitchenham and Charters 2007).
These guidelines are used widely in literature for conduct-
ing SLR.

The rest of the paper is organized into the following
sections: Sect. 2 presents the related work. Section 3
discusses the adopted research methodology followed
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Fig. 1 Distribution of objectives

throughout the paper. Section 4 presents the results found
in the SLR for the research questions we have identified.
Section 5 discusses our findings and results in detail and
finally, in Sect. 6 we present our conclusion and future
work.

2 Related work

This study seeks to explore different machine learning algo-
rithms and techniques used in crime prediction. Our findings
are reported together with the challenges identified by the
researchers to help gain a better understanding of the current
state-of-the-art that is available to conduct further research
and build better performing and more accurate models to
fight crime.

A review (Falade et al. 2019) is conducted where they
focused on crime prediction using data mining and further
concluded that crime prediction using data mining is a hot
research topic due to the impact of crime on the socio-eco-
nomic development of a nation (Kounadi et al. 2020). They

- prediction
mapping 1%

Novel Crime
prediction model
53%

m Suspect/Offender Prediction
Feature selection
m Social Media crime prediction

stated that the data being used could be statistical reports
of crimes in an area or region. They also note that crime
prediction research will positively benefit society in assist-
ing law enforcement agencies and governments understand
the multiple layers that contribute to the cause of a crime.
This research may also aid governments in making better
decision-making approaches for the security and safety of
their citizens and provide a more proactive approach towards
the improvement of communities and decrease in crime.

In 2020, a review (Butt et al. 2020) is published that
discusses the approaches of Spatio-temporal crime hotspot
detection and prediction. The researchers state that the avail-
ability of large amounts of data that are being collected and
made available to the public has made it more possible to
conduct and pursue further research in the field of crime and
crime investigation. The availability of historical data allows
for the forecasting of future crimes, with it being a grow-
ing point of interest to develop significant machine learn-
ing models to assist in discovering different features that
are related to crime prediction (Butt et al. 2020). It is also
worth noting that the researchers proposed in their future
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work to explore the enhancement of clustering approaches
for crime hotspot detection (DBSCAN), enhancement of
time series analysis for crime forecasting (ARIMA), explo-
ration of transfer learning in crime prediction, and the use
of LSTM with exponential smoothing for crime prediction.
The researchers concluded by stating, that for a novel spa-
tial-temporal model, datasets should be produced to improve
the proposed methods and that regions or countries should
have datasets available or should collect data to help scien-
tists in the development of better crime prediction methods
to decrease crime and grow the country.

There is another a paper on spatial crime forecasting, spa-
tial referring to space and time (Kounadi et al. 2020). The
researchers investigated crime both in time and space in this
paper. They followed the “PRISMA” (Liberati et al. 2009)
reporting process in their review to report their findings and
gain knowledge and analyze the state-of-the-art techniques
and methods in current studies of crime prediction. Some
of the limitations outlined by the researchers in the study
included the terminology, which is not consistent and could
be due to the different academic backgrounds of the stake-
holders (e.g., criminology, data analyst, computer science,
geoscience, and public policy) and those significant details
of some experiments are partly or not at all reported.

Our last related work-study (Ippolito and Lozano 2020)
focuses on tax crime prediction using machine learning. It
was noted as a significant paper as this crime is known as a
white-collar crime, most papers in the study focused on vio-
lent crimes. The researchers seek to better decision-making
in fiscal audit plans relating to service taxes in the munici-
pality of Sdo Paulo. In the study, the researchers applied
Neural Networks, Naive Bayes, Decision trees, Ensemble
learning, Random forests, and Logistic regression. The
researchers also conducted manual face-to-face data collec-
tion of fiscal audits and plans from 2016 to 2019. The results
obtained showed that Random Forest provides the highest
accuracy of 66.2%. Machine learning can better assist gov-
ernments in making better decisions and plans around tax
audits. Tax crime prediction allows governments to prepare
for these crimes before they are committed. They conclude
by stating that machine learning helps make predictions
on crimes against law systems, and predictions can guide
better decision-making and planning of fiscal audits more
assertively.

Governments and law enforcement agencies are the gate-
keepers to crime datasets (historical and present) and ensure
their maintenance thereof (Falade et al. 2019). Accurate
predictions of future crimes can have a positive impact on
society and the economy (Butt et al. 2020). It is seen from
Ippolito et al. that a crime detection system can alert users
and make them cautious of the crime they are about to com-
mit and the likelihood of them being caught, the implemen-
tation of such a system in society could leverage the same
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impact on violent crime (Ippolito and Lozano 2020). Safer
and more secure conditions lead to economic growth and
sustainable development. The literature presents many dif-
ferent approaches to crime prediction using machine learn-
ing, compared to other review studies, to our knowledge
this study includes recent papers and has different research
questions applied. As such, the observations and suggestions
are different than those of previous studies (Table 1).

3 Research methodology

Systematic literature reviews (SLRs) are and have been used
in many different fields of academia from engineering to
medicine to gather and summarize data on a certain research
topic, we employed guidelines (Kitchenham et al. 2010) to
follow a structured approach for our study. By using an SLR,
we can also identify the challenges and possible solutions
that can be employed. It defines the guidelines for the fol-
lowing three (3) main phases:

1. Planning the review: Gathering related data and research
work related to our research topic (i.e., the use of
machine learning in crime prediction), defining research
questions and systematic search protocols that include
the selection of keyword strings to be used for related
papers, and how this criterion will be applied to the
papers. The planning phase also includes the following
phases:

Identification of the need for a review
Commissioning a review

Specifying the research question(s)
Developing a review protocol
Evaluating the review protocol

o a0 T

2. Conducting the review: Putting a classification schema
in place, details on how the data and papers will be sepa-
rated for analysis where features are grouped based on
similar or common attributes. The papers are subject to
inclusion and exclusion criteria. The papers that pass
the criteria should meet the minimum quality assess-
ment threshold, which is mostly selected as the mean
value. Critical data from these papers are extracted and
synthesized to present a general overview of the under-
standing of how machine learning can be used for crime
prediction to identify possible gaps and opportunities in
the selected field. The phases in the conducting phase
include:

Identification of research
Selection of primary studies
Study quality assessment

Data extraction and monitoring

o op
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e. Data synthesis

3. Reporting the review: The final step discusses and pre-
sents our findings, the research questions which were
identified in step 1 are addressed and visually presented
with graphs, figures, and tablesB if needed and may
include:

a. Specifying dissemination mechanisms
b. Formatting the main report
c. Evaluating the report

3.1 Research questions

The research questions that are investigated are presented
as follows:

1. What are the objectives of the paper? To answer this
question, we need to understand what the researcher
aims to achieve. What is the desired output variable?
(e.g., suspect detection, crime hotspot detection, etc.).

2. What data source types have been used to collect data?

What independent variables are (a.k.a., features) used in

the publications?

Which ML algorithm(s) performed best in the study?

Which public datasets have been used?

Which evaluation metrics have been applied?

What are the top 5 ML categories?

What challenges have the authors identified?

et

® Nk

3.2 Databases

We used five top reliable and trustworthy scientific data-
bases to find relevant papers for our study. We did not select
Google Scholar because it indexes non-peer-reviewed papers
and sometimes non-reputable journals as well. For searching
the databases, we applied search strings, which are defined
in Sect. 3.4.

ACM Digital Library (https://dl.acm.org/)
IEEE Xplore (http://ieeexplore.ieee.org)
Springer Link (https://link.springer.com/)
Science Direct (http://www.sciencedirect.com)
Scopus (https://www.scopus.com/)

As shown in Table 4, IEEE Xplore provides the largest
number of papers before and after the exclusion criteria,
ACM Digital library being the lowest. Forward and back-
ward snowballing was also applied in this SLR study to find
more relevant papers. The papers that were collected using
these methods were included in the study selection criteria
and those that passed were added to the list of selected pub-
lications (Fig. 2).

3.3 Search strategy

We applied search parameters to the databases to collect
the relevant papers for the study. An advanced search was
applied to the selected databases, which included the follow-
ing terms: “crime”, “crime prediction”, and “machine learn-
ing”. To help broaden our search string parameters, we read
the abstract, introduction, and conclusion sections of the
recent papers to find synonyms that could be included in the
search string. Some of the identified words included “Neural
Networks”, “Artificial Intelligence”, “Data mining” and/or
“Crime patterns”. The search string that was used within
each database is presented in the following subsection.

3.4 Search strings

We had to adjust the search string for each database to gather
a more detailed search on our related papers for the SLR.

These search strings shown in Table 2 were applied to
the databases in the title, abstract, and keywords fields. In
Science Direct, we searched for “Crime Prediction” AND
“Machine Learning” with Year between 2010 — 2022, this
would ensure that we retrieved all the latest papers for the
last 10 years. IEEE Xplore returned the largest amount
of papers that we could use for our study, it is also one of
the largest online scientific research databases, we applied
“Crime Prediction” to all metadata, and “Crime Prediction”
AND “Machine Learning” were applied to the document
title. Finally, Springer Link was used and the search string
applied with the title “Crime Prediction” AND “Machine
learning” and a year range of 2010 and before 2023. Figure 3
shows the yearly trend of the selected papers.

3.5 Selection criteria

We define the selection criteria in the first phase of the
guidelines to decrease any possibility of bias in the selec-
tion of the publications for the study. It is also employed
to ensure that we process relevant studies, in our case,
we would define these studies as those that can assist us
in answering the research questions. We establish a crite-
rion before we begin with the study to avoid and reduce the
chance of a biased criterion (Kitchenham et al. 2007). Papers
should respond false to all the exclusion criteria and true to
all the inclusion criteria.

The following criteria have been defined as the exclusion
criteria:

1. Only abstract is available

2. The paper is not in English
3. The publication is a review/survey paper

@ Springer
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Fig.2 Yearly trend of publications

4. The publication is duplication and already retrieved from
another database

5. The paper does not explain in detail how Machine
Learning was applied

3.6 Collecting and filtering

After collecting and finding various publications by apply-
ing the defined search strings to each database, we also used
snowballing, the results obtained were then gathered in an
excel spreadsheet to analyze and synthesize the data. All
the papers that passed the selection criteria were subject
to a quality assessment, which would enable us to narrow
down the publications further, for high-quality papers to

Table 2 Databases and the search strings used for the study

2014

/»‘-‘?5

‘-\vw—’""““?’
2

2016 2018 2020 2022

Year

—@— After

be included as primary studies. It defines eight (8) qual-
ity assessment questions which we applied and then further
scored a paper with 1 (yes/non-compliant), O (no/comply),
and 0.5 (somewhat) against each question. If the score of
the related paper is lower than 4.5 that paper was excluded,
if that paper scored above 4.5, it was included. The quality
assessment questions were defined as follows:

1. Are the aims of the study clearly defined?
Are the scope and experimental design of the study
defined?

3. Is the technology assessed or used clearly defined?

Is the research process clearly defined?

5. Are all the study questions answered?

&

Database Search string

ACM Digital Library 27 results for: [[Title: "crime"] OR [[Title: "crime prediction"] AND [Title: "machine learning"]]] AND [[Abstract:
"crime prediction"] OR [Abstract: "machine learning"]] AND [Publication Date: (01/01/2010 TO 08/31/2022)]

IEEE Xplore
OR ("Document Title”: crime prediction)
Filters applied: 2010-2023

Springer Link
Science Direct
Scopus

116 for: ("All Metadata™: crime prediction) AND ("Document Title”: machine learning) AND ("Document Title”: crime)

25 Result(s): for ‘Crime prediction” AND ‘Machine learning' within 2010-2022
108 results for: Year: 2010-2022 Title: Crime OR Crime prediction AND Machine learning
77 document results: TITLE ( "CRIME" OR "CRIME PREDICTION" AND "MACHINE LEARNING") PUB-

YEAR >2010 PUBYEAR <2023 KEY ( "crime" AND "machine learning")
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Identification

Studies identified in scientific

databases
=190
Studies excluded:
Less than < 4.5 in quality
. assessment
& > n =109

No. of papers after exclusion
criteria
=81

Studies excluded:

\ 4

No. of papers after duplicates

Screening

removed

=68

Studies included in review
= 5 Primary studies

= 163 Studies updated

Included

Final literature selection

=73

= 241 Total publications after
reviews and comments

Fig.3 Search methodology applied to identify relevant papers

6. Are the challenges, limitations, and negative findings

clearly defined?

7. Are the main findings on the creditability, validity, and

reliability

8. Does the conclusion relate to the aim of the purpose of

the study?

@ Springer

stated?

»| Removed as duplicates
n=13

3.7 Data extraction, synthesis, and reporting

To answer the research questions with the most reliable data,
all publications needed to pass the quality assessment to
ensure that only reliable and trustworthy publications had
been included in this next phase. All the relevant data were
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collected from primary studies we read the articles in full to
gather all the relevant data needed. We assigned each pub-
lication to a specific row and each answer was assigned to
a different column in the extraction process. We found that
with some of the research questions, some of the answers
and features which returned were categorized into fewer
groups to allow for better handling of the data. For research
question 1 we identified the following categories: Novel
crime prediction model, suspect/offender prediction, Spatio-
temporal crime hotspot prediction, feature selection, crime
patterns, and mapping, and social media crime prediction.
In research question 2, we found that some answers were
synonyms and we then combined them (e.g., meteorological
and weather are both weather data features, social media,
websites, and newspapers also are categorized into one col-
umn. In research question 3, we broke down the independ-
ent variables into crime parameters, data parameters, time
parameters, offender parameters, victim parameters, and
location parameters. The algorithms in research question 4
were categorized into decision-tree algorithms, regression
algorithms, neural network algorithms, and others (e.g.,
Naive Bayes, and Support Vector Machines). Lastly, the
final step in the SLR process is to report on our findings and
answer all of the research questions.

4 Results

In this section, we present our findings using various visual
aid graphs, and tables to illustrate all findings effectively.
In total, 353 publications were found across all databases,
after we applied the study selection criteria, and the quality
assessment, 68 publications remained as relevant publica-
tions that we could then use throughout our study. Table 3
represents all the 68 primary studies found. Table 4 shows
the number of publications retrieved after the exclusion
criteria. The research questions that were identified are
addressed in the following section in detail one after the
other. In Fig. 3, we have applied the Prisma flow process,
which is a technique used for reporting systematic reviews
and meta-analyses (Kounadi et al. 2020).

4.1 Research Question 1—what are the objectives
of the paper?

We first need to understand what the researchers are trying to
achieve through the study. What is their desired output varia-
ble? What do they intend to predict? (e.g., suspect detection,
developing a novel crime prediction model). We found that
several different researchers would have different objectives
and to manage this data efficiently, we would need to group

our findings into more narrow / detailed categories. We then
identified 6 categories in which the publication could be
grouped as the researchers found a common objective within
their target variable. To find these categories, we need to
read all the publications. The objectives have been catego-
rized into novel crime category prediction model included
all papers that sought to find a crime prediction model to
detect the future occurrence of crimes, the researcher did
not focus on a single or common crime type as stated by (Yu
et al. 2011) crime analysis is done by using historical data to
predict the time and place where a crime could take place.
Suspect / offender prediction used technology to predict the
future occurrence of an offender committing a crime using
location data based on the fact that offenders or crime com-
mitters do not venture into crimes in new locations and thus
would repeat crimes in common areas. Only three papers
focused on offender prediction. Spatio-temporal crime hot-
spot is the study of crime using space and time, researchers
focused on space (i.e., location parameters) and time (i.e.,
date parameters) to build models that could predict crime
using space and time, the likely location of the potential
crime (Zhang et al. 2020), hotspots and cold spots have an
unbalance in data and that is because cold spots are much
more prevalent than hotspots. Feature selection, knowing the
right type of features and variables to use is a vital part of
the machine learning process and could aid in the develop-
ment of an accurate predictive model. The crime patterns
and mapping category focused on understanding different
crime types and how certain crimes occurred in various
areas or locations to aid in the prediction of future crimes.
Social media crime prediction uses Natural Language Pro-
cessing (NLP) methods and textual data from social plat-
forms, newspapers, etc. to aid in predicting crimes. Figure 3
shows the distribution of these objectives.

4.2 Research Question 2—what data source types
have been used to collect data?

Due to the sensitivity of the data and the information held
within the datasets, five authors did not report on the data
source type that they used to collect the data resulting in
five Not Applicable (NA) values. We further divided the
rest of our findings into five categories: Actual crime records
(datasets collected and maintained by governments and law
enforcement agencies), traffic data (data from traffic seg-
ments or taxi flow data), location data (data from points
of interest locations), visual data (data collected by using
CCTV surveillance systems), text data (data from social
media platforms, newspapers and other text data sources).
All categories are presented in Fig. 4.
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Table 4 Number of publications

. Databases Publications before exclu- Publications after
retrlev.ed bef.ore. and after sion criteria exclusion criteria
exclusion criteria per database

ACM Digital Library (https://dl.acm.org/) 27 6
IEEE Xplore (http://ieeexplore.ieee.org) 116 29
Springer Link (https://link.springer.com/) 25 8
Science Direct (http://www.sciencedirect.com) 108 13
Scopus (https://www.scopus.com/) 77 11
Total 353 68
Social Media/Websites/RSS/Newspaper etc.
Land use Data, POI(s), Population Density
LBSN Data, School location data
(%]
0]
& Crime Survey/Government Sensus
=
8 Traffic Violation data, Street segment data
—
>
2 Taxi Flow/Trip data
% Image/Video/Survilience Data
[a)]
Meteorological/Weather data
Actual Crime data (Law enforcement/Governments)
NA
10 20 30 40 50 60
Count

Fig.4 Data source types used

4.3 Research Question 3—what independent
variables are (a.k.a features) used
in the publications?

A total of 44 independent variables were found, 5 of them
were identified as common variables: Crime ID, date, crime
type, latitude, and longitude. 23 of the publications did not
clarify the independent variables they used to achieve their
objectives. The remaining independent variables were then
grouped into the following categories to better understand
and easily separate them across the study: (1) Crime param-
eters that contain information regarding the crime that had
occurred, (2) Date parameters that contain information
regarding the date like the day of the week, week, year,
month, etc., (3) Time parameters that contain information
on the time the crime took place, (4) Offender parameters
that contain information regarding the offender of the crime
age, gender, address, income, etc., and (5) Victim param-
eters that represent information regarding the offender of
the crime age, gender, address, income, etc. and (6) Location

parameters that present information regarding the location of
the crime. Table 5 shows the distribution of these categories.
Based on this table, the most-used category is the location
and the second most used one is related to the crime param-
eters category. The % of papers column represents the % of
how many times the variables appeared in the papers, the %
will be above 100% due to the fact the researchers use more
than one variable in some studies. E.g. Crime parameters
appeared 75% of the time in the papers, however, had an
overall appearance of 24% out of 100% (Fig. 5).

4.4 Research question 4—which ML algorithm(s)
performed best in the study?

The study identified 14 different machine learning algorithms.
Each publication stated the best algorithms they used and
various evaluation metrics to conclude the best-performing
algorithm. If a publication only applied one algorithm, that
algorithm was then noted as the best-performing algorithm
from the study. We grouped the best-performing algorithms

@ Springer
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Table 5 Independent variables by category and their distribution
Category Independent Variable % Appearance of vari- % out of 100
able in papers
Crime parameters Record ID, Crime category, description, police district, resolution 75 24
Date parameters Date, year, month, day of the week 61 20
Time parameters Time, the hour of the day 18 6
Location parameters Address, longitude, latitude, location description, home location of 96 31
offender, home location of the victim, state, weather conditions
Offender parameters Offender age, offender sex, offender income, education status, no. of 39 13
offenders, gang activity, family structure, weapon
Victim parameters Victim age, victim sex, victim race, the victim count 20 6
Table'6 Best performing Algorithm category Algorithms # of papers
algorithms by category
Decision Tree-based Random Forest, Decision Tree, Extra Trees, Gradient Boosting 16
Regression algorithms Support Vector Regression 3
Artificial Neural Networks  Long Short Term Memory, Deep Neural Networks, Convolu- 24
tional Neural Networks, Recurrent Neural Networks
Others K-means, K-nearest neighbor, Naive Bayes 14

Victim parameters
6%

13%

Offender parameters

Location parameters

Crime parameters
24%

Date parameters

31% 20%
Time parameters
6%
®m Crime parameters m Date parameters ®m Time parameters

m Location parameters m Offender parameters m Victim parameters

Fig.5 Features by categories
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[ERY

Algorithm categories by colour

10

Other

15 20

25

30

Count

W Regrssion algorithms

W Artificial Neural Networks m Decision Tree algorithms

Fig.6 Algorithms grouped by categories

into decision tree-based algorithms, artificial neural networks,
regression algorithms, and others. However, the most com-
monly used algorithms were Artificial Neural Networks, Ran-
dom Forest, and KNN algorithms. Table 6 shows the algo-
rithms by category and the number of times they appeared in
papers (Fig. 6).

4.5 Research Question 5—which public datasets
have been used?

The majority of the datasets used throughout the study were
collected from actual crime records datasets collected and
maintained by governments or law enforcement agencies
that made their data available to the general public via their
online platform where web scrapping can be performed or
third-party platforms that have the datasets available for
the public such as kaggle.com or UCI. The majority of the
datasets being used today show that governments and law
enforcement are taking an interest in the collection and
maintenance of these datasets. Figure 7 shows the distribu-
tion of public and open datasets that have been used it also
indicates that most of the studies preferred public datasets,
which are very useful for repeatability, verifiability, and even
refutability of the experiments., and we have also grouped
the commonly used datasets with links in Table 7.

Private Dataset
20%

Public
m Public Dataset  ® Private Dgg%ag,;&f

Fig. 7 Distribution of Public & Private datasets used

4.6 Research Question 6—which evaluation metrics
have been applied?

14 different evaluation metrics were identified in the study
that researchers applied to evaluate the model performance.

@ Springer
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Table 7 Used datasets in the study and their distribution

Dataset location Public

Distribu-
tion of
papers

Private Description

Kaggle (kaggle.com), UCI, Open crime data portals X

Official police department and law enforcement records X
and sensitive data

Text data X

San Francisco https://www.kaggle. 41
com/c/sf-crime

Boston https://www.kaggle.com/datas
ets/AnalyzeBoston/crimes-in-boston

Chicago https://www.chicago.gov/city/
en/dataset/crime.html

NYPD https://compstat.nypdonline.org/

City of Detroit crime data https://detro
itmi.gov/node/14916

Brazil Crime data https://www.kaggle.
com/datasets/inquisitivecrow/crime-
data-in-brazil

UK police website https://www.met. 25
police.uk/sd/stats-and-data/met/
crime-data-dashboard/,

Dhaka metropolitan https://dmp.gov.bd/
crime-data/

Chilean police department

Saint Petersburg police crime data

Bangladesh police crime data

Malaysian police crime data

Sri Lanka police crime data

Cambridge police

Philadelphia police crime data

Amsterdam police crime data

China police crime data

Social media, newspaper articles 2

Some of the researchers used more than one evaluation met-
ric, which resulted in a higher % value than 100%. In some
of the papers, the researchers did not clearly state the evalua-
tion method they had applied and in others, they did not state
it at all, we found that 21 papers did not state their evaluation
metrics in detail. In most cases, these papers were those
where only one machine learning algorithm was applied in
the study. The following evaluation metrics were used more
than 5 times (Joshi 2016): Accuracy, Root Mean Square
Error (RMSE), Mean Square Error (MSE), Mean Absolute
Error (MAE), Precision, Recall, Area Under the ROC curve
(AUC), F1 score, Hit rate, and R2 score and the rest of the
metrics were applied 4 times or less (Fig. 8).

4.7 Research Question 7—what are the top 5 ML
categories?

In research question 4, we identified the machine learn-

ing algorithms used in the study. We deduced this infor-
mation further to understand the type of machine learning

@ Springer

categories. As data is fed into the algorithms, the machines
learn from this data and optimize their tasks to better their
performance and intelligence over time. Several papers used
multiple machine learning algorithms. The most applied was
supervised machine learning, these tasks are those which
contain labeled data for the algorithms to learn from. In
semi-supervised learning, a mixture of both labeled and
unlabeled data is fed into the algorithms, unsupervised
algorithms learn from unlabeled data, and reinforcement
algorithms are those, which are rewarded based on the
desired behaviors/target outcome or punished for undesired
outcomes. Reinforcement learning algorithms learn through
a trial and error basis (Fig. 9).

4.8 Research Question 8—what are the challenges /
limitations and possible solutions?

Researchers need to pay careful attention to the challenges
they face when implementing machine learning algorithms
or when seeking to develop a robust crime prediction model
due to the sensitivity of the outcome variable and data


https://www.kaggle.com/c/sf-crime
https://www.kaggle.com/c/sf-crime
https://www.kaggle.com/datasets/AnalyzeBoston/crimes-in-boston
https://www.kaggle.com/datasets/AnalyzeBoston/crimes-in-boston
https://www.chicago.gov/city/en/dataset/crime.html
https://www.chicago.gov/city/en/dataset/crime.html
https://compstat.nypdonline.org/
https://detroitmi.gov/node/14916
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= Confidence Score
= Root mean square error (RMSE)
Mean Square Error
Mean Absolute Error
= Precision / Mean average precision
= Recall
m Area Under Curve (AUC) / Receiver Operating Characteristic (ROC) Curve
= F1 / Fmeasure
= Hit Rate
= Jaccard Score
m R2 score
= Cross Validation
Logloss
Validation Accuracy & Validation Loss

Zscore

Fig. 8 Distribution of evaluation metrics applied

contained. We picked up one primary and common chal-
lenge when conducting crime prediction, which is the accu-
racy and trustworthiness of the available data. Just above
50% of the papers failed to provide or detail the challenges
they had faced, we then indicated these as “Challenge NA”.
The same applied when looking at the possible solutions,
we found that more than 50% also lacked to identify further
solutions and we deduced this as "Solution NA". Several
internal and external factors can contribute to the limita-
tions of crime data and prediction. It is worth noting that
one of the major challenges across the world is the report-
ing of crimes within communities. Underreporting is when
people do not come forward with information on a crime or
report a crime that has taken place to them due to fear of life
and or any other threatening factors, and due to this, these
statistics cannot be added or included to official crime sta-
tistics. In the work (Butt et al. 2020) it is stated that a survey
by Malaysian and British police concluded that about 50%
failed to report a crime. The challenges presented forward by
the researchers have been narrowed down into 4 commonly
faced challenges in machine learning: (1) Data collection,
(2) data storage and security, (3) data pre-processing, and

(4) performance issues. We have not found any issue with
visualization (Table 8).

5 Discussion

In this section, we present our discussion and feedback on
each research question in Sect. 5.1, and we also discuss the
potential threats to validity in Sect. 5.2.

5.1 General discussion

Firstly, we identified 350 + publications in total when con-
ducting our general search into crime prediction publica-
tions. After we applied our exclusion criteria and quality
assessment to our results, our total number of publications
narrowed down to 68 primary studies. From our results,
we have managed to identify different machine learning
approaches, challenges, and possible solutions in current and
past crime prediction trends. Crime prediction is a broad
term that can be used by different fields of academia such
as criminology and social development. We further discuss
our responses to each research question in the following
subsections.

5.2 Research Question 1—what are the objectives
of the paper?

The results obtained from the data concluded that the objec-
tive of 68 of the publications was to produce a novel crime
prediction model, it is also worth noting that the results
would exceed the number of publications as some publica-
tions had more than one objective in their study (e.g., some
included feature selection and a novel crime prediction
model). We can conclude that an interesting point of inter-
est would be to narrow down a crime prediction model to
focus on common crimes in a specific area and develop a
novel crime prediction model from this data.

5.3 Research Question 2—what data source types
have been used to collect data?

To understand the approach and methodology of the
researcher, the data source used was an important part of
the study, also to learn the various types of data sources
being used currently in crime prediction. We noted that
there are several different data source types such as actual
crime records, Twitter tweets, Facebook posts, census data,
weather data, cellphone tower data, and point of interest
data. As a result, we further narrowed down our results, most
publications have made use of actual crime records in their

@ Springer
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Reinforcement; 4;
5%

Semi-supervised; 19;
21%

Unsupervised; 14;
15%

m Supervised m Unsupervised

Fig. 9 Distribution of machine learning categories

studies. The use of actual crime data could improve crime
prediction models, decrease crime rates within communities,
and help researchers gain a better understanding of crime
patterns (Yuki et al. 2019).

5.4 Research Question 3—what independent
variables are (a.k.a features) used
in the publications?

Crime is affected by both social and economic factors
(Matereke et al. 2021); features from both the offenders and
victims can contribute to the occurrence of a crime. Many
of the researchers proposed that crime is a time and space
problem and looked into pursuing prediction models about
Spatio-temporal crime prediction. As an indication of this,
researchers used a lot of location data, it is also suspected
that criminals or offenders repeat a crime in places they are
most familiar with (Bandekar and Vijayalakshmi 2020).

@ Springer

m Semi-supervised

Supervised ; 54; 59%

Reinforcement

5.5 Research Question 4—which ML algorithm(s)
performed best in the study?

Artificial Neural Networks came up as the most used
machine learning algorithm for crime prediction. More
complex models can be built around neural networks with
ensemble algorithms combined, adding boosting parameters
can help improve performance and accuracy in the models
for real-time predictions.

5.6 Research Question 5—Which public datasets
have been used?

80% of the publications retrieved are from public datasets,
which are openly accessible to the public, we have also
shown this information in Table 7. Most of the data con-
cluded that a lot of research around crime prediction is being
done in India, and one paper relieved a study in Cape Town,
South Africa (Matereke et al. 2021) where the Chicago data
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Table 8 Challenges and Solutions proposed by researchers in primary studies

References

Proposed Solutions

Challenges

Category

Kshatri et al. (2021)

Victims should report more crimes

Researchers can only predict crime records known to

Data Collection

the police

Researchers achieved higher predictions when using the Forradellas et al. (2020); Kajita and Kajita (2020)

CPLIC model (4% improvement), proposed text data

cleaning methods

Noisy data, Noisy Twitter data

Yuki et al. (2019); Kiran and Kaishveen (2018)

Saravanan et al. (2021)

Use of actual crime records for actual or novel models

Data used was not for actual police crime record

Data augmentation

Data imbalance

Nakib et al. (2018); Han et al. (2020)

Researchers have not provided a solution to the con-

stantly changing environments

Data Storage and Security Security and infrastructure costs of data

Hajela et al. (2020)

Reliable and secure environments, large infrastructure

Huang et al. (2018); Wang et al. (2013)

There is no viable solution to this challenge, Dynamic

The sparsity of data

Data pre-procession

information is very sparse, and a matrix factorization-

based approach can be considered

Use of neural networks for future works, Use of Baek et al. (2021), Falade et al. (2019); Ippolito

Low accuracy, computational issues with KNN, low

Performance issues

and Lozano (2020)

manbhattan distance instead of Euclidean distance,
Random Forest approach with Adaboost for better

accuracy for Decision Tree and KNN algorithms,

negative values by linear regression

accuracy, Improved results with Gradient boosting

portal was used to obtain the data. Some publications noted
that due to the sensitivity of the data and how it could be
used to public advantage in the wrongful hands of others,
they could not disclose who the data source owner was nor
where the dataset was collected from.

5.7 Research Question 6—which evaluation metrics
have been applied?

It was difficult to gather some information and data from
some of the publications due to the researchers not giving
full or detailed information on their study, some 20 + did not
disclose the type of evaluation metrics they used within the
study, and only detailed their results and findings during the
study process, and accuracy percentage was given in these
sections in replacing. Accuracy, area under the ROC curve
and precision came as the top three evaluation metrics iden-
tified in the study. Equation 1 represents how to calculate
the precision parameter and also, shows how to calculate the
recall metric. Area under the ROC curve (AUC) value can
be understood as the ability to differentiate between classes
by a classifier, and accuracy refers to the % out of 100 for
the prediction made.

True Positive
Actual Results
or True Positive
True Positive + False Positive €))]

Precision =

.. True Positive
Recall =True Positive —————
Predicted results

or True Positive
True Positive + False Negative )

True Postive + True Negative
Total

Accuracy = 3

The precision is the ratio of True Positive (TP) over True
Positive (TP) + False Positive (FP). The recall is the ratio of
True Positive (TP) over True Positive (TP) + False Negative
(FP) (Rumi et al. 2018).

5.8 Research Question 7—what are the top 5
machine learning categories?

In this study, the authors used supervised machine learning
as the common machine learning category (Sharma et al.
2021). This means that more research can be performed for
the other categories, particularly semi-supervised learning,
and unsupervised learning because sometimes the number of
labeled data points is quite limited or does not exist, there-
fore, we need models that can be used in these cases.
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5.9 Research Question 8—what are the challenges/
limitations and possible solutions?

We categorized our results into the following categories:
Data collection, data pre-processing, data storage and secu-
rity, and performance issues. It is worth noting that during
our study we did not find any publication which had data
visualization issues, this does not mean the challenge doesn’t
exist within the domain however, it is something that could
be investigated in the future. Data collection in this domain
remains a general issue with data owners, governments, or
law enforcement agencies not making this data available to
the public, not properly maintaining this data, or not keep-
ing such data in reliable and safe storage locations. As we
can see from Fig. 2, the rise in interest in this domain as a
research topic is primarily due to the increased availability
of data by governments in some parts of the world.

5.10 Available commercial tools

At present, ML is being used by law enforcement and other
government agencies to predict crime. These known pre-
dictive policing software are Crime anticipation system,
PreCobs, PredPol, and Hunchlab, these systems also allow
for more efficient allocation of resources for law enforce-
ment agencies and provide crime prevention strategies (Car-
valho and Pedrosa 2021). I is also worth noting that these
systems are fairly new and may come with limitations mak-
ing the evaluation of its impact in crime rates more difficult.

5.11 Potential threats to validity

To ensure that quality research in software engineering is
conducted, it is important to analyze threats to validity. Our
current research has some limitations to other secondary
studies (Dinter et al. 2021), and is discussed as follows.
Regarding construct validity, we performed an automated
search instead of manually reading titles in electronic jour-
nals, this means that we might have missed some relevant
papers due to our automated search. Also, query phrasing is
an important construct validity threat, and each electronic
database has different options for executing the correspond-
ing query. To minimize the potential risks, query design was
discussed among authors before executing it in the data-
bases. Another potential construct validity threat is related
to the data extraction forms; we might have missed some
useful data fields although we have updated these fields sev-
eral times during our review process. Since we carefully
specified the research questions, we reached our objectives
adequately and we consider that there is no internal valid-
ity threat. Regarding the conclusion validity, we followed a
well-defined SLR protocol, and the process was discussed
among authors before performing this research. Conclusions

@ Springer

were derived from the collected data and personal/subjective
opinions were not included.

5.12 Limitations

Even though some of these methods may present many ben-
efits, there are also limitations. Some of these limitations
may be noted as technical limitations to ML models, which
may come with some of these benefits in crime prediction:

e ML techniques do not produce accurate results or pre-
dictions immediately, because they need to learn from
previous data.

e The relationship between urban metrics and population

size is not linear (Alves et al. 2018)

Data availability and a limited amount of resources

System performance issues (technical)

Data storage (technical)

Data sparsity (pre-processing of data)

5.13 Future research outlooks

We identified the following research directions to pave the
way for further research:

1. The development of Explainable Artificial Intelligence
(XAI) models / interpretable machine learning models

2. The use of new deep learning models such as transform-
ers to improve the performance of models

3. The development of unsupervised learning-based crime
prediction models

4. The design and implementation of a benchmarking tool
that can evaluate the performance of different machine
learning models on public datasets

5. The development of semi-supervised learning-based
crime prediction models

6. The development of new publicly available datasets for
researchers

7. The use of new features to build crime prediction models

8. The analysis of cross-country crime prediction models
to analyze the commonalities between models

9. The development of open source tools for crime predic-
tion

6 Conclusion and future work

This SLR provided an overview of crime prediction analysis
and the various machine learning algorithms used in the
field. Based on the primary selected studies, we have found
that crime is affected by many internal and external factors.
In this study, we systematically reviewed the critical aspects
of crime prediction by following the guidelines of the work
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(Kitchenham et al. 2007). Researchers have made numer-
ous amounts of contributions to the study of crime investi-
gation and prediction. Unlike most industries; health care,
transportation, agriculture, finance, retail, and customer
services crime prediction has a lack of comprehensive and
systematic literature reviews that can help to organize, and
summarize existing literature, evidence, and potential chal-
lenges they encounter. To our knowledge, this is the most
up-to-date review on the use of machine learning in crime
prediction between 2010 and 2022. The study showed that
the researchers in the field are interested in crime predic-
tion and there is a growing need for interest in the field.
Secondly, we noted that most of the publications used crime
data records from police stations/law enforcement agencies.
These datasets contained a variety of variables that made up
the data from crime type, crime case, victim, perpetrator,
date, time, weather, and many more. This SLR concludes
that crime prediction can help assist law enforcement, gov-
ernments, and police department across the world to improve
their communities and economy. A novel approach to crime
prediction would be an optimal approach to solving crime
prediction and for a safer economy.

In this SLR, the limitations are restricted to journal arti-
cles, and reviews between 2010 and 2022 related to ML
and Al in crime prediction. A large number of irrelevant
articles were omitted in the exclusion criteria phase of the
search approach. This made it possible for us to only look at
the papers that passed the criteria for the study. We believe
that the quality of this study has been further improved and
strengthened by the addition of more sources and articles.
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