
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:14125–14139
https://doi.org/10.1007/s12652-022-04116-0

ORIGINAL RESEARCH

Adaptive windowing based recurrent neural network for drift
adaption in non‑stationary environment

Shubhangi Suryawanshi1,2 · Anurag Goswami1 · Pramod Patil2 · Vipul Mishra1

Received: 24 November 2021 / Accepted: 6 June 2022 / Published online: 30 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
In today’s digital era, many applications generate massive data streams that must be sequenced and processed immediately.
Therefore, storing large amounts of data for analysis is impractical. Now, this infinite amount of evolving data confronts
concept drifts in data stream classification. Concept drift is a phenomenon in which the distribution of input data or the
relationship between input data and target label changes over time. If the drifts are not addressed, the learning model’s per-
formance suffers. Non-stationary data streams must be processed as they arrive, and neural networks’ built-in capabilities
aid in the processing of huge non-stationary data streams. We proposed an adaptive windowing approach based on a gated
recurrent unit, a variant of the recurrent neural network incrementally trained on incoming data (for the real-world airline
and synthetic Streaming Ensemble Algorithm (SEA) datasets), and employed elastic weight consolidation with the Fisher
information matrix to prevent forgetting. Unlike the traditional fixed window methodology, the proposed model dynami-
cally increases the window size if the prediction is correct and reduces it if drifts occur. As a result, an adaptive recurrent
neural network model can adapt to changes in the non-stationary data stream and provide consistent performance. Moreover,
the findings revealed that on the airline and the SEA dataset, the proposed model outperforms state-of-the-art methods by
achieving 67.74% and 91.70% accuracy, respectively. Further, the results demonstrated that the proposed model has a better
accuracy of 3.6% and 1.6% for the SEA and the airline dataset, respectively.

Keywords Non-stationary data streams · Gated recurrent unit · Fisher information matrix · Concept drift · Catastrophic
forgetting · Adaptive window

1 Introduction

In the modern world of computing, a variety of applications
generate a vast volume of data streams at fast speeds. A data
stream is an unbounded flow of temporally sequenced data
that arrives in real-time (Charu 2015). Massive streaming
data are generated by real-time applications such as spam

detection, weather forecasting, intrusion detection, internet
of things, telecommunications, and e-commerce websites.
Owing to such data’s requirements of vast memory, quick
processing, and real-time decision support, traditional data
mining algorithms cannot be applied (Bifet and Kirkby 2009;
Hoens and Polikar 2012; Sheu et al. 2017). Moreover, pre-
diction in real-world data stream applications is confronted
by concept drift. A change in the distribution of input data
or the relationship between the target label is referred to as a
“concept drift”. (The target label is referred to as the concept
that is predicted by the class.) (Wares et al. 2019)

The concept drift is categorized into two types: virtual
and real.

In data stream classification, X � {x1, x2, ..., xn} is a fea-
ture space and Y � { Y1, Y2....Yn } is the target or class label.
Classification in real-world data stream applications is con-
fronted by concept drift. The prior probability of a given
target class is represented as P(Y), P(Y∣ X) represents the
posterior distributions of the class, and the data distribution

 * Shubhangi Suryawanshi
 ss5683@bennett.edu.in

 Anurag Goswami
 anurag.goswami@bennett.edu.in

 Pramod Patil
 pdpatiljune@gmail.com

 Vipul Mishra
 vipul.mishra@bennett.edu.in

1 Bennett University, Greater Noida, India
2 Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-04116-0&domain=pdf

14126 S. Suryawanshi et al.

1 3

of the classes is represented as P(X∣Y) (Lu Jie and Zhang
2018).

In a virtual concept drift, the data distribution P(X) varies
and, consequently, P(X∣ Y) changes, although the posterior
probability remains constant. The boundaries of the class
remain unaltered. In a real drift, a change in P(Y∣ X) changes
the decision boundaries or the target label. The posterior
probability varies with or without the data distribution in a
real concept drift. After considering the new information,
the revised probability that occurs because of new informa-
tion is known as posterior probability (Wares et al. 2019;
Lu Jie and Zhang 2018).

Concept drift presents itself in several ways, as seen in
Fig. 1, which shows different patterns-sudden, incremental,
gradual, and recurrent drifts (Lu Jie and Zhang 2018). The
data distribution changes abruptly in sudden drift; for exam-
ple, in the current COVID-19 scenario, due to the lockdown,
the users’ shopping patterns have changed abruptly. Con-
versely, gradual drift demonstrates a slow transition from
one data distribution to the other; for example, owing to the
lockdown imposed due to the COVID-19 pandemic, inflation
was influenced gradually over the months. Moreover, data
distributions exhibit sequential or step-wise changes and
take a longer time to appear in incremental drift; for exam-
ple, following the pandemic, people’s travel habits changed
incrementally after the lockdown was lifted. In recurrent
drift, the previous concept or target label reappears with the
same data distribution after some time (Lu Jie and Zhang
2018), such as when consumers’ purchasing habits change
every year during the festive season. Overall, regardless of
the type, a model’s performance will suffer substantially if
the drift is not addressed.

Traditional decision-making becomes ineffective in non-
stationary data stream environments due to the lack of prior
knowledge of data streaming patterns (Bifet and Kirkby
2009; Hoens and Polikar 2012; Sheu et al. 2017); thus, arti-
ficial intelligence models become prominent.

Many machine learning approaches have been used to
handle various types of concept drift detection and adap-
tation (Charu 2015; Shikha Mehta 2017; Ayad 2014;

Nishimura et al. 2008). Machine learning models, which
follow a traditional approach, are based on the assump-
tion of an underlying pattern and assume that in data
streams, the concepts (i.e., target labels) do not change.
Moreover, a machine learning model takes into account
the data’s stationary properties, which contradicts the
reality of concept drifts and impacts the classification
model’s performance. Thus, since prior knowledge of
pattern changes in the data is required, the conventional
machine learning methods are ineffective in dealing with
concept drift (Ksieniewicz et al. 2019; Nishimura 2008;
Charu 2015; Shikha Mehta 2017).

Further, deep learning models do an excellent work of iden-
tifying the intricate structure in massive data (Lemos Neto
et al. 2020; Ksieniewicz et al. 2019; Jun Gao and Murphey
2020). However, the deep learning model faces two major
challenges when processing data streams. First, in streaming
data not all the data is available at the time of training. It’s
difficult to handle a continuously arriving data stream with
a static neural network structure for faster convergence and
drift adaptation. Second, the evolving neural network is con-
fronted with the problem of catastrophic forgetting. Previously
learned knowledge is replaced with new knowledge during
catastrophic forgetting. When a evolving neural network learns
a new data and forgets the old one, its performance deterio-
rates (Alvaro et al. 2020; Ksieniewicz et al. 2019; Baier et al.
2021).

Therefore, it is crucial to design a learning model that can
adapt to concept drifts while learning a continuously arriv-
ing data stream. However, several challenges are imposed by
data stream classification as it is not a trivial task and differs
from standard classification scenarios. Data Stream classi-
fication works on an infinite amount of partially sequenced
data and requires immediate processing. Furthermore, the
designed algorithm should incrementally learn new data and
have an evolving nature while preventing catastrophic for-
getting, as the underlying concept of the new data changes
over time.

Therefore, to address the above discussed challenges,
we proposed a new concept drift adaptation model for

Fig. 1 Categories of concept
drifts

14127Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

non-stationary environments, that is incrementally trained
on incoming data using an adaptive recurrent neural net-
work based on adaptive windowing with a forgetting
mechanism.

1.1 Our contribution

The main contribution of the study is that it uses an adaptive
windowing-based gated recurrent unit model that is incre-
mentally trained on incoming data in order to improve drift
adaption in non-stationary environments without compro-
mising performance. In the proposed model, the size of the
window varies based on the drifts: If a drift is detected, the
window will be halved, and when there are no drifts, the
window will expand.

A small window is utilized to detect sudden changes
quickly, whereas a larger window efficiently detects
gradual changes. adaptive gated recurrent unit is used to
adapt to the drift once it is recognized by the drift detec-
tion module, and a new layer is added to the gated recur-
rent unit to deal with drifts. To overcome the problem of
catastrophic forgetting, elastic weight consolidation with
a Fisher information matrix is utilized, which prevents
the current weight from deviating from the previous one.
Consequently, information from previous tasks is retained
while learning new ones.

The proposed model comprises an initial configuration
with the gated recurrent unit (GRU) layer, one hidden layer
with 128 neurons, and an output layer with one neuron. The
learning rate is set to 0.01, the rectified linear unit (ReLU)
activation function is used for the hidden layers, and the
sigmoid activation function is used for the output layer.

The key contributions of the study can be summarized in
the following points:

• Enhancement in drift adaption using the adaptive win-
dowing-based evolving gated recurrent unit without com-
promising performance.

• Defined an evolving gated recurrent unit with growing
hidden layers on the occurrence of the drift for better
drift adaption.

• Incorporated elastic weight consolidation with a Fisher
information matrix in an evolving gated recurrent unit to
solve the problem of catastrophic forgetting.

The rest of this paper is organized as follows: The back-
ground is described in Sect. 2. Section 3 discusses related
work; Sect. 4 explains the research goal, the dataset used,
and the proposed methodology followed; Sect. 5 discusses
the experiment and results, and finally, conclusions and
future directions are presented in Sect. 6.

2 Background

This section describes the background of the terms utilized
in this paper. The recurrent neural network variant used in
this study is described as follows:

2.1 Long short term memory (LSTM)

One type of recurrent neural network is LSTM (Hochre-
iter and Schmidhuber 1997). LSTM is more effective at
preserving long-term dependency and sequence modeling
than other RNN variants. It consists of three gates: a forget
gate, an input gate, and an output gate. Figure 2 shows the
internal cell structure of LSTM. Below is an explanation of
how the cell structure works and how it processes informa-
tion (Hochreiter and Schmidhuber 1997).

Forget gate: It determines which information needs more
attention and which may be ignored. The input data Xt and
the previous hidden state ht−1 are passed to the activation
function � , which is a sigmoid. If older output is required,
forget gate returns a value closer to 1; otherwise, forget gate
ignores it. Wf represents the forget gate’s weight matrices,
and bf represents the bias. The forget gate equation Eq. 1 is
shown below:

Input gate: To update the cell state, the input gate transfers
the previous ht−1 hidden state and the current input Xt to
the next activation function for outputting of the appropri-
ate information, with the sigmoid set to 1 or 0 (to ignore).
Tanh activation is used to regulate the network by taking
into account the Xt and ht−1 as well as the cell state Ct as
shown in Eq. 3. The forget factor ft is employed. The bias
is represented by bi , while the input gate weight matrix is
represented by Wi . The input gate Eq. 2 is shown below:

(1)Γf = �(Wf [ht−1,Xt]) + bf)

(2)Γi = �(Wi[ht−1,Xt]) + bi)

(3)Ct = tanh(Wc[ht−1,Xt]) + bc)

Fig. 2 Long Short Term Memory cell diagram

14128 S. Suryawanshi et al.

1 3

Output gate: The next hidden state value will be decided
by the output gate. The output gate Eq. 4 is shown below:

In Eq. 4, Γo represents the output gate, and � denotes the
sigmoid activation function. The bias is denoted by bo , while
the output gate weight matrix is denoted by Wo . tanh is an
activation function.

For the generation of new cell state Eq. 6 and next hidden
state Eq. 5 illustrated below,

In Eq. 5, Γo represents output of the output gate, tanh is an
activation function and Ct represents the current cell state.
In Eq. 6, Γu represents the update gate output, the cell state
Ct and Ct−1 represent the current and previous cell state, and
Γf represents the forget gate output.

2.2 Gated recurrent unit (GRU)

GRU is a s impl i f ied and faster var iant of
LSTM (Junyoung Chung and Bengio 2014). GRU makes
use of the update and resets gates. It efficiently preserves
long-term dependency (Junyoung Chung and Bengio 2014).
Figure 3 shows the internal cell structure of GRU. Below is
an explanation of how the cell structure works and processes
the information. In GRU, Ct presents the memory cell to
preserve the past knowledge, fat is the activation function,
Xt represents the input data, and b is the bias. GRU is faster
to train than other recurrent neural network types (Liu et al.
2017). In GRU, every timestamp considers the overwriting
of the memory cell.

The memory cell Ct+1 represents the knowledge of next input
data, the Xt+1 represents the next input data, and WC repre-
sents the weight matrix in the Eq. 7.

(4)Γo = �(Wo[ht−1,Xt]) + bo)

(5)ht = Γo ∗ tanh(Ct)

(6)Ct+1 = Γu ∗ Ct + Γf ∗ Ct−1

(7)Ct+1 = fat (WC[Ct,Xt+1]) + b)

Update gate: It determines how much past information
needs to be preserved and passed in the future. It gives a
value between 0 and 1. The sigmoid activation � is applied
to calculate the value of update gate ΓU.

The update gate memorizes the value until the value is
updated. In Eq. 8, Wu represents the weight matrices for the
update gate, the Ct memory cell represents the knowledge
of the current input data, and Xt+1 represents the next input
data. The GRU equation is shown in Eq. 9; the equation
shows that if the gate value is 0, do not update it.

Reset Gate- It gives the provision to forget the past infor-
mation, which is not useful and is represented as Γr . The Γr
computed as follows:

In Eq. 10, � is an activation function, Wr represents the
reset gate’s weight matrices, Ct represents the knowledge
of current input data, and Xt+1 represents the next input data
instance. In Eq. 11 tanh is an activation function and Γr
represents reset gate.

3 Related work

In data stream classification, concept drift handling has risen
as an emerging area of research due to the rapid growth
of different applications in data mining communities. Sig-
nificant work has been done in machine learning to identify
and deal with drifts in a variety of applications such as tel-
ecommunication (Charu 2015), weather forecasting (Shi-
kha Mehta 2017), energy consumption, and fraud detec-
tion (Charu 2015; Lu Jie and Zhang 2018).

The study (Bifet and Kirkby 2009) presented neural net-
works for data stream processing, demonstrating how their
simplicity successfully handles the data stream. The study
suggested that to manage the data stream, a neural network
with back-propagation can be used, which avoids repetitive
scanning of data streams. In the non-stationary time series
(A time series is a collection of data that emerges in succes-
sion across time, with statistical characteristics such as co-
variance, mean, and variance changing with time.), a feed-
forward neural network with auto regressive procedures is
used to address the concept drift problem and its influence
on risk forecasting (Suicheng Gu and He 2013). However,
the challenge with this technique lies in determining a drift
type in the real world.

(8)ΓU = �(Wu[Ct,Xt+1]) + b)

(9)Ct+1 = ΓU ∗ Ct+1 + (1 − ΓU) ∗ Ct

(10)Γr = �(Wr[Ct,Xt+1]) + b)

(11)Ct+1 = tanh(WC[Γr ∗ Ct,Xt+1]) + b)

Fig. 3 Gated recurrent unit cell diagram

14129Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

The study (Ksieniewicz et al. 2019) employed a multi-
layer perceptron with a hidden layer to evaluate labeling
costs in data streams and their impact on classification
accuracy. Catastrophic forgetting was used in the study to
avoid the problem of forgetting and to manage both abrupt
and gradual drifts. The author proposed a neural network
ensemble for various types of drifts. Another study (Jun Gao
and Murphey 2020) applied an LSTM neural network with
adjustable windowing to identify temporal dependency
and obtain greater accuracy in advanced driver assistance
systems in real-time. LSTM with adaptive windowing was
utilized to extract the patterns from the data; the efficacy of
dynamic window size adaptations aided in the selection of
the most prominent features in multi-modal data.

In one of our studies (Suryawanshi et al. 2021), a one-
class ensemble classifier was progressively trained on posi-
tive data samples to handle both gradual and abrupt drifts. A
one-class classifier predicts its counterparts based on simply
a positive sample. It is difficult to distinguish between outli-
ers and drifts when only considering positive samples in
one-class classification.

Several machine learning algorithms, including decision
trees, random forests, Naive Bayes, Hoeffding trees, and
support vector machines, are used to identify and handle
concept drift (Ayad 2014; Yang and Fong 2012; Hemalatha
and Pathak 2019; Rad and Haeri 2019). Machine learning-
based techniques need decades of domain expertise to adapt
to drift (Ksieniewicz et al. 2019; Nishimura et al. 2008),
whereas deep learning algorithms excel in identifying
and adapting the complex structure in evolving streaming
data (Jun Gao and Murphey 2020).

The study presented the most widely used dynamic
weighted majority (DWM) (Kolter and Maloof 2007) for
drift adaptation using a prediction technique employs a
voting mechanism and a combination of a base classifier
and a global ensemble. It trains a new classifier if one of
the ensemble’s classifiers fails, penalizing the classifier,
and replaces the previous classifier if the threshold value
is reached. It can manage both gradual and sudden drifts.
In the research study (Sidhu and Bhatia 2017) compared
the recurrent dynamic weighted majority and dynamic
weighted majority ensemble classifier in their research
article.

The research study (Priya and Uthra 2020) employed an
ensemble approach to address the issue of class imbalance
and concept drift. Different drift detectors and ensemble
classifiers were evaluated on real-world and synthetic data-
sets. The dynamic weighted majority and accuracy weighted
ensemble methods outperformed traditional ensemble classi-
fiers for both sudden and gradual drifts. For the implementa-
tion, a Massive Online Analysis was employed.

For drift detection, the study (Song et al. 2016; Pesa-
ranghader and Viktor 2016) combined the Hoeffding

inequality and a sliding window. The proper window size
is determined and utilized the Hoeffding tree and Naive
Bayes as base classifiers to identify both gradual and
sudden drifts. Moreover, it obtained the smallest detec-
tion latency and, more importantly, the best accuracy by
employing the Naive Bayes and Hoeffding tree as base
classifiers.

Many novel ensemble techniques based on diverse vot-
ing criteria handle the concept drift (Mahdi et al. 2018;
Jadhav and Deshpande 2017). The Learn Non-stationary
Environments(Learn NSE) (Yan Shena and Yuquan Zhub
2017) algorithm overcomes the performance problem expe-
rienced by various ensemble classifiers by assessing predic-
tion error on the most recent batch of data example. Evalu-
ated the online error rate of the base classifier, and if the
errors rose, a new classifier was trained on the new data.
This reduced the memory requirements by simply saving
the current batch of data and removing the under-performing
model immediately.

In an OzaBagADWIN method, an incremental ensemble
is combined with the adaptive windowing drift detector. It
is an adaptation of the classic bagging classifier. To monitor
the change in adaptive windowing, a variable-size window is
employed and cuts are applied in its window to better adapt
to the change (Oza and Russell 2001; Bifet and Pfahringer
2009).

The study (Alvaro et al. 2020) presented the incremental
LSTM (ILSTM) to adapt to concept drift in data streams.
The model used a fixed batch size and a static structure. In
this investigation, explicit drift detection was not required.

In the study (Baier et al. 2021), uncertainty drift detec-
tion (UDD) approach was proposed to detect concept drift
without the necessity for true labels; for this, a deep neural
network using Monte Carlo dropouts was utilized. To detect
changes in the data, the adaptive windowing technique was
used to estimate the data’s uncertainty over time, and the
impact of the input data on the model was analyzed to avoid
model retraining.

The accuracy weighted ensemble (AWE) classi-
fier (Haixun Wang et al. 2003) that employs N static classi-
fiers that are fixed at the start and aggregate their predictions
by applying function f for training in batch mode or online
streaming mode. Accuracy weighted ensemble outperforms
a single classifier in terms of effectiveness. It divides the
input into portions and assigns a different classifier to each
portion while removing an old classifier. It effortlessly han-
dles both stationary and non-stationary data streams.

The study (Lee et al. 2017) presented elastic weight
consolidation, which introduces a regularization term that
causes the current network parameters to be near the net-
work parameters provided by previous tasks. Moreover, The
study (Li and Hoiem 2016) utilized the learning-without-for-
getting method to preserve the knowledge of previous steps.

14130 S. Suryawanshi et al.

1 3

The study (Kirkpatrick et al. 2017) demonstrated the elas-
tic consolidation weight technique, which overcomes the dif-
ficulty associated with incremental learning and prevents the
current weight from deviating from the prior one.

4 Experiment design

In this section, the research goals, dataset, proposed meth-
odology, and evaluation measures are detailed. The experi-
mentation was carried out on real-world and synthetic data-
sets with various drifts. The proposed model used forgetting
mechanism with an adaptive neural network structure to
adapt to the drift and was compared to the best-performing
state-of-the-art methods such as accuracy weighted ensem-
ble, dynamic weighted majority, Learn NSE, OzaBagAD-
WIN, Hoeffding tree, UDD, and ILSTM (Shikha Mehta
2017; Lu Jie and Zhang 2018; Agustin et al. 2015; Alvaro
et al. 2020; Baier et al. 2021).

4.1 Research goal

The main goal of this study is to improve drift adaptation
without compromising classification accuracy as well as to
evaluate how well an adaptive windowing-based recurrent
neural network model can adapt to changes in a non-station-
ary data stream without forgetting.

4.2 Dataset

The datasets used in the experiment are described below:

– Airlines dataset - There are 7 attributes and 37,900
instances in the real-world airlines’ dataset, and two
classes. Time, Airline, Flight, AirportFrom, AirportTo,
DayOfWeek, and Length are the attributes. These are
used to predict whether or not a flight will be delayed.1

– Streaming Ensemble Algorithm (SEA) - SEA is a syn-
thetic stream generator that generates a synthetic data
stream dataset with sudden and gradual concept drifts.
The SEA dataset is a synthetic dataset with three attrib-
utes: 50000 instances have two essential attributes, and
b is a predetermined threshold. This dataset simulates
both gradual and abrupt changes. There is 10% noise in
the dataset.2

4.3 Evaluation measure

The following evaluation measures were used to evaluate
the proposed model on a real-world and synthetic dataset:

(a) Accuracy - It is determined by taking the total number
of correct predictions out of all possible outcomes.
Accuracy = Correctly predicted values

Total no of predictions

(b) Recall - It is a measure of how well the model recog-
nizes positive values. It is the ratio of correctly pre-
dicted positive values to the total of true positive and
false negative values (Goutte and Gaussier 2005).
Recall= True Positive

(True Positive+False Negative)

(c) Precision - It is the ratio of true positive values to all
positive values predicted by the model. Precision gives
the number of data points in the relevant class predicted
by our model (Goutte and Gaussier 2005). Precision=

True Positive

(True Positive+False Positive)

(d) F1-Score - To calculate the F1-score, the harmonic
mean of precision and recall are used. It accurately
measures the precision and recall balance (Goutte and
Gaussier 2005). F1-Score = 2 * (Precision∗Recall)

Precision+Recall

(e) Receiver Operating Characteristics (ROC) - It is a
probability curve, and the area under the curve (AUC)
represents the degree or measure of separability. It
demonstrates the model’s ability to distinguish among
classes.

4.4 Methodology

Figure 4 depicts the proposed model’s workflow: import-
ing and pre-processing, creating the adaptive window,
drift detection, forgetting mechanism, and implementing
the adaptive GRU model. Finally, the proposed model was
assessed in terms of F1-score, accuracy, precision, recall,
ROC curve, and confusion matrix. Python and the Sklearn
library were used for the implementation. The workflow of
the proposed study is described in this section. The summary
of notations used to describe the proposed model and their
description is summarized in Table 1.

Step 1: Pre-processing
The min-max scaler is used to scale values from 0 to

1 when the dataset is imported. The record with the miss-
ing values is removed, and label values ranging from 0 to 1
are encoded using the label encoder. The dataset is divided
into equal-sized chunks to incrementally train the model on
chunks.

Step 2: Adaptive Window
The adaptive window utilized in this study works in the

same way as the sliding window. The difference in the size
of the window varies based on whether the drift occurs or
not. The data samples are separated into sub-batches using

1 [Airline Dataset] https:// moa. cms. Waika to. ac. nz/ datas ets.
2 [SEA Dataset] https:// github. com/ vlosi ng/ drift Datas ets/ tree/ artif
icial/.

https://moa.cms.Waikato.ac.nz/datasets
https://github.com/vlosing/driftDatasets/tree/artificial/
https://github.com/vlosing/driftDatasets/tree/artificial/

14131Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

a window after they are received. If the drift is identified,
the window is considered as its half, and the model training
is done on the smaller window size.

The data elements arrive in a continuous stream, and only
the most recent N elements are used in window strategies.
If the N*2 predictions are correct, the size of the window
is extended to its original size. The experiments were per-
formed with window size w = 10, 100, 200, 300, 400, and
500. Several experiments were conducted to determine the
optimal window size, which was chosen based on the mod-
el’s performance.

Step 3: Drift Detection
The drift detector module is called if the classifier mis-

classifies an instance. To track changes, the Page-Hinckley
statistical test is employed (Sebastião and Fernandes 2017).
It senses the change by incrementally calculating the mean
of input data.

The test calculates the cumulative difference Dc between
the mean of the current window and prior values as well as
the minimum difference Dm and determines the threshold
value � . If the condition presented in Eq. 12 is met, an alert
is raised.

If the drift is spotted, the window size is halved, and the
model is then trained using that small amount of data. The
window size is expanded to its original size if no drift is
detected and after N*2 correct predictions.

Step 4: Forgetting Mechanism
In data stream, incremental learning causes a learning

problem known as catastrophic forgetting, wherein the
model abruptly forgets previously learned knowledge while
learning new information. When a model learns a new data

(12)𝜆 > Dc − Dm

Fig. 4 Adaptive windowing based recurrent neural network for drift adaption in non-stationary environments

Table 1 Summary of notations
used to describe the proposed
model

Notations Meaning

w Window size
D

c
The cumulative difference between the mean of the current window and prior values

D
m

The minimum difference between the mean of the current window and prior values
� Threshold value
� The magnitude of the changes that are allowed
N Number of elements in a window
X Input features dimensions
Y Target Label
e Number of epochs
t Task
�
c−1 Parameters for the previous task
�
c

Parameters for Current task
F
i

Fisher Information Matrix
p(Y

i
∣ X

i
;�

c
). The log-likelihood of posterior probability for the current task

C Constant Parameter
L(�

c−1) The loss from the previous task
L(�

c
) The loss of the current task

14132 S. Suryawanshi et al.

1 3

and forgets the old one, its performance deteriorates. The
task/chunk borders are determined using the change detec-
tion approach. When a change is observed, it is marked as
a new task boundary. To overcome this difficulty, the diver-
gence of the current weights from their prior ones may be
prevented.

We used elastic weight consolidation with the Fisher
information matrix to decrease the effect of catastrophic
forgetting.

In the provided dataset D(Xi,Yi), Xi contains the Xi � { X1

,X2,.....Xn } data samples and Yi � { Y1,Y2,......Yn } labels. The
ideal set of parameters learned from the previous task t1 is
�c−1 . To determine the optimal parameters �c for the current
task, the elastic weight consolidation factorizes the preced-
ing model using Bayesian estimation.

Eq. 13 gives the probability of �c−1 , which represents the
previous model’s optimal parameters, and �c , which indi-
cates the current parameters. The previous batch’s/task’s
optimum parameters �c−1 are fed into the Fisher information
matrix Fc−1 shown in Eq. 14, which defines the relevance of
each current parameter �c and confines the previous batch
parameters �c−1 while training on task t. The Laplace approx-
imation is used to choose the optimal parameters �c for the
current task. log(p(Yi ∣ Xi;�c)) represents the log-likelihood
of posterior probability distribution function p(Yi ∣ Xi;�c).
The constant parameters C can be ignored during training
shown in Eq. 14. The probability of parameter �c gives an ith
batch target label and input data Yi ∣ Xi.

The penalization regularization term is shown in Eq. 15.
The Fisher information matrix Fi represents the ith diagonal
element. The Fisher information quantifies how much infor-
mation the parameters provide about the data. After comput-
ing first-order derivatives, the Fisher information matrix is
utilized to estimate the importance of each connection or
parameter. L(�c−1) is the loss from the previous task, and
L(�c) is the loss from the current task.

In Eq. 14, the log-likelihood gradient is computed with
the model performance, and the gradient squared mean is
also computed. In Eq. 15, the loss till the previous task
parameters is calculated, and the symbol � reflects how sig-
nificant the previous stage parameter is in comparison to
the new one. It is evident that the Fisher regularization will
attempt to maintain the essential parameters near to the pre-
viously learned values. The elastic weighted computation

(13)�c−1 = p(�c ∣ �c−1)

(14)
logpc = log(p(Yi ∣ Xi);�c) − �∕2(� − �c−1)Fc−1(� − �c−1)

2 + C

(15)L(�c) = L(�c−1) +
∑

i

�∕2Fi(�i − �c−i)
2

maintains the current parameter’s weights close to the previ-
ous parameter’s values.

Step 5: Adaptive Neural Network for Drift Adaption
The proposed model employs a GRU, which is a simpli-

fied variant of a recurrent neural network. A GRU layer, a
hidden layer, and an output layer are the only layers in the
initial structure of an adaptive neural network.

When a drift is detected, a new layer is added to the exist-
ing model, while the other layers are kept frozen, and the
new layer is initialized with the preceding layer’s optimal
weights. For the GRU, the ReLU activation function is used.
ReLU will output the input straight if the input is positive;
otherwise, it will output 0. The memory cell captures the
drifts automatically.

The sigmoid activation was used for the output layer.
Selecting the optimized hyper-parameters is crucial, as it
influences the model’s performance. In addition, optimized
hyper-parameters, such as a learning rate of 0.01, the Adam
optimizer, and a binary cross entropy loss function were
utilized.

The standard test-then-train (prequential) procedure was
utilized to evaluate the data stream. The procedure is car-
ried out by first testing and then training. In the procedure,
the dataset is processed incrementally in a sequence of b
batches. In incremental learning, the catastrophic forgetting
issue is also considered.

Step 6: Prediction Result
The final prediction is determined by dividing the total

prediction by the number of correct predictions. F1-score,
precision, recall, ROC curve, and confusion matrix were
also computed to evaluate the performance of the proposed
model.

5 Results and discussion

The state-of-the-art methods such as accuracy weighted
ensemble(AWE), dynamic weighted majority(DWM), Learn
NSE, OzaBagADWIN, hoeffding tree, UDD, and ILSTM
were compared with the proposed model adaptive window-
ing-based recurrent neural network for drift adaptation, and
the comparative analysis is provided below.

5.1 Analytical results for proposed model

Sklearn and the Scikit-Multiflow were utilized in the
implementation, while the Matplotlib was used to plot the
graph (Hunter 2007). The experimental setup was as follows:

To avoid catastrophic forgetting, elastic weight consoli-
dation with a Fisher information matrix was used, which
prevents the deviation of the current weight from the previ-
ous one. As a result, it retains information from previous
tasks while learning new ones. Data samples were handled

14133Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

in chunks, and the model was trained using incremental
learning and evaluated using prequential evaluation. This
approach was repeated until the models had used all of the
data instances available. Adaptive windowing was combined
with drift detection, and an adaptive neural network was
used once the drift was discovered. The accuracy, F1-score,
precision, recall, confusion matrix, and ROC curve were
used to assess the model’s performance.

The layers in the initial configuration of a neural network
were one GRU layer, one hidden middle layer with 128 neu-
rons, and the output layer with one neuron with sigmoid
activation. The learning rate was set to 0.01, the Adam opti-
mizer was used, and binary cross-entropy was used as the
loss function.

Experimentation was carried out to determine the best
window size by taking into account various window sizes.
Several experiments were run w = 10, 100, 200, 300, 400,
and 500 to discover the optimal window size w, which was
chosen based on the model’s performance and the results.

The Page-Hinckley statistical test was used for the drift
detection. The parameters � and � in the Page-Hinckley sta-
tistical test were set to 50 and 0.005, respectively. � is the
threshold of the change detection and the forgetting factor � ,
which is used to weigh the observed value and the mean. The
threshold value � is determined by considering the admis-
sible false alarm rate. While increasing threshold value �
reduces false alarms, it also increases the risk of missing or
delaying changes. Change detection is a crucial factor in this
study; thus, the threshold value is set to 50 to balance the
false alarm rate and the risk of missing or delaying changes.

The model was trained with 1, 5, 10, and 20 epochs, and
its performance was assessed. If the drift was discovered,
the window size was halved. A new layer was added to the
existing model, and the model was incrementally trained on
the lesser number of data samples from the halved window
size. A small window was utilized to detect sudden changes
quickly, whereas a larger window efficiently detected gradual
changes.

Adaptive windowing based on LSTM recurrent neural
network was employed with the aforementioned hyperpa-
rameter values, and the results were compared to the adap-
tive GRU model using synthetic and real-world datasets. The
comparative study of adaptive windowing-based recurrent
neural networks based on GRU and LSTM is presented in
Table 2 and 3.

The results of an experiment on airline and SEA data-
sets using the proposed model based on adaptive GRU and
LSTM were compared and evaluated. Table 2 shows the
comparison for the synthetic dataset, and Table 3 shows the
comparison of the classifier on the real-world dataset.

The results show that the adaptive windowing-based GRU
model outperforms the LSTM model.

The proposed model with one pass performs poorly on
synthetic and real-world datasets, as shown in Tables 2
and 3. This is because it scans the data in a single pass and
is unable to discover the data’s underlying structure, result-
ing in performance degradation.

The accuracy, F1-score, precision, and recall of the SEA
dataset improve as the number of epochs increase until e =
10. The difference between e = 10 and e = 20 is the smallest,
as indicated in Table 2.

Table 3 depicts that the accuracy, F1-score, precision,
and recall of the airline dataset improve until e = 10, after
which they remain constant or show the least improvement.

The proposed model’s confusion matrix for the SEA and
the airline dataset is shown in Figs. 5 and 6, respectively. A
confusion matrix is used to demonstrate a classifier’s perfor-
mance. It represents the count of predicted and actual val-
ues. True positive values indicate that the classifier correctly
classified the positive samples, while true negative values
indicate that the classifier correctly classified the negative
samples. False negative values indicate that the classifier
misclassified actual positive samples as negative, whereas
false positive values indicate that the classifier misclassified
actual negative samples as positive. The proposed method
has better true positive and true negative values as well as
lower false negative and false positive rates, as shown by
the confusion matrix. The proposed model performs better
for airlines and the SEA dataset, as demonstrated by the
confusion matrix.

Figures 7 and 8 demonstrate the ROC curves for the pro-
posed model using the SEA dataset and the airline dataset,
respectively. Figures 7 and 8 show that the proposed model
gained proficient performance, with AUC values of 0.86 and
0.69, respectively. The GRU model has a larger AUC than
the LSTM model, indicating that it is better for the SEA and
airline datasets.

5.2 Comparative results with other methods

Tables 4 and 5 present the summary of the comparison of
different methods applied to the SEA and airline datasets
with the proposed model. The tables show that the pro-
posed model outperforms existing state-of-the-art methods
in terms of accuracy, F1-score, precision, and recall.

In most real-world applications, data distribution is unbal-
anced; therefore, F1-score, recall, and precision measures for
assessment are more accurate matrices than accuracy.

The accuracy of the classifier on synthetic and real-world
datasets was compared and is depicted in Fig. 9. In 9, meth-
ods on different datasets are displayed along the x-axis,
represented by different colors, while the y-axis represents
accuracy. The graph indicates that the proposed model
based on GRU can adapt to the different types of drifts more

14134 S. Suryawanshi et al.

1 3

Table 2 Comparison of the
classifier on SEA synthetic
dataset

Significant results are indicated by bold

Model Accuracy F1-Score Recall Precision

GRU
w = 10 Proposed model with single pass 81.07 83.25 82.94 86.24

Proposed model with e = 5 82.08 82.79 82.49 86.49
Proposed model with e = 10 84.41 83.08 82.77 83.37
Proposed model with e = 20 89.69 88.42 89.27 88.02

w = 100 Proposed model with single pass 76.75 88.07 89.34 87.49
Proposed model with e = 5 89.76 88.28 89.36 87.49
Proposed model with e = 10 91.70 88.57 89.68 87.81
Proposed model with e = 20 91.59 88.49 89.63 87.68

w = 200 Proposed model with single pass 84.05 88.39 89.60 87.62
Proposed model with e = 5 88.21 88.51 89.65 87.74
Proposed model with e = 10 90.11 88.52 88.77 87.75
Proposed model with e = 20 91.09 88.49 88.63 87.68

w = 300 Proposed model with single pass 85.28 88.25 89.48 87.46
Proposed model with e = 5 88.71 88.33 89.49 87.64
Proposed model with e = 10 87.32 88.41 89.32 87.89
Proposed model with e = 20 91.00 88.04 89.54 88.11

w = 400 Proposed model with single pass 83.42 88.39 89.51 87.68
Proposed model with e = 5 89.66 88.54 89.60 87.79
Proposed model with e = 10 86.4 88.12 89.4 87.82
Proposed model with e = 20 91.41 88.45 89.55 87.79

w = 500 Proposed model with single pass 81.90 88.11 89.31 87.28
Proposed model with e = 5 87.68 87.62 88.85 87.80
Proposed model with e = 10 91.12 88.15 89.14 87.99
Proposed model with e = 20 89.78 88.08 89.64 87.91

LSTM
w = 10 Proposed model with single pass 71.31 88.19 89.31 87.48

Proposed model with e = 5 82.09 88.42 89.31 87.68
Proposed model with e = 10 83.15 88.22 89.14 87.94
Proposed model with e = 20 85.87 88.54 89.57 88.00

w = 100 Proposed model with single pass 86.59 88.08 89.28 87.39
Proposed model with e = 5 85.01 88.51 89.54 87.88
Proposed model with e = 10 90.85 88.14 89.24 89.94
Proposed model with e = 20 87.52 88.51 89.51 87.84

w = 200 Proposed model with single pass 83.55 88.25 89.42 87.37
Proposed model with e = 5 87.32 88.31 89.32 87.89
Proposed model with e = 10 88.25 88.11 89.85 87.85
Proposed model with e = 20 88.58 88.17 89.11 87.94

w = 300 Proposed model with single pass 86.71 88.25 89.51 87.41
Proposed model with e = 5 89.02 88.12 89.65 87.71
Proposed model with e = 10 90.03 88.38 89.02 87.88
Proposed model with e = 20 91.20 87.82 88.82 86.82

w = 400 Proposed model with single pass 84.21 88.14 89.28 87.37
Proposed model with e = 5 87.63 88.25 89.31 87.85
Proposed model with e = 10 91.01 87.77 89.94 88.02
Proposed model with e = 20 91.12 87.82 88.89 88.01

w = 500 Proposed model with single pass 83.74 88.28 89.45 87.51
Proposed model with e = 5 89.22 88.48 89.44 87.68
Proposed model with e = 10 89.34 88.12 89.25 87.97
Proposed model with e = 20 89.54 88.09 89.01 87.97

14135Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

Table 3 Comparison of the
classifier on airline real-world
dataset

Significant results are indicated by bold

Model Accuracy F1 score Recall Precision

GRU
w = 10 Proposed model with single pass 67.36 41.93 43.25 50.29

Proposed model with e = 5 67.13 51.06 55.67 54.94
Proposed model with e = 10 67.36 48.81 54.67 53.53
Proposed model with e = 20 61.85 50.71 53.46 50.89

w = 100 Proposed model with single pass 67.63 53.43 56.96 56.49
Proposed model with e = 5 67.41 57.49 62.73 58.16
Proposed model with e = 10 67.74 59.17 64.42 59.21
Proposed model with e = 20 62.32 54.32 56.50 54.14

w = 200 Proposed model with single pass 67.03 52.89 57.89 55.57
Proposed model with e = 5 66.54 59.02 63.39 59.64
Proposed model with e = 10 65.34 58.85 63.42 59.00
Proposed model with e = 20 62.61 54.42 57.25 54.39

w = 300 Proposed model with single pass 67.60 55.07 59.89 57.32
Proposed model with e = 5 67.0 57.92 64.35 58.82
Proposed model with e = 10 65.8 58.35 64.25 60.42
Proposed model with e = 20 62.95 59.06 62.35 59.21

w = 400 Proposed model with single pass 67.71 53.32 58.53 56.07
Proposed model with e = 5 66.24 59.05 63.53 58.82
Proposed model with e = 10 65.17 58.39 63.14 58.42
Proposed model with e = 20 64.55 55.14 58.71 55.03

w = 500 Proposed model with single pass 67.43 56.30 60.90 57.90
Proposed model with e = 5 66.58 58.43 62.83 59.06
Proposed model with e = 10 65.57 58.09 62.56 58.23
Proposed model with e = 20 64.53 57.46 58.10 58.10

LSTM
w = 10 Proposed model with single pass 67.16 41.83 41.03 50.12

Proposed model with e = 5 67.10 50.59 56.83 54.90
Proposed model with e = 10 67.73 56.38 60.09 58.31

w = 100 Proposed model with single pass 67.02 51.96 58.64 55.42
Proposed model with e = 5 67.41 58.35 63.17 58.99
Proposed model with e = 10 65.97 58.64 63.32 58.60
Proposed model with e = 20 66.32 58.63 63.24 59.54

w = 200 Proposed model with single pass 67.13 52.64 57.46 55.89
Proposed model with e = 5 67.14 41.52 43.78 50.10
Proposed model with e = 10 67.08 47.94 56.85 53.18
Proposed model with e = 20 67.15 54.98 61.07 57.03

w = 300 Proposed model with single pass 67.67 53.42 58.17 56.39
Proposed model with e = 5 66.8 58.75 63.25 59.53
Proposed model with e = 10 64.61 59.07 63.21 59.42
Proposed model with e = 20 63.59 58.85 62.57 59.64

w = 400 Proposed model with single pass 67.63 53.03 56.92 56.21
Proposed model with e = 5 66.93 57.92 64.14 58.89
Proposed model with e = 10 65.43 57.39 62.64 57.57
Proposed model with e = 20 64.54 56.96 55.85 57.57

w = 500 Proposed model with single pass 67.57 52.39 60.03 55.82
Proposed model with e = 5 66.59 58.49 64.15 60.57
Proposed model with e = 10 65.36 58.07 64.21 59.74
Proposed model with e = 20 64.78 59.07 63.39 59.03

14136 S. Suryawanshi et al.

1 3

effectively without forgetting than the other state-of-the-art
methods. The proposed model outperformed the classifier by
achieving 67.74% and 91.70% accuracy on the airline and
the SEA dataset, respectively.

The experiments indicated that adaptive windowing effi-
ciently adjusts the window size if there are drifts or a more
volatile data distribution and expands the window size when
there are no drifts. Multiple types of drifts occur simultane-
ously in a SEA synthetic dataset, and state-of-the-art meth-
ods fail to adjust to the different types of drift at the same
time. The comparative result is provided in Table 4.

The proposed model with an adaptive GRU model with
optimized hyper-parameters, forgetting mechanism, and self-
adapting window adapted to several types of drifts occurring
at the same time.

Figures 10 and 11 compare the proposed model to state-
of-the-art methods in terms of F1-score, precision, and
recall. Precision demonstrates the proposed model’s abil-
ity to correctly identify and predict positive data samples
in the presence of a drift. Existing methods, on the other
hand, consider the impact of current input data on the clas-
sification model, which leads to inaccurate prediction when
concept drifts exist.

Recall illustrates the proposed model’s ability to pro-
duce less false negatives. In terms of recall, the proposed
model exceeded previous methods by 64.42% for airlines
and 89.68% for the SEA dataset. F1-score is computed and
compared when false negatives and positives are essential
and the class distribution in the real-world dataset is unbal-
anced. The proposed model outperformed existing methods
by 59.17% and 88.57% F1-score for the airline and the SEA
dataset, respectively.

Higher accuracy and F1-score indicate that incrementally
training the adaptive GRU model by automatically selecting
the optimal window size for the input data can help to adapt

Fig. 5 Confusion matrix for SEA dataset

Fig. 6 Confusion matrix for airline dataset

Fig. 7 ROC curve for proposed model with SEA dataset

Fig. 8 ROC curve for proposed model with airline Dataset

14137Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

to non-stationary data stream changes and provide consistent
performance even when drift occurs.

The results demonstrated that the proposed model can
successfully adjust its size in response to drifts or changes
and the adaptive neural network adapts to drifts efficiently by
taking the catastrophic forgetting effect into account.

6 Conclusion

This study aimed to validate the effectiveness of an adaptive
windowing-based recurrent neural network on various types
of drifts and compare it with the state-of-the-art methods
such as accuracy weighted ensemble, dynamic weighted
majority, Learn NSE, OzaBagADWIN, hoeffding tree,
UDD, and ILSTM.

The study proposed an adaptive windowing-based recur-
rent neural network model (based on the GRU model) with a
forgetting mechanism to evaluate the sequential relationship
and drift adaption effectively. When checking for less fluc-
tuating or stable data distributions or drifts, a wider window

Table 4 Summary of the
different methods applied to the
SEA dataset

Significant results are indicated by bold

Method name Accuracy Precision Recall F1-Score

Learn NSE (Shena and Yuquan Zhub 2017) 86.04 85.96 83.15 84.53
Hoeffding Tree 86.8 88.38 86.42 87.39
OzaBagAdwin (Agustin et al. 2015) 87.25 84.26 83.15 84.23
DWM (Kolter and Maloof 2007; Sidhu and

Bhatia 2017; Priya and Uthra 2020)
88.09 86.46 85.30 86.85

AWE (Agustin et al. 2015) 87.68 87.66 86.71 87.46
UDD 88.53 88.79 88.11 87.93
ILSTM (Alvaro et al. 2020) 84.68 86.51 88.45 87.46
Proposed Model 91.70 87.81 89.68 88.57

Table 5 Summary of the different methods applied to the airlines
dataset

Significant results are indicated by bold

Method name Accuracy Precision Recall F1-Score

Learn NSE (Agustin et al.
2015)

59.47 56.79 56.84 56.81

Hoeffding Tree (Nyati et al.
2017)

65.08 58.99 58.24 57.62

OzaBagAdwin (Nyati et al.
2017)

66.06 54.83 52.73 49.83

DWM 65.13 61.16 56.08 54.87
AWE (Nyati et al. 2017) 59.89 51.13 51.23 49.42
UDD 53.09 32.91 54.11 40.89
ILSTM (Alvaro et al. 2020) 64.78 59.08 61.39 59.01
Proposed Model 67.74 59.21 64.42 59.17

Fig. 9 Classifier accuracy on a real-world and synthetic dataset

14138 S. Suryawanshi et al.

1 3

was utilized, but when the data distribution was more vola-
tile or was evolving, a narrower window was employed.

The proposed model’s performance was assessed using a
real-world airline and a synthetic SEA dataset that included
a simultaneous gradual and abrupt drifts. The state-of-the-
art methods failed to adjust to several types of drifts occur-
ring at the same time. The observed results revealed that on
the airline and the SEA dataset, the proposed model outper-
forms the state-of-the-art methods by achieving 67.74% and
91.70% accuracy, respectively.

Our findings demonstrate that the adaptive window can
successfully adjust its size in response to drifts or changes
and the adaptive neural network adapts to the drifts effi-
ciently by taking into account the problem of catastrophic
forgetting. In the future, an adaptive ensemble of neural net-
works could be used to adapt to drifts by considering the
unstructured data streams and avoiding forgetting.

Data availability The two datasets that we used, are available online
and links are provided in the article.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

Ayad O (2014) Learning under concept drift with support vector
machines. Lect Notes Comput Sci 8681:587–594

Baier L, Schlör T, Schöffer J, Kühl N (2021) Detecting concept drift
with neural network model uncertainty. CoRR abs/2107.01873.
arXiv: 2107. 01873

Bifet A, Kirkby R (2009) Data stream mining a practical approach.
Kluwer Academic Publishers, London

Bifet A, Pfahringer B (2009) Improving adaptive bagging methods for
evolving data streams. In: In ACML, vol 5828 LNAI, pp 23–37.
https:// doi. org/ 10. 1007/ 978-3- 642- 05224-8_4

Charu A (2015) Chapter 9 A survey of stream classification algorithms.
Kluwer Academic Publishers, London

del Agustin J, Bueno R (2015) Fast adapting ensemble: a new algo-
rithm for mining data streams with concept drift. Sci World J.
https:// doi. org/ 10. 1155/ 2015/ 235810

Goutte C, Gaussier E (2005) A probabilistic interpretation of precision,
recall and F-score, with implication for evaluation. In: Losada
DE, Fernández-Luna JM (eds) Advances in information retrieval.
ECIR 2005. Lecture notes in computer science, vol 3408.
Springer, Berlin. https:// doi. org/ 10. 1007/ 978-3- 540- 31865-1_ 25

Haixun Wang PSY, Wei F, Han J (2003) Mining concept-drifting data
streams using ensemble classifiers. In: Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery
and data mining (KDD 03), pp 226–235

Hemalatha CS, Pathak R (2019) Hybrid decision trees for data streams
based on incremental flexible Naive Bayes prediction at leaf
nodes. Evol Intell. https:// doi. org/ 10. 1007/ s12065- 019- 00252-3

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9(8):1735–1780

Hoens TR, Polikar C (2012) Learning from streaming data with con-
cept drift and imbalance: an overview. Mach Learn Knowl Discov
Databases. https:// doi. org/ 10. 1007/ s13748- 011- 0008-0

Hunter JD (2007) Matplotlib a 2D graphics environment. Comput Sci
Eng 9:90–95

Jadhav A, Deshpande L (2017) An efficient approach to detect concept
drifts in data streams. In: Proceedings—7th IEEE international
advanced computing conference. IACC 2017, pp 28–32. https://
doi. org/ 10. 1109/ IACC. 2017. 0021

Jun Gao HZ, Murphey YL (2020) Adaptive window size based deep
neural network for driving maneuver prediction. In: Chinese con-
trol and decision conference (CCDC), IEEE. https:// doi. org/ 10.
1109/ CCDC4 9329. 2020. 91638 24

Junyoung Chung KC, Bengio Y (2014) Empirical evaluation of
gated recurrent neural networks on sequence modeling. CoRR
abs/1412.3555. arXiv: 1412. 3555

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu
AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Has-
sabis D, Clopath C, Kumaran D, Hadsell R (2017) Overcoming
catastrophic forgetting in neural networks. Proc Natl Acad Sci
114(13):3521–3526. https:// doi. org/ 10. 1073/ pnas. 16118 35114

Kolter JZ, Maloof MA (2007) Dynamic weighted majority an ensemble
method for drifting concepts. J Mach Learn Res 8:2755–2790

Ksieniewicz P, Woźniak M, Cyganek B, Kasprzak A, Walkowiak K
(2019) Data stream classification using active learned neural net-
works. Neurocomputing 353:74–82. https:// doi. org/ 10. 1016/j.
neucom. 2018. 05. 130

Fig. 10 Performance evaluation with F1 Score, recall and precision of
model on SEA synthetic dataset

Fig. 11 Performance evaluation with F1 Score, recall and precision of
model on real-world dataset

http://arxiv.org/abs/2107.01873
https://doi.org/10.1007/978-3-642-05224-8_4
https://doi.org/10.1155/2015/235810
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/s12065-019-00252-3
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.1109/IACC.2017.0021
https://doi.org/10.1109/IACC.2017.0021
https://doi.org/10.1109/CCDC49329.2020.9163824
https://doi.org/10.1109/CCDC49329.2020.9163824
http://arxiv.org/abs/1412.3555
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1016/j.neucom.2018.05.130
https://doi.org/10.1016/j.neucom.2018.05.130

14139Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

Lee SW, Kim JH, Jun J, Ha JW, Zhang BT (2017) Overcoming cata-
strophic forgetting by incremental moment matching. In: Proceed-
ings of the 31st international conference on neural information
processing systems. Curran Associates Inc., Red Hook, NIPS’17,
pp 4655–4665

Lemos Neto ÁC, Coelho RA, de Castro CL (2020) An incremental
learning approach using long short-term memory neural networks.
Automáitica 2(1):CBA2020. https:// doi. org/ 10. 48011/ asba. v2i1.
1491

Li Z, Hoiem D (2016) Learning without forgetting. CoRR
abs/1606.09282. arXiv: 1606. 09282

Liu Y, Wang Y, Yang X, Zhang L (2017) Short-term travel time pre-
diction by deep learning: a comparison of different LSTM-DNN
models. In: 2017 IEEE 20th international conference on intelligent
transportation systems (ITSC), pp 1–8. https:// doi. org/ 10. 1109/
ITSC. 2017. 83178 86

Lu J, Liu A, Dong F, Gu F, Gama J, Zhang G (2018) Learning
under concept drift: a review. IEEE Trans Knowl Data Eng
31:2346–2363

Mahdi OA, Pardede E, Cao J (2018) Combination of information
entropy and ensemble classification for detecting concept drift in
data stream. In: ACM international conference Proceeding series,
vol 10, no 1145/3167918, p 3167946

Nishimura S, Terabe M, Hashimoto K, Mihara K (2008) Learning
higher accuracy decision trees from concept drifting data streams.
In: Nguyen NT, Borzemski L, Grzech A, Ali M (eds) New fron-
tiers in applied artificial intelligence. IEA/AIE 2008. Lecture
notes in computer science, vol 5027. Springer, Berlin, Heidel-
berg, pp 179–188. https:// doi. org/ 10. 1007/ 978-3- 540- 69052-8_ 19

Nyati A, Bhatnagar D, Panwar A (2017) Analyzing performance of
classification algorithms on concept drifted data streams. Int J
Comput Appl 159:13–17

Oza NC, Russell S (2001) Experimental comparisons of online and
batch versions of bagging and boosting. In: Proceedings of the
seventh ACM SIGKDD international conference on knowledge
discovery and data mining, pp 359–364. https:// doi. org/ 10. 1145/
502512. 502565

Pesaranghader A, Viktor HL (2016) Fast hoeffding drift detection
method for evolving data streams. Mach Learn Knowl Discov
Databases. https:// doi. org/ 10. 1007/ 978-3- 319- 46227-1_7

Priya S, Uthra RA (2020) Comprehensive analysis for class imbal-
ance data with concept drift using ensemble-based classification.
J Ambient Intell Human Comput 12:4943–4956

Rad RH, Haeri MA (2019) Hybrid forest: a concept drift aware data
stream mining algorithm. pp 1–25. arXiv: 1902. 03609

Sebastião R, Fernandes JM (2017) Supporting the page-hinkley
test with empirical mode decomposition for change detection.
ISMIS, Springer, lecture notes in computer science, vol 10352,
pp 492–498

Shena Yan B, Yuquan Zhub JD (2017) A fast learn++ NSE classifi-
cation algorithm based on weighted moving average. Published
by Faculty of Sciences and Mathematics. https:// doi. org/ 10. 2298/
FIL18 05737S

Sheu J-J, Chu K-T, Li N-F, Lee C-C (2017) An efficient incremental
learning mechanism for tracking concept drift in spam filtering.
PLoS One 12(2):e0171518. https:// doi. org/ 10. 1371/ journ al. pone.
01715 18

Shikha Mehta J (2017) Concept drift in streaming data classifica-
tion algorithms, platforms and issues. Procedia Comput Sci
122:804–811

Sidhu P, Bhatia MPS (2017) A two ensemble system to handle con-
cept drifting data streams: recurring dynamic weighted majority.
Springer, Berlin, p 12

Song X, He H, Niu S, Gao J (2016) A data streams analysis strategy
based on hoeffding tree with concept drift on hadoop system. In:
2016 international conference on advanced cloud and big data
(CBD), pp 45–48. https:// doi. org/ 10. 1109/ CBD. 2016. 018

Suicheng Gu YT, He X (2013) Recentness biased learning for time
series forecasting. Inf Sci 237:29–38

Suryawanshi S, Goswami A, Patil P (2021) Incremental ensemble of
one-class classifier for data streams with concept drift adaption.
In: Advanced computing IACC 2020 communications in computer
and information science, vol 1367. Springer, Singapore. https://
doi. org/ 10. 1007/ 978- 981- 16- 0401-0_ 31

Wares S, Isaacs J, Elyan E (2019) Data stream mining: methods and
challenges for handling concept drift. SN Appl Sci 1(11):1–19.
https:// doi. org/ 10. 1007/ s42452- 019- 1433-0

Yang H, Fong S (2012) Incrementally optimized decision tree for min-
ing imperfect data streams. Commun Comput Inf Sci 293(PART
1):281–296. https:// doi. org/ 10. 1007/ 978-3- 642- 30507-8_ 25

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48011/asba.v2i1.1491
https://doi.org/10.48011/asba.v2i1.1491
http://arxiv.org/abs/1606.09282
https://doi.org/10.1109/ITSC.2017.8317886
https://doi.org/10.1109/ITSC.2017.8317886
https://doi.org/10.1007/978-3-540-69052-8_19
https://doi.org/10.1145/502512.502565
https://doi.org/10.1145/502512.502565
https://doi.org/10.1007/978-3-319-46227-1_7
http://arxiv.org/abs/1902.03609
https://doi.org/10.2298/FIL1805737S
https://doi.org/10.2298/FIL1805737S
https://doi.org/10.1371/journal.pone.0171518
https://doi.org/10.1371/journal.pone.0171518
https://doi.org/10.1109/CBD.2016.018
https://doi.org/10.1007/978-981-16-0401-0_31
https://doi.org/10.1007/978-981-16-0401-0_31
https://doi.org/10.1007/s42452-019-1433-0
https://doi.org/10.1007/978-3-642-30507-8_25

	Adaptive windowing based recurrent neural network for drift adaption in non-stationary environment
	Abstract
	1 Introduction
	1.1 Our contribution

	2 Background
	2.1 Long short term memory (LSTM)
	2.2 Gated recurrent unit (GRU)

	3 Related work
	4 Experiment design
	4.1 Research goal
	4.2 Dataset
	4.3 Evaluation measure
	4.4 Methodology

	5 Results and discussion
	5.1 Analytical results for proposed model
	5.2 Comparative results with other methods

	6 Conclusion
	References

