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Abstract
Since no single algorithm can provide the optimal solutions for all problems, new metaheuristic methods are always being 
proposed or developed by combining current algorithms or creating adaptable versions. Metaheuristic methods should have 
a balanced exploitation and exploration stages. One of these two talents may be sufficient in some metaheuristic methods, 
while the other may be insufficient. By integrating the strengths of the two algorithms and hybridizing them, a more efficient 
algorithm can be formed. In this paper, the Aquila optimizer-tangent search algorithm (AO-TSA) is proposed as a new hybrid 
approach that uses the intensification stage of the tangent search algorithm (TSA) instead of the limited exploration stage to 
improve the Aquila optimizer’s exploitation capabilities (AO). In addition, the local minimum escape stage of TSA is applied 
in AO-TSA to avoid the local minimum stagnation problem. The performance of AO-TSA is compared with other current 
metaheuristic algorithms using a total of twenty-one benchmark functions consisting of six unimodal, six multimodal, six 
fixed-dimension multimodal, and three modern CEC 2019 benchmark functions according to different metrics. Furthermore, 
two real engineering design problems are also used for performance comparison. Sensitivity analysis and statistical test 
analysis are also performed. Experimental results show that hybrid AO-TSA gives promising results and seems an effective 
method for global solution search and optimization problems.

Keywords  Aquila optimizer · Global optimization · Hybrid method · Tangent search algorithm

1  Introduction

Optimization is the task of searching the best among all 
candidate solutions for a problem under certain conditions. 
An optimization problem can be expressed as any problem 
that aims to find unknown variable values, provided that 
certain constraints are met (Murty 2003). While the solution 
method mostly depends on the type of variables (integer, 
real, etc.), objectives, and constraints (linear, non-linear, 
etc.) used in modeling the problem in classical optimization 
algorithms, its effectiveness also depends on the solution 
space (concave, convex, etc.), the number of constraints, 
and the number of decision variables. Furthermore, they do 
not provide general solution strategies that can be applied 
to problem formulations in the presence of different types 
of decision variables, objectives, and constraints. That is, 

most algorithms solve models with certain types of objec-
tive and constraint functions. However, the formulation of 
optimization problems in many different fields simultane-
ously needs various types of decision variables, objective 
functions, and constraint functions. Therefore, classical and 
general-purpose metaheuristic optimization algorithms are 
proposed. These techniques have gained considerable popu-
larity in recent years because to their high computational 
efficiency and simplicity in transformation (Akyol and Ala-
tas 2012, 2017; Alatas 2007). In most real-life problems, the 
search space is infinite or so large that all solutions cannot 
be evaluated. Thus, it is necessary to find a good solution 
by evaluating the solutions in a reasonable time. For such 
problems, assessment of solutions in a reasonable time is 
essentially the same thing as assessment of “some solutions” 
in the entire search space. What and how some solutions are 
selected vary based on the metaheuristic technique.

General-purpose metaheuristic methods can be grouped 
into eight categories as biology-based, physics-based, 
swarm-based, music-based, social-based, chemistry-based, 
sports-based, and mathematics-based. There are also hybrid 
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methods that are combinations of these (Akyol and Ala-
tas 2012, 2017; Alatas 2007). Tunicate Swarm Algorithm 
(Kaur et al. 2020), Reptile Search Algorithm (Abualigah 
et al. 2022), Spotted Hyena Optimizer (Dhiman and Kumar 
2017), Emperor Penguin Optimizer (Dhiman and Kumar 
2018), Seagull Optimization Algorithm (Dhiman and Kumar 
2019), and Sooty Tern Optimization Algorithm (Dhiman 
and Kaur 2019) are biology-based; the Parliamentary 
Optimization Algorithm (Borji 2007) and the Imperialist 
Competitor Algorithm (Atashpaz-Gargari and Lucas 2007) 
are social-based; Artificial Chemical Reaction Algorithm 
(Alatas 2011) is chemistry-based; Melody Search Algorithm 
(Ashrafi and Dariane 2011) is music-based; Archimedes 
Optimization Algorithm (Hashim et al. 2021) and Spring 
Search Algorithm (Dehghani et  al. 2020b) are physics-
based; Bonobo Optimizer (Das and Pratihar 2019) and Rat 
Swarm Optimizer (Dhiman et al. 2021) are swarm-based; 
Most Valuable Player Algorithm (Bouchekara 2020) and 
Darts Game Optimizer (Dehghani et al. 2020c) are sports-
based and Arithmetic Optimization Algorithm (Abualigah 
et al. 2021a) is mathematics-based algorithms and models. 
Multi Leader Optimizer (Dehghani et al. 2020a) can also be 
classified as both a swarm-based and social-based algorithm 
(Akyol 2018; Akyol and Alatas 2012, 2020; Alatas 2007). 
In some studies, algorithms inspired by plant intelligence 
were examined in a separate group as plant-based methods 
(Akyol and Alatas 2017) and algorithms inspired by the law 
of reflection and refraction of light were categorized as light-
based methods (Alatas and Bingol 2020).

AO (Abualigah et al. 2021b) is swarm-based and TSA 
(Layeb 2021) is mathematical-based metaheuristic algo-
rithms. AO was developed with inspiration from the hunt-
ing skills of the Aquila and TSA was developed based on 
the tangent function. In the literature, the number of studies 
with AO and TSA is few. Only a few problem-oriented stud-
ies were performed for AO and there is not any study on the 
improvement of TSA. Using AO, AlRassas et al. developed 
the Adaptive Neuro-Fuzzy Inference System model and used 
this model to predict oil production for two different loca-
tions in Yemen and China (AlRassas et al. 2021). Elaziz 
et al. proposed a hybrid version of deep learning and AO 
and applied it to images of Covid-19 data (Abd Elaziz et al. 
2021). Ma and Zhao proposed an improved version of the 
AO algorithm using wavelet mutation and quasi-opposite 
learning strategies. Then, they used this improved version 
of the AO and the Bernoulli model together to estimate the 
rural community population in China (Ma et al. 2021). Vash-
ishtha and Kumar used AO to adjust the length of the mini-
mum deconvolution filter used to detect bearing defects in 
the Francis turbine (Vashishtha and Kumar 2021).

Metaheuristic algorithms need to have exploration and 
exploitation capabilities. These two abilities must work in a 
balanced way. In some metaheuristic algorithms, while the 

exploitation capability works well, the exploration capabil-
ity may be lacking, or the exploration capability may work 
well, but the exploitation capability may not be sufficient 
due to the stochastic nature of the method (Dhiman 2021). 
By hybridizing the algorithms, a more efficient algorithm 
can be obtained by combining the strengths of the two 
algorithms along with eliminating the weaknesses. Many 
optimization algorithms suffer from early convergence due 
to the local optimum in the exploitation phase (Upadhyay 
and Chhabra 2021). Hybrid algorithms, which are more pre-
ferred than individual metaheuristic algorithms, are used in 
solving broader optimization problems (Verma and Parouha 
2021). When compared to classical forms of metaheuris-
tic methods, their hybrid versions show substantial gains 
(Dokeroglu et al. 2019). Recent research suggests that hybrid 
metaheuristic algorithms can provide more efficient behavior 
and better flexibility (Blum et al. 2011). The fundamental 
purpose of hybrid algorithms is to combine the characteris-
tics of various metaheuristic techniques and reap the benefits 
of synergy.

AO and TSA are two of the newest metaheuristic methods 
and there is not any hybrid version of TSA. Only two hybrid 
versions of AO exist in the literature. Wang et al. proposed 
a new hybrid algorithm by addressing the strengths of AO’s 
good exploration ability and the exploitation phase of Harris 
Hawks Optimizer (Wang et al. 2021). Mahajan et al. stated 
that the AO converges early due to the direct addition of 
the global best location in the location update, making the 
search phase strong. However, this will cause it to remain 
at the local optimum. In addition, they also stated that the 
convergence speed of the Arithmetic Optimization Algo-
rithm (AOA) is reported as low and the search capability as 
weak. To overcome this deficiency of AOA, they proposed 
the hybrid AOAAO algorithm (Mahajan et al. 2022).

Based on these, in this article, a new hybrid algorithm, 
AO-TSA, is proposed for complex solution search and opti-
mization problems. While the exploration phase is applied at 
2/3 of the number of iterations in the AO method, the exploi-
tation phase is generally insufficient. To give more space to 
exploitation capability, the effective intensification phase of 
TSA is applied instead of the narrowed exploration phase of 
the AO. In addition, TSA’s local minimum escape steps are 
also applied to avoid the local minimum stagnation problem. 
According to various metrics, the performance of AO-TSA 
is compared to those of other existing metaheuristic algo-
rithms utilizing a total of twenty-one benchmark functions, 
including six unimodal, six multimodal, six fixed-dimension 
multimodal, and three modern CEC 2019 benchmark func-
tions. In addition, two real engineering design problems are 
used to compare performance. Statistical test analysis and 
sensitivity analysis are also performed. The proposed hybrid 
method seems to achieve better results at an earlier time than 
AO and TSA. In the second part of this study, AO and TSA 
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are explained in detail and flow diagrams are given. In the 
third part, the hybrid AO-TSA algorithm is explained and 
how the two algorithms are combined in the flow diagram is 
shown. The fourth part introduces the used benchmark func-
tions and real engineering design problems. In the fifth part, 
the performances of standard AO, standard TSA, AO-TSA, 
and metaheuristic algorithms with promising results in the 
literature are presented by comparing the experimental results 
obtained in benchmark functions. The paper is concluded 
along with possible future research directions in the sixth part.

2 � Standard Aquila optimizer and tangent 
search algorithm

In this section, the AO (Abualigah et al. 2021b), which is 
inspired by the hunting skills of Aquila, and TSA (Layeb 
2021), which is based on the mathematical tangent function, 
are explained in detail and flow diagrams are given.

2.1 � Aquila optimizer

Aquilas are the most common species of eagles and are 
known as the most popular birds of prey in the Northern 
Hemisphere. The four hunting methods used by Aquilas are 
described as follows: The first method, vertically inclined 
high-flying, is used by the Aquila to hunt birds while flying 
high above the ground. After discovering its prey and get-
ting closer and closer to it, the wings take a long, low-angle 
glide that rises rapidly. The second method, the perimeter 
flight with a short soaring attack, is the flight in which the 
Aquila rises low above the ground. In the third method, the 
Aquila slowly attacks its victim, trying to land on the prey it 
has chosen on the ground. This method is called slow land-
ing attack and flight action. The last method is walking and 
catching. The Aquila tries to attract prey by walking on the 
ground in this method. The AO algorithm was inspired by 
these four hunting methods of Aquila.

As in all population-based methods, in AO, the initial pop-
ulation (X) starts with randomly generated values between the 
lower and upper limits. The optimal result is the best solution 
obtained from the candidate solutions as a result of iterations. 
X consists of a set of randomly generated candidate solutions 
using Eq. (1). N represents the total number of candidate 
solutions (population size), Xij represents j th decision values 
(positions) of the i th solution, and D represents the size of 
the problem. rand is a random number, UBj is the j th upper 
limit, and LBj , is the j th lower limit (Abualigah et al. 2021b).

Based on the four behavior patterns that the Aquila simu-
lates while hunting, the AO algorithm is represented by a 

(1)
Xij = rand ×

(
UBj − LBj

)
+ LBj, i = 1, 2,… ,Nj = 1, 2,… ,D

method for each of these behaviors: high glide search area 
selection with vertical slope, short glide attack, and recon-
naissance within a different search area with the boundary 
line, low flight exploitation within a convergence search area 
with slow landing attack, and catching prey on foot. In the 
AO algorithm, where T is the maximum number of iterations 
and t is the number of current iteration, exploration steps are 
applied when the condition t ≤

(
2

3

)
× T  is met, otherwise, 

exploitation steps are started.
The behavior of Aquila is modeled as a mathematical 

optimization paradigm, which tries to find the best solution 
according to the certain constraints (Abualigah et al. 2021b).

2.1.1 � Step 1: extended exploration (X
1
)

In this method (X1) , Aquila discovers the hunting ground and 
chooses the best hunting area with a high glide on a vertical 
slope. Here, AO conducts extensive expeditions by flying 
high to determine the search area where prey is located. This 
behavior is mathematically presented as in Eq. (2).

Here, X1(t + 1) represents the solution of the ( t + 1) th 
iteration produced by the first method ( X1 ). Xbest(t) repre-
sents the best solution achieved up to the t  th iteration and 
with this, the proximate location of the prey is determined. 
By using the 

(
1 −

t

T

)
 equation, it is decided whether to apply 

extended search steps. XM(t) calculated using Eq. (3) indi-
cates the mean value of the positions of the existing solu-
tions in the t th iteration. rand is a randomly generated num-
ber in [0, 1] (Abualigah et al. 2021b).

2.1.2 � Step 2: narrowed exploration (X
2
)

In this method (X2) , the hunting ground is found with a high 
flight. In the short glide attack and contour flight method, 
the Aquila prepares the attack area by drawing circles on 
the prey before attacking the prey it has determined. In this 
method, AO searches in detail around its chosen prey before 
attacking. This behavior is mathematically presented as in 
Eq. (4).

X2(t + 1) represents the solution of the (t + 1) th iteration, 
produced by the second method (X2) . Levy flight distribution 

(2)
X1(t + 1) = Xbest(t) ×

(
1 −

t

T

)
+
(
XM(t) − Xbest(t) × rand

)

(3)XM(t) =
1

N

N∑
i=1

Xi(t),∀i = 1, 2,… ,D

(4)X2(t + 1) = Xbest(t) × Levy() + XR(t) + (y − x) × rand



8048	 S. Akyol 

1 3

Levy() is calculated as given in Eq. (5). The random solution 
XR(t) is in the interval [1,N] in the t th iteration (Abualigah 
et al. 2021b).

Here, s is a constant with a value of 0.01. u and v are 
random numbers between 0 and 1. � is computed by 
Eq. (6).

Here, � is a constant with a value of 1.5. In Eq. (4), x 
and y are utilized for representing the spiral shape in the 
search and are calculated using Eqs. (7), (8), (9), (10), 
and (11).

r1 takes a value from 1 to 20 to determine the number of 
search cycles, and U is a constant with a value of 0.00565. 
D1 is an integer from 1 to the length of the search field 
( D ) and � is a small constant of 0.005 (Abualigah et al. 
2021b).

2.1.3 � Step 3: extended exploitation (X
3
)

In this method (X3) , when the area of prey is correctly found 
and the Aquila is ready to land and attack, it descends steeply 
towards to prey with a frontal attack to explore its response. 
This method, in which the Aquila approaches and attacks by 
using the environment of the prey it chooses, is called low 
flight with landing attack. The mathematical expression of 
this behavior is shown in Eq. (12).

X3(t + 1) is the solution of the (t + 1) th iteration produced 
by the third search method ( X3 ). � and � represent parameters 

(5)Levy() = s ×
u × �

|v| 1

�

(6)� =

⎛
⎜⎜⎜⎝

Γ(1 + �) × sin
��

2

Γ
�

1+�

2

�
× � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠

(7)y = r × cos(�)

(8)x = r × sin(�)

(9)r = r1 + U × D1

(10)� = −� × D1 + �1

(11)�1 =
3 × �

2

(12)
X3(t + 1) = (Xbest(t) − XM(t)) × � − rand

+ ((UB − LB) × rand + LB) × �

of the exploitation tuning that are set to a small value of 0.1 
(Abualigah et al. 2021b).

2.1.4 � Step 4: narrowed exploitation (X
4
)

In the last method (X4) , when the Aquila approaches its prey 
on land, it attacks according to the stochastic movements 
of its prey. This step is called walking and catching prey. 
Finally, the AO goes after the prey in the final location. This 
phenomenon is mathematically presented as in Eq. (13).

X4(t + 1) is the solution of the (t + 1) th iteration produced 
by the fourth search method ( X4 ). QF is calculated using 
Eq. (14) and represents a quality function used to balance 
search strategies. G1 calculated using Eq. (15) represents the 
different movements of the AO for tracking the prey during 
evasion. G2 , calculated using Eq. (16), is a decreasing value 
from 2 to 0, denoting the slope of the flight for the AO for 
tracking prey during evasion from the first position to the 
final position. X(t) is the current solution in the t th iteration 
(Abualigah et al. 2021b).

QF(t) is the quality function value of the t th iteration. The 
flowchart of the AO is given in Fig. 1.

2.2 � Tangent search algorithm

The Tangent Search Algorithm is developed based on the 
tangent function used to explore the search area well. In 
TSA, the equations of motion are performed with a spheri-
cal step “ step × tan(�) ”. As in Levy flight, it is called tan-
gent flight because the tangent function performs the flight 
function.

Having a better balance between exploration and intensi-
fication (exploitation) will make the optimization algorithm 
more successful. Too much intensification causes algorithms 
to converge quickly to the local minimum, and too much 
exploration slows down and sometimes differentiates the 
algorithm too much. To reach a balance between intensifica-
tion and exploration, TSA is built from 3 main components: 
intensification, exploration, and escape from local minimum. 
Also, the local minimum escape procedure is applied to a 

(13)
X4(t + 1) =QF × Xbest(t) − (G1 × X(t) × rand)

− G2 × Levy() + rand × G1

(14)QF(t) = t
2×rand−1

(1−T)2

(15)G1 = 2 × rand − 1

(16)G2 = 2 ×
(
1 −

t

T

)
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random individual (solution) in each iteration to avoid get-
ting stuck in the local minimum. As in other population-
based algorithms, in TSA, individuals in the first population 
are calculated using Eq. (1) to be evenly distributed within 
the boundaries of the solution space (Layeb 2021).

2.2.1 � Intensification phase

In this phase, TSA first performs a random local walk 
according to Eq. (17) or Eq. (18). Some of the decision vari-
ables of the solution obtained (for the problems with size 
larger than four, the variable rate is 20%, while for the prob-
lems with four dimensions or less, it is 50%) are replaced 

with the values of the corresponding variables in the current 
best solution.

As a result, the resulting solution Xi(t + 1) has a similarity 
rate of less than 50% with the optimal available solution. If 
the values of the found solution exceed the LB and UB limits 
of the problem, Eq. (19) is used for correction (Layeb 2021).

(17)Xi(t + 1) = Xi(t) + step × tan (�) ×
(
Xi(t) − Xbest(t)

)

(18)Xi(t + 1) = Xbest(t), if valueiis selected

(19)X = rand × (UB − LB) + LB

Fig. 1   Flowchart of AO
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2.2.2 � Exploration phase

Unlike local search methods, it has a large exploration 
capacity due to the global random walk. TSA uses tangent 
flight and variable step size for global random walking. By 
using the tangent function, the search area is explored more 
efficiently. In fact, � being close to �∕2 will increase the 
tangent value and the resulting solution will be far from the 
current solution. With a value of � near to 0, the tangent 
function will have small values, and the solution will be 
similar to the current solution. Therefore, Eq. (20) belonging 
to the exploration phase converges between local and global 
random walk. For exploratory search, this equation used is 
applied with probability 1∕D to each variable (Layeb 2021).

2.2.3 � Escape from the local minimum

TSA includes a mechanism that uses a certain procedure to 
escape the local minimum stagnation problem. The proce-
dure consists of two parts executed with the Pesc probability 
value. A random agent search is selected at each iteration, 
and then either Eq. (21) or Eq. (22) is used. In addition, the 
new random solutions can replace the worst solutions with 
probability 1% (Layeb 2021). In Eq. (21), sign() represents 
the signum function that returns the sign of given number.

Pswitch , Pesc , step , and � are the basic parameters used 
to highlight intensification and exploration search. The bal-
ance between global and local random walks is aimed at 
controlling the parameter of switching, Pswitch�[0, 1] . The 
parameter Pesc�[0, 1] is the escape procedure probability. 
For guiding and highlighting the intensification and explo-
ration capability, the step parameter is used. A variable step 
size is used in TSA to get a good approximation of the best 
solution and avoid lack of precision. At the beginning of 
the search, a large step size is adopted as the search process 
progresses, and the step size is non-linearly decreased dur-
ing iterations. By this adaptive size behavior, a good balance 
between intensification and exploration is aimed in TSA. 
The step size is influenced by the tangent flights that give an 
oscillating and periodic behavior to the search. This method 
utilizes a nonlinear reduction scheme for logarithm function-
based adaptive step size to adapt the exploration and intensi-
fication search process. A fine convergence is aimed with the 
help of the logarithm function. On the other hand, it is seen 

(20)Xi(t + 1) = Xi(t) + step × tan (�)

(21)
Xi(t + 1) =Xi(t) + (15 × sign(rand − 0.5)∕ log (1 + t))

×
(

Xbest(t) − rand ×
(

Xbest(t) − XXi(t)
))

(22)Xi(t + 1) = Xi(t) + tan (�) × (UB − LB)

that better results are obtained when different step size func-
tions are used (Layeb 2021). Therefore, to be more efficient, 
two step size variants are used in TSA. In the intensification 
search, the first variant is used and is calculated as given in 
Eq. (23). The second step size is calculated using Eq. (24) 
in the exploration search.

Here, norm() is a specific mathematical norm. The 
sign(−,+) component controls the direction of the explora-
tion and intensification phase (Layeb 2021). The flowchart 
of TSA is given in Fig. 2.

3 � Hybrid Aquila optimizer‑tangent search 
algorithm

High exploration and exploitation abilities are required in 
solution search and optimization methods. The exploration 
phase’s goal is to thoroughly investigate the search space 
and identify the most promising potential solutions. The 
exploitation phase is designed to guide the search process 
to the best solution feasible for the population. The accuracy 
and speed of convergence of a metaheuristic method can be 
enhanced by properly balancing exploitation and exploration 

(23)
step1 = 10 × sign(rand − 0.5) × norm

(
Xbest(t)

)
× log(1 + 10 × D∕t)

(24)
step2 = sign(rand − 0.5) × norm

(
Xbest(t) − Xi(t)

)
∕log(20 + t)

Fig. 2   Flowchart of TSA



8051A new hybrid method based on Aquila optimizer and tangent search algorithm for global…

1 3

performance. A new hybrid algorithm that is stronger than 
these two algorithms can be obtained by hybridizing an algo-
rithm with strong exploitation ability, but weak exploration 
ability and an algorithm with strong exploration ability but 
weak exploitation ability. A more powerful new algorithm 
is aimed by combining the strong exploitation capability 
of the first algorithm with the powerful exploration capa-
bility of the second algorithm. Thus, the hybridization of 
the two methods can be used to combine the strengths of 
each method in a single approach and take advantage of 
the advantages while eliminating the disadvantages of each 
method.

In the AO method, while the exploration phase is applied 
at 2/3 of the iteration, the exploitation phase is insufficient. 
To give more importance to exploitation capability, the 
effective intensification phase of TSA is applied instead of 
the narrowed exploration phase of the AO. Therefore, it is 
aimed to reach the optimum solution earlier by strengthening 
the exploitation stage of the hybrid AO-TSA. In this paper, 
a hybrid AO-TSA is proposed by integrating the intensifica-
tion steps of TSA into the narrowed exploration phase of 
the AO. This proposed hybrid algorithm finds the global 
solution faster without getting stuck in the local optimum, by 
properly balancing the exploitation and exploration phase. 
Finally, in order to escape from the local minimum stagna-
tion problem, the escape from local minimum steps used 
by TSA are also implemented in this new hybrid algorithm. 
The flow diagram of the proposed hybrid AO-TSA is shown 
in Fig. 3.

4 � Test functions and engineering design 
problems

Generally, well-defined and complex functions are used to 
define standard measuring of the optimization methods. 
Standard problems and interfaces to search and optimiza-
tion problems are already specified in order to compare 
different optimization algorithms on different types of 
search and optimization problems. Six unimodal (Sphere, 
Rosenbrock, Quartic, Schwefel’s 1.20, Schwefel’s 2.21, 
and Schwefel’s 2.22), six multimodal (Schwefel, Levy 
Function, Ackley, Griewank, Penalized, and Rastrigin), 
and six fixed-dimension multimodal (Foxholes, Kowa-
lik, Goldstein-Price, Shekel 7, Shekel 10, and Six Hump 
Camel) benchmark functions were used to compare the 
performances of the AO-TSA, AO, TSA, SCA (Mirjalili 
2016), WOA (Mirjalili and Lewis 2016), I-GWO (Nadimi-
Shahraki et al. 2021), CSA (Askarzadeh 2016), and BO 
(Das and Pratihar 2019) algorithms. In addition, three of 
the CEC 2019 benchmark functions (Storn's Chebyshev 
Polynomial Fitting Problem, Lennard–Jones Minimum 
Energy Cluster, and Inverse Hilbert Matrix Problem) were 

used. The equations, parameters, minimum values, and 
problem size of these twenty-one test functions are shown 
in Table 1.

Two engineering design problems (three bar truss design 
and tension/compression spring design) were also used to 
test the efficiency of the proposed method. In tension/com-
pression spring design, which is a continuous constrained 
problem, it is aimed to find the best values of the mean coil 
diameter, number of active coils, and wire diameter param-
eters in order to minimize the tension/compression spring 
weight. The mathematical expression of the problem is 
shown in Eq. (25).

In the problem of three bar truss design, which aims 
to minimize the weight of a three-bar truss, the objective 
function is simple. However, as with other structural design 
problems, there are many constraints. These constraints are 
buckling, deflection, and stress. Equation (26) depicts the 
problem’s mathematical expression.

5 � Experimental results

In this study, for all experiments, the initial population size 
of the algorithms used was 30. All algorithms were started 
and run under equal conditions. The number of function 

(25)

min f (x) =
(
x3 + 2

)
x2x

2
1

g1(x) = 1 −
x3
2
x3

71785x4
1

≤ 0

g2(x) =
4x2

2
− x1x2

12566
(
x2x

3
1
− x4

1

) +
1

5108x2
1

− 1 ≤ 0

g3(x) = 1 −
140.45x1

x2
2
x3

≤ 0

g4(x) =
x1 + x2

1.5
− 1 ≤ 0

2 ≤ x1 ≤ 15, 0.25 ≤ x2 ≤ 1.3, 0.05 ≤ x3 ≤ 2

(26)

min f (x) =
�
2
√
2x1 + x2

�
× l

g1(x) =

√
2x1 + x2√
2x2

1

P − � ≤ 0

g2(x) =
x2√

2x2
1
+ 2x1x2

P − � ≤ 0

g3(x) =
1x2√
2x2+x1

P − � ≤ 0

0 ≤ x1, x2 ≤ 1,

l = 100cm,P = 2
KN

cm2
, � = KN∕cm2
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evaluations was used as the termination condition of the 
algorithms. Accordingly, the algorithm was terminated 
when the number of function evaluations reaches 10,000. 
Each algorithm was run 20 times for each test function 
and obtained results are presented. Standard values for the 
parameters of AO and TSA were used in the experiments.

Tables 2 and 3 show the best, worst, mean, and stand-
ard deviation values as “Best”, “Worst”, “Mean”, and “Std” 

respectively obtained after the Hybrid AO-TSA, AO, TSA, 
WOA, SCA, I-GWO, BO, and CSA were run 20 times for 
each test function. According to these tables, the AO-TSA 
algorithm gives the best results for Sphere, Rosenbrock, 
Schwefel’s 2.21, Schwefel, Ackley, Griewank, Rastrigin, 
Foxholes, Kowalik, Shekel 7, Shekel 10, Six Hump Camel, 
and Lennard–Jones Minimum Energy Cluster test functions. 
The worst results were obtained from CSA in general. The 

Fig. 3   Flowchart of hybrid 
AO-TSA
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best results according to mean values for Sphere, Rosen-
brock, Quartic, Schwefel’s 1.20, Schwefel’s 2.21, Schwefel’s 
2.22, Schwefel, Levy Function, Ackley, Griewank, Penal-
ized, Rastrigin, Shekel 7, Shekel 10, Six Hump Camel, and 
Kowalik test functions were obtained from the hybrid AO-
TSA. According to results obtained for unimodal benchmark 
functions, the proposed method seems to achieve the best 
results in 3 out of 6 functions with respect to the best values 
while it gives the best results in all unimodal functions con-
cerning mean values. In multimodal benchmark functions, 
AO-TSA gives the best results in 4 out of 6 functions in 
terms of the best values, and the best results in all func-
tions in terms of mean values are obtained by the proposed 
method.

As seen in Table 3, in fixed-dimension multimodal bench-
mark functions, AO-TSA achieves the best results in 5 out 
of 6 functions in terms of the best values, and the proposed 
technique achieves the best results in 4 out of 6 functions in 
terms of mean values. In CEC 2019 benchmark functions, 
the high performance obtained for other types of benchmark 
functions is not achieved by the proposed method. Generally, 
it is seen that the mean values obtained from AO-TSA for 
other test functions are better than other algorithms. When 
the standard deviation values were examined, AO-TSA gave 
the minimum value for all 6 test functions used. Consider-
ing the experiments, it is seen that AO-TSA gives promising 
results in terms of the standard deviation values compared 
to other algorithms.

Figure 4 shows the change in the mean fitness value/
number of function evaluations of the test results of Hybrid 
AO-TSA, AO, TSA, WOA, SCA, I-GWO, BO, and CSA in 
Sphere, Rosenbrock, Quartic, Schwefel’s 1.20, Schwefel’s 
2.21, Schwefel’s 2.22, Schwefel, Levy Function, Ackley, 
Griewank, Penalized, and Rastrigin test functions.

According to the convergence curve demonstrated in 
Fig. 4, the hybrid AO-TSA reaches the best solution very 
rapidly for all test functions. Especially in Schwefel 2.21, 
Schwefel, Ackley, Griewank, and Rastrigin test functions, 
it gave good results in a very short time compared to other 
algorithms. Again, according to Fig. 4, the algorithm that 
reached the best solution in the test functions used was 
AO-TSA.

Figure 5 shows the change in the mean fitness value/
number of function evaluations of the test results of Hybrid 
AO-TSA, AO, TSA, WOA, SCA, I-GWO, BO, and CSA in 
Foxholes, Kowalik, Goldstein-Price, Shekel 7, Shekel 10, 
Six Hump Camel, Storn’s Chebyshev Polynomial Fitting 
Problem, Lennard–Jones Minimum Energy Cluster, and 
Inverse Hilbert Matrix Problem test functions. According 

to the convergence curve shown in Fig. 5, it is seen that 
the convergence rate of AO-TSA is quite good. Especially 
for Schekel 7 and Schekel 10 test functions, the proposed 
method converged much faster than other algorithms. In gen-
eral, it is seen that AO-TSA converges rapidly and achieves 
better results.

On many benchmark functions, the effect of population 
size (N) is investigated. Numerous numbers of population 
size (20, 30, and 50) are investigated across 10,000 function 
evaluation number to properly analyze the AO-TSA’s param-
eter sensitivity. Sensitivity analysis for population size is 
shown in Table 4. The results presented in the table indicate 
that in general, performance of the method increases with 
higher N values.

Furthermore, the effect of t parameter is investigated on 
many benchmark functions. 1/2, 2/3, and 3/4 values of the t 
parameter are used for parameter analysis of the algorithm. 
Results of sensitivity analysis for t parameter are shown in 
Table 5. The best results are obtained with the value of (
2

3

)
× T  for t parameter.

Box plots of the experimental results of the hybrid AO-
TSA proposed in this study and the other seven algorithms 
used for comparison are shown in Figs. 6 and 7. When the 
box plots in Figs. 6 and 7 are examined, it is seen that the 
lower quartile, median, and upper quartile values obtained 
based on 20 runs from AO-TSA in Rosenbrock, Quartic, 
Schwefel’s 1.20, Schwefel’s 2.21, Schwefel’s 2.22, Levy 
Function, Griewank, Penalized, Rastrigin, Foxholes, Kowa-
lik, and Storns Chebyshev Polynomial test functions, espe-
cially the Schwefel test function, are smaller than the values 
obtained from other algorithms. It is observed that the lower 
quartile, median, and upper quartile values obtained from 
the AO-TSA for the Sphere, Ackley, Golden Stein Price, 
and Lennard Jones Minimum Energy Cluster test functions 
are close and small compared to those obtained from other 
algorithms.

For the problems of three bar truss design and tension/
compression spring design, all algorithms were started and 
run under equal conditions. The optimal results are obtained 
when each algorithm is run 20 times and the parameter 
values that give these results are listed in Tables 6 and 7. 
When the tables are examined, it is seen that for these two 
problems, the best results are obtained from the proposed 
AO-TSA. Afterward, BO and I-GWO algorithms give better 
results, respectively.

In addition, experimental results were evaluated by the 
Friedman test and it was examined whether there was a sta-
tistically significant difference between the results obtained 
from the algorithms used in this study. This non-parametric 
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Table 2   Statistical results for unimodal and multimodal test functions

AO-TSA AO TSA WOA SCA I-GWO CSA BO

Unimodal
 Sphere
  Best 4.7E–154 1E–149 1.21E–39 1.98E–33 7.55E–07 6.77E–37 2.39E–11 2.52E–12
  Worst 8.1E–147 9.88E–57 1.07E–26 1.06E–22 0.110803 5.57E–32 0.000498 0.912853
  Mean 8.7E–148 4.94E–58 9.32E–28 8.99E–24 0.016279 3E–33 3.79E–05 0.047794
  Std 2.1E–147 2.21E–57 2.88E–27 2.81E–23 0.031767 1.24E–32 0.000112 0.203758

 Rosenbrock
  Best 8.86E–05 0.000187 0.085826 4.117923 7.827973 5.092199 8.677987 0.109465
  Worst 0.034303 0.086325 8.852858 6.736209 23.32113 6.418753 9.042301 18.8698
  Mean 0.007296 0.008634 6.397952 6.231087 10.22525 5.888638 8.937261 4.448394
  Std 0.01028 0.018897 2.156126 0.587402 3.964981 0.278459 0.077351 4.216027

 Quartic
  Best 1.12E–07 5.75E–07 1.03E–14 0.000175 0.449391 0.000603 0.045067 1.12E–15
  Worst 2.61E–05 0.000129 0.043949 0.053844 1.366444 0.00371 0.179443 0.043949
  Mean 5.41E–06 2.99E–05 0.01303 0.006058 0.716828 0.00113 0.102158 0.00879
  Std 6.91E–06 3.50E–05 0.012952 0.013652 0.223815 0.000689 0.036993 0.009827

 Schwefel’s 1.20
  Best 4.28E–85 4.93E–52 1.29E–57 6.80E–03 6.58E + 03 4.12E–01 2.40E–17 0
  Worst 1.25E–74 9.31E–43 7.82E–38 2.31E + 03 3.90E + 04 3.16E + 02 5.35E–05 0.075742
  Mean 1.16E–75 5.10E–44 5.33E–39 4.88E + 02 1.62E + 04 3.25E + 01 1.37E–05 1.19E–02
  Std 3.55E–75 2.08E–43 1.79E–38 5.85E + 02 6.72E + 03 6.99E + 01 1.86E–05 1.99E–02

 Schwefel’s 2.21
  Best 1.60E–45 1.94E–28 1.08E–33 4.81E–14 4.96E + 01 2.78E–01 4.69E–08 3.32E–04
  Worst 1.33E–40 3.01E–25 6.00E–19 7.31E + 01 8.11E + 01 2.38E + 00 2.12E–02 4.45E + 00
  Mean 1.24E–41 4.63E–26 3.06E–20 2.04E + 01 6.52E + 01 8.35E–01 1.93E–03 6.21E–01
  Std 2.98E–41 7.36E–26 1.34E–19 2.51E + 01 9.88E + 00 6.44E–01 4.77E–03 1.08E + 00

 Schwefel’s 2.22
  Best 2.83E–45 7.29E–28 1.70E–27 9.18E–43 2.32E + 01 2.16E–04 6.08E–06 0
  Worst 1.73E–42 6.81E–25 6.53E–18 6.47E–40 9.51E + 02 3.78E–03 2.67E–02 0.000086
  Mean 5.86E–43 1.23E–25 3.28E–19 4.84E–41 1.87E + 02 1.06E–03 2.65E–03 4.39E–06
  Std 5.40E–43 1.89E–25 1.46E–18 1.46E–40 2.80E + 02 1.08E–03 6.55E–03 1.93E–05

Multimodal
 Schwefel
  Best – 4189.83 – 3382.47 – 837.966 – 4188.63 – 2366.05 – 3723.08 – 38.4806 – 4071.39
  Worst – 4189.16 – 1888.33 – 837.966 – 2248.8 – 1868.56 – 2582.79 – 33.9503 – 3479.2
  Mean – 4189.68 – 2560.64 – 837.966 – 3199.73 – 2074.72 – 3275.2 – 36.9236 – 3799.89
  Std 0.204603 461.0238 2.13E–07 665.1424 121.6722 285.8669 1.216046 152.9926

 Levy Function
  Best 1.12E–07 5.75E–07 1.03E–14 0.000175 0.449391 0.000603 0.045067 1.12E–15
  Worst 2.61E–05 0.000129 0.043949 0.053844 1.366444 0.00371 0.179443 0.043949
  Mean 5.41E–06 2.99E–05 0.01303 0.006058 0.716828 0.00113 0.102158 0.00879
  Std 6.91E–06 3.5E–05 0.012952 0.013652 0.223815 0.000689 0.036993 0.009827

 Ackley
  Best 8.88E–16 8.88E–16 8.88E–16 4.44E–15 3.6E–06 4.44E–15 8.58E–05 1.11E–12
  Worst 8.88E–16 4.44E–15 2.316849 4.1E–12 1.599691 7.99E–15 0.010407 1.155149
  Mean 8.88E–16 2.84E–15 0.115874 3.42E–13 0.13784 4.62E–15 0.002403 0.057759
  Std 0 1.81E–15 0.518056 9.38E–13 0.384317 7.94E–16 0.00282 0.258299

 Griewank
  Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.60E + 01 2.84E–01 4.39E–11 5.17E–02
  Worst 0.00E + 00 8.72E–01 2.51E–01 8.37E–01 1.68E + 02 7.31E–01 4.33E–03 3.27E–01
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test is used to describe the differences in the behavior of 
multiple algorithms. Test cases are expressed in rows while 
the outcomes of comparing algorithms are shown in columns 
in the Friedman test. In the experiments, the Null Hypothesis 
( H0 ) is “There is not a meaningful difference between the 
fitness function values of the compared algorithms and those 
of the proposed hybrid AO-TSA”. Alternative Hypothesis 
( H1 ) is “There is a meaningful difference between the fitness 
function values of the compared algorithms and those of the 
proposed hybrid AO-TSA”. Analysis results with the Fried-
man test are shown in Table 8. The alpha value was deter-
mined as 0.05 and the degrees of freedom ( Df  ) (number of 
samples compared-1) was 7. According to the alpha value 
and the degrees of freedom, it is seen that the value of x2

F
 is 

14.067, from the chi-square distribution table. When Table 8 
is examined, it is seen that the x2 value is greater than the x2

F
 

value (x2 > x2
F
 ) for all test functions. Accordingly, the Null 

Hypothesis ( H0 ) is rejected and the Alternative Hypothesis 
( H1 ) is accepted. In other words, there is a statistically sig-
nificant difference between the fitness function values of the 
compared algorithms and those of the proposed hybrid AO-
TSA according to the Friedman test.

6 � Conclusions

Metaheuristic approaches have grown in popularity in recent 
years as a result of their high computational power and ease 
of conversion. There is, however, no algorithm that can pro-
vide the optimal solution to all problems. As a result, new 

metaheuristic algorithms are being proposed and current 
algorithms are being improved. Exploration and exploita-
tion skills should be included in metaheuristic algorithms. 
One of these two capabilities may be sufficient in some 
metaheuristic algorithms, while the other may be insuffi-
cient. In this study, a new hybrid method, AO-TSA, was 
proposed by combining the TSA intensification phase with 
the limited exploration stage to improve AO’s exploitation 
ability. In addition, the local minimum escape steps of TSA 
are also applied in the new hybrid algorithm. By combin-
ing the strengths of these two metaheuristic algorithms, a 
new more efficient general-purpose hybrid algorithm was 
presented as a solution search methodology for complex 
optimization problems.

Six unimodal, six multimodal, six fixed-dimension mul-
timodal, and three modern CEC 2019 benchmark functions 
were used to compare the performances of AO-TSA, AO, 
TSA, WOA, SCA, I-GWO, CSA, and BO. When the mean 
results obtained by running 20 times were examined; it 
was observed that, generally, hybrid AO-TSA reaches bet-
ter solutions earlier than the other algorithms according to 
the convergence curves. The best or near best values ​​for 
the Best, Mean, and Standard Deviation criteria in multi-
modal test functions were found by AO-TSA. Furthermore, 
in unimodal benchmark functions, the best mean values are 
obtained from the proposed hybrid AO-TSA. The best results 
for multimodal benchmark functions are achieved by the 
proposed method. The high performance obtained for other 
types of benchmark functions is not achieved by the pro-
posed algorithm in CEC 2019 benchmark functions. Finally, 

Table 2   (continued)

AO-TSA AO TSA WOA SCA I-GWO CSA BO

  Mean 0.00E + 00 4.36E–02 4.66E–02 1.36E–01 1.16E + 02 5.73E–01 5.80E–04 1.56E–01
  Std 0.00E + 00 1.95E–01 6.99E–02 2.88E–01 3.22E + 01 1.19E–01 1.14E–03 7.96E–02

 Penalized
  Best 9.09E–11 1.36E–09 5.12E–09 1.20E–02 3.13E + 04 1.15E–03 9.77E–02 3.47E–15
  Worst 1.60E–07 2.28E–05 2.07E–01 2.87E–01 2.07E + 08 3.68E–01 3.36E–01 6.22E–01
  Mean 6.17E–08 2.46E–06 2.07E–02 6.72E–02 8.23E + 07 5.09E–02 1.96E–01 1.55E–01
  Std 5.29E–08 5.29E–06 5.42E–02 7.30E–02 6.04E + 07 1.06E–01 6.49E–02 2.14E–01

 Rastrigin
  Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 7.06E + 01 2.56E + 01 2.14E–11 0.00E + 00
  Worst 0.00E + 00 1.42E–14 1.59E + 01 2.84E–14 1.44E + 02 5.08E + 01 9.25E–04 3.09E + 00
  Mean 0.00E + 00 7.11E–16 3.33E + 00 2.84E–15 1.18E + 02 4.08E + 01 1.37E–04 1.10E + 00
  Std 0.00E + 00 3.18E–15 5.11E + 00 8.75E–15 1.81E + 01 6.34E + 00 2.90E–04 1.03E + 00
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Table 3   Statistical results for fixed-dimension multimodal and CEC 2019 test functions

Fixed–Dimension Multimodal
 Foxholes
  Best 0.998004 0.998004 0.998004 0.998004 0.998033 0.998004 12.67051 0.998004
  Worst 1.103655 12.67051 21.07269 10.76318 2.982105 0.998004 12.67051 0.998004
  Mean 1.014715 3.817256 8.887892 3.68741 1.855165 0.998004 12.67051 0.998004
  Std 0.034192 4.414279 5.043994 4.236413 0.909152 1.79E–11 4.35E–13 9.88E–10

 Kowalik
  Best 0.000342 0.000438 0.000628 0.000349 0.000575 0.000501 0.000739 0.000424
  Worst 0.003498 0.012201 0.020363 0.002237 0.001861 0.001247 0.002193 0.020363
  Mean 0.000624 0.001942 0.005693 0.000859 0.001209 0.00074 0.001297 0.008681
  Std 0.00068 0.002452 0.008691 0.000534 0.000381 0.000295 0.000344 0.009791

 Golden Stein Price
  Best 3.004974 3.007641 3 3.000016 3.000311 3 3.001175 3
  Worst 3.147442 9.765201 30 3.000065 3.007065 3 3.043565 3
  Mean 3.073239 4.194818 6.857143 3.000033 3.001866 3 3.013311 3
  Std 0.037193 1.577673 9.804686 1.35E–05 0.001758 9.43E–13 0.012615 4.89E–15

 Shekel 7
  Best –1.04E + 01 –1.04E + 01 –1.04E + 01 –1.03E + 01 –1.20E + 00 –1.03E + 01 –5.34E + 00 –1.04E + 01
  Worst –1.04E + 01 –1.01E + 01 –1.04E + 01 –8.83E–01 –4.42E–01 –5.13E + 00 –1.23E + 00 –1.84E + 00
  Mean –1.04E + 01 –1.04E + 01 –1.04E + 01 –5.62E + 00 –6.78E–01 –7.47E + 00 –3.04E + 00 –5.17E + 00
  Std 3.46E–04 7.65E–02 0.00E + 00 2.99E + 00 2.32E–01 2.08E + 00 1.07E + 00 3.22E + 00

 Shekel 10
  Best –1.05E + 01 –1.05E + 01 –1.05E + 01 –1.04E + 01 –1.62E + 00 –1.05E + 01 –5.01E + 00 –1.05E + 01
  Worst –1.05E + 01 –1.05E + 01 –1.05E + 01 –2.37E + 00 –5.70E–01 –5.12E + 00 –1.38E + 00 –2.42E + 00
  Mean –1.05E + 01 –1.05E + 01 –1.05E + 01 –5.68E + 00 –8.66E–01 –7.34E + 00 –2.94E + 00 –6.42E + 00
  Std 2.52E–03 1.24E–02 5.47E–15 2.56E + 00 2.22E–01 2.33E + 00 9.77E–01 3.85E + 00

 Six Hump Camel
  Best –1.03E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00
  Worst –1.03E + 00 –9.26E–01 –2.15E–01 –1.03E + 00 2.23E + 00 –1.03E + 00 –1.03E + 00 –1.03E + 00
  Mean –1.03E + 00 –1.02E + 00 –9.50E–01 –1.03E + 00 –1.10E–01 –1.03E + 00 –1.03E + 00 –1.03E + 00
  Std 1.62E–04 2.54E–02 2.51E–01 5.30E–08 9.45E–01 2.88E–12 5.60E–05 0.00E + 00

CEC 2019
 Storns Chebyshev Polynomial
  Best 53,579.84 75,397.47 57,505.87 2.13E + 09 1.19E + 10 3.19E + 08 50,262.18 27,231,871
  Worst 127,977.1 407,644.3 832,996.4 1.88E + 11 1.53E + 11 5.96E + 09 60,547.57 5.9E + 09
  Mean 83,329.26 132,294.5 344,530.3 6.98E + 10 4.33E + 10 2.99E + 09 54,517.57 6.24E + 08
  Std 20,358.19 85,240.25 270,357.9 6.13E + 10 3.12E + 10 1.6E + 09 3269.862 1.28E + 09

 Inverse Hilbert Matrics 
Problem

  Best 17.39732 17.61456 17.631 17.3477 17.51053 17.34405 17.40818 17.34286
  Worst 17.85994 17.89831 20.6038 17.35847 17.92798 17.34618 17.4459 17.34286
  Mean 17.60954 17.74257 18.6201 17.35081 17.6632 17.34455 17.4237 17.34286
  Std 0.111446 0.072811 0.688797 0.002725 0.113481 0.000475 0.010425 1.58E–11

 Lennard Jones Min. Energy 
Cluster

  Best 12.7024 12.70267 12.7024 12.7024 12.70245 12.70241 12.70262 12.7024
  Worst 12.7028 12.70586 12.7024 12.70241 12.70312 12.70242 12.70393 12.7024
  Mean 12.7025 12.70373 12.7024 12.7024 12.7026 12.70241 12.70304 12.7024
  Std 8.29E–8 0.000907 6.59E–14 2.91E–07 0.000181 4.38E–06 0.00037 1.74E–07
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when Friedman analysis of the results was performed, sta-
tistically significant differences were found. Despite the fact 
that the results show that hybrid AO-TSA is an effective 
method for global optimization, the requirement for parame-
ters for the hybrid method a priori appears to be an AO-TSA 
limitation. However, in order to eliminate this limitation, 
new approaches can be proposed for adaptively specifying 
the algorithm parameters.

In future studies, it is planned to use different versions 
of this algorithm in real-world problems by proposing and 
making it multi-objective. Different local search methods 
can be integrated into this method to increase the accuracy 
and search power of hybrid AO-TSA. In addition, distributed 
and parallel versions of this algorithm can be developed for 
future studies.
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Table 4   Sensitivity analysis of AO-TSA for population size (N)

N = 20 N = 30 N = 50

Sphere
 Best 0.00E + 00 4.70E-154 5.76E-160
 Worst 4.50E–263 8.10E–147 1.97E–143
 Mean 2.37E–264 8.70E–148 9.88E–145
 Std 0.00E + 00 2.10E–147 4.41E–144

Rosenbrock
 Best 7.12E–04 8.86E–05 5.20E–08
 Worst 7.06E + 00 3.43E–02 2.16E + 00
 Mean 1.88E + 00 7.30E–03 1.55E–01
 Std 2.45E + 00 1.03E–02 5.01E–01

Quartic
 Best 1.36E–05 1.12E–07 5.70E–06
 Worst 6.42E–04 2.61E–05 6.59E–05
 Mean 2.05E–04 5.41E–06 3.80E–05
 Std 1.86E–04 6.91E–06 2.12E–05

Schwefel
 Best – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Worst – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Mean – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Std 9.12E–01 2.05E–01 4.60E–01

Levy Function
 Best 2.58E–08 1.12E–07 4.34E–09
 Worst 9.10E–04 2.61E–05 8.22E–05
 Mean 1.31E–04 5.41E–06 1.47E–05
 Std 2.53E–04 6.91E–06 2.07E–05

Ackley
 Best 8.88E–16 8.88E–16 8.88E–16
 Worst 8.88E–16 8.88E–16 8.88E–16
 Mean 8.88E–16 8.88E–16 8.88E–16
 Std 0.00E + 00 0.00E + 00 0.00E + 00

Foxholes
 Best 9.98E–01 9.98E–01 9.98E–01
 Worst 3.03E + 00 1.10E + 00 9.99E–01
 Mean 1.18E + 00 1.01E + 00 9.98E–01
 Std 5.62E–01 3.42E–02 1.66E–04

Kowalik
 Best 3.44E–04 3.42E–04 3.56E–04
 Worst 4.05E–03 3.50E–03 2.54E–03
 Mean 7.01E–04 6.24E–04 5.94E–04
 Std 7.98E–04 6.80E–04 4.79E–04

Golden Stein Price
 Best 3.00E + 00 3.00E + 00 3.01E + 00
 Worst 3.68E + 00 3.15E + 00 3.38E + 00
 Mean 3.17E + 00 3.07E + 00 3.08E + 00
 Std 2.05E–01 3.72E–02 9.23E–02

Table 5   Sensitivity analysis of AO-TSA for t parameter

t ≤

(
1

2

)
× T t ≤

(
2

3

)
× T t ≤

(
3

4

)
× T

Sphere
 Best 8.75E–155 4.70E–154 5.76E–160
 Worst 2.20E–143 8.10E–147 1.97E–143
 Mean 1.35E–144 8.70E–148 9.88E–145
 Std 4.89E–144 2.10E–147 4.41E–144

Rosenbrock
 Best 6.67E–05 8.86E–05 5.70E–04
 Worst 1.60E + 00 3.43E–02 1.72E–01
 Mean 1.27E–01 7.30E–03 1.63E–02
 Std 3.96E–01 1.03E–02 3.89E–02

Quartic
 Best 6.49E–06 1.12E–07 2.29E–05
 Worst 9.10E–04 2.61E–05 7.24E–04
 Mean 2.29E–04 5.41E–06 2.08E–04
 Std 2.59E–04 6.91E–06 2.14E–04

Schwefel
 Best – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Worst – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Mean – 4.19E + 03 – 4.19E + 03 – 4.19E + 03
 Std 1.36E–01 2.05E–01 3.13E–01

Levy Function
 Best 5.87E–08 1.12E–07 6.55E–08
 Worst 1.11E–03 2.61E–05 2.51E–04
 Mean 8.21E–05 5.41E–06 5.17E–05
 Std 2.50E–04 6.91E–06 6.37E–05

Ackley
 Best 8.88E–16 8.88E–16 8.88E–16
 Worst 8.88E–16 8.88E–16 8.88E–16
 Mean 8.88E–16 8.88E–16 8.88E–16
 Std 0.00E + 00 0.00E + 00 0.00E + 00

Foxholes
 Best 9.98E–01 9.98E–01 9.98E–01
 Worst 1.26E + 00 1.10E + 00 2.98E + 00
 Mean 1.02E + 00 1.01E + 00 1.28E + 00
 Std 6.50E–02 3.42E–02 5.66E–01

Kowalik
 Best 3.18E–04 3.42E–04 3.32E–04
 Worst 5.70E–03 3.50E–03 3.06E–03
 Mean 7.42E–04 6.24E–04 6.51E–04
 Std 1.17E–03 6.80E–04 5.93E–04

Golden Stein Price
 Best 3.00E + 00 3.00E + 00 3.00E + 00
 Worst 3.68E + 00 3.15E + 00 3.40E + 00
 Mean 3.19E + 00 3.07E + 00 3.10E + 00
 Std 1.94E–01 3.72E–02 9.70E–02
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Fig. 6   Box plots for experimental results from unimodal and multimodal benchmark functions
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Fig. 7   Box plots for experimental results from fixed-dimension multimodal and CEC 2019 benchmark functions

Table 6   Optimal results obtained from the methods for tension/com-
pression spring design

x1 x2 x3 f (x)

AO-TSA 0.051162 0.344061 12.08972 0.012689
AO 0.065023 0.632572 8.461970 0.027980
TSA 0.085277 0.901630 12.54581 0.095375
WOA 0.061224 0.632459 3.987035 0.014194
SCA 0.069467 0.677090 5.908206 0.025839
I-GWO 0.050773 0.334713 12.77824 0.012803
CSA 0.059300 0.548500 9.43E + 00 0.022047
BO 0.053143 0.392721 9.453119 0.012703

Table 7   Optimal results obtained from the methods for three bar truss 
design

x1 x2 f (x)

AO-TSA 0.790512 0.403105 263.9010
AO 0.763076 0.488572 264.6876
TSA 0.797520 0.387339 264.3067
WOA 0.759767 0.496860 264.5806
SCA 0.747313 0.581608 269.5328
I-GWO 0.784408 0.420579 263.9220
CSA 0.806047 0.370386 265.0231
BO 0.792187 0.398517 263.9159
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Data deposition statement  No new data were generated for this study.
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