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Abstract
In today’s digital era, many applications generate massive data streams that must be sequenced and processed immediately. 
Therefore, storing large amounts of data for analysis is impractical. Now, this infinite amount of evolving data confronts 
concept drifts in data stream classification. Concept drift is a phenomenon in which the distribution of input data or the 
relationship between input data and target label changes over time. If the drifts are not addressed, the learning model’s per-
formance suffers. Non-stationary data streams must be processed as they arrive, and neural networks’ built-in capabilities 
aid in the processing of huge non-stationary data streams. We proposed an adaptive windowing approach based on a gated 
recurrent unit, a variant of the recurrent neural network incrementally trained on incoming data (for the real-world airline 
and synthetic Streaming Ensemble Algorithm (SEA) datasets), and employed elastic weight consolidation with the Fisher 
information matrix to prevent forgetting. Unlike the traditional fixed window methodology, the proposed model dynami-
cally increases the window size if the prediction is correct and reduces it if drifts occur. As a result, an adaptive recurrent 
neural network model can adapt to changes in the non-stationary data stream and provide consistent performance. Moreover, 
the findings revealed that on the airline and the SEA dataset, the proposed model outperforms state-of-the-art methods by 
achieving 67.74% and 91.70% accuracy, respectively. Further, the results demonstrated that the proposed model has a better 
accuracy of 3.6% and 1.6% for the SEA and the airline dataset, respectively.

Keywords  Non-stationary data streams · Gated recurrent unit · Fisher information matrix · Concept drift · Catastrophic 
forgetting · Adaptive window

1  Introduction

In the modern world of computing, a variety of applications 
generate a vast volume of data streams at fast speeds. A data 
stream is an unbounded flow of temporally sequenced data 
that arrives in real-time (Charu 2015). Massive streaming 
data are generated by real-time applications such as spam 

detection, weather forecasting, intrusion detection, internet 
of things, telecommunications, and e-commerce websites. 
Owing to such data’s requirements of vast memory, quick 
processing, and real-time decision support, traditional data 
mining algorithms cannot be applied (Bifet and Kirkby 2009; 
Hoens and Polikar 2012; Sheu et al. 2017). Moreover, pre-
diction in real-world data stream applications is confronted 
by concept drift. A change in the distribution of input data 
or the relationship between the target label is referred to as a 
“concept drift”. (The target label is referred to as the concept 
that is predicted by the class.) (Wares et al. 2019)

The concept drift is categorized into two types: virtual 
and real.

In data stream classification, X � {x1, x2, ..., xn} is a fea-
ture space and Y � { Y1, Y2....Yn } is the target or class label. 
Classification in real-world data stream applications is con-
fronted by concept drift. The prior probability of a given 
target class is represented as P(Y), P(Y∣ X) represents the 
posterior distributions of the class, and the data distribution 

 *	 Shubhangi Suryawanshi 
	 ss5683@bennett.edu.in

	 Anurag Goswami 
	 anurag.goswami@bennett.edu.in

	 Pramod Patil 
	 pdpatiljune@gmail.com

	 Vipul Mishra 
	 vipul.mishra@bennett.edu.in

1	 Bennett University, Greater Noida, India
2	 Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-04116-0&domain=pdf


14126	 S. Suryawanshi et al.

1 3

of the classes is represented as P(X∣Y) (Lu Jie and Zhang 
2018).

In a virtual concept drift, the data distribution P(X) varies 
and, consequently, P(X∣ Y) changes, although the posterior 
probability remains constant. The boundaries of the class 
remain unaltered. In a real drift, a change in P(Y∣ X) changes 
the decision boundaries or the target label. The posterior 
probability varies with or without the data distribution in a 
real concept drift. After considering the new information, 
the revised probability that occurs because of new informa-
tion is known as posterior probability (Wares et al. 2019; 
Lu Jie and Zhang 2018).

Concept drift presents itself in several ways, as seen in 
Fig. 1, which shows different patterns-sudden, incremental, 
gradual, and recurrent drifts (Lu Jie and Zhang 2018). The 
data distribution changes abruptly in sudden drift; for exam-
ple, in the current COVID-19 scenario, due to the lockdown, 
the users’ shopping patterns have changed abruptly. Con-
versely, gradual drift demonstrates a slow transition from 
one data distribution to the other; for example, owing to the 
lockdown imposed due to the COVID-19 pandemic, inflation 
was influenced gradually over the months. Moreover, data 
distributions exhibit sequential or step-wise changes and 
take a longer time to appear in incremental drift; for exam-
ple, following the pandemic, people’s travel habits changed 
incrementally after the lockdown was lifted. In recurrent 
drift, the previous concept or target label reappears with the 
same data distribution after some time (Lu Jie and Zhang 
2018), such as when consumers’ purchasing habits change 
every year during the festive season. Overall, regardless of 
the type, a model’s performance will suffer substantially if 
the drift is not addressed.

Traditional decision-making becomes ineffective in non-
stationary data stream environments due to the lack of prior 
knowledge of data streaming patterns (Bifet and Kirkby 
2009; Hoens and Polikar 2012; Sheu et al. 2017); thus, arti-
ficial intelligence models become prominent.

Many machine learning approaches have been used to 
handle various types of concept drift detection and adap-
tation  (Charu 2015; Shikha Mehta 2017; Ayad 2014; 

Nishimura et al. 2008). Machine learning models, which 
follow a traditional approach, are based on the assump-
tion of an underlying pattern and assume that in data 
streams, the concepts (i.e., target labels) do not change. 
Moreover, a machine learning model takes into account 
the data’s stationary properties, which contradicts the 
reality of concept drifts and impacts the classification 
model’s performance. Thus, since prior knowledge of 
pattern changes in the data is required, the conventional 
machine learning methods are ineffective in dealing with 
concept drift (Ksieniewicz et al. 2019; Nishimura 2008; 
Charu 2015; Shikha Mehta 2017).

Further, deep learning models do an excellent work of iden-
tifying the intricate structure in massive data (Lemos Neto 
et al. 2020; Ksieniewicz et al. 2019; Jun Gao and Murphey 
2020). However, the deep learning model faces two major 
challenges when processing data streams. First, in streaming 
data not all the data is available at the time of training. It’s 
difficult to handle a continuously arriving data stream with 
a static neural network structure for faster convergence and 
drift adaptation. Second, the evolving neural network is con-
fronted with the problem of catastrophic forgetting. Previously 
learned knowledge is replaced with new knowledge during 
catastrophic forgetting. When a evolving neural network learns 
a new data and forgets the old one, its performance deterio-
rates (Alvaro et al. 2020; Ksieniewicz et al. 2019; Baier et al. 
2021).

Therefore, it is crucial to design a learning model that can 
adapt to concept drifts while learning a continuously arriv-
ing data stream. However, several challenges are imposed by 
data stream classification as it is not a trivial task and differs 
from standard classification scenarios. Data Stream classi-
fication works on an infinite amount of partially sequenced 
data and requires immediate processing. Furthermore, the 
designed algorithm should incrementally learn new data and 
have an evolving nature while preventing catastrophic for-
getting, as the underlying concept of the new data changes 
over time.

Therefore, to address the above discussed challenges, 
we proposed a new concept drift adaptation model for 

Fig. 1   Categories of concept 
drifts
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non-stationary environments, that is incrementally trained 
on incoming data using an adaptive recurrent neural net-
work based on adaptive windowing with a forgetting 
mechanism.

1.1 � Our contribution

The main contribution of the study is that it uses an adaptive 
windowing-based gated recurrent unit model that is incre-
mentally trained on incoming data in order to improve drift 
adaption in non-stationary environments without compro-
mising performance. In the proposed model, the size of the 
window varies based on the drifts: If a drift is detected, the 
window will be halved, and when there are no drifts, the 
window will expand.

A small window is utilized to detect sudden changes 
quickly, whereas a larger window efficiently detects 
gradual changes. adaptive gated recurrent unit is used to 
adapt to the drift once it is recognized by the drift detec-
tion module, and a new layer is added to the gated recur-
rent unit to deal with drifts. To overcome the problem of 
catastrophic forgetting, elastic weight consolidation with 
a Fisher information matrix is utilized, which prevents 
the current weight from deviating from the previous one. 
Consequently, information from previous tasks is retained 
while learning new ones.

The proposed model comprises an initial configuration 
with the gated recurrent unit (GRU) layer, one hidden layer 
with 128 neurons, and an output layer with one neuron. The 
learning rate is set to 0.01, the rectified linear unit (ReLU) 
activation function is used for the hidden layers, and the 
sigmoid activation function is used for the output layer.

The key contributions of the study can be summarized in 
the following points:

•	 Enhancement in drift adaption using the adaptive win-
dowing-based evolving gated recurrent unit without com-
promising performance.

•	 Defined an evolving gated recurrent unit with growing 
hidden layers on the occurrence of the drift for better 
drift adaption.

•	 Incorporated elastic weight consolidation with a Fisher 
information matrix in an evolving gated recurrent unit to 
solve the problem of catastrophic forgetting.

The rest of this paper is organized as follows: The back-
ground is described in Sect. 2. Section 3 discusses related 
work; Sect. 4 explains the research goal, the dataset used, 
and the proposed methodology followed; Sect. 5 discusses 
the experiment and results, and finally, conclusions and 
future directions are presented in Sect. 6.

2 � Background

This section describes the background of the terms utilized 
in this paper. The recurrent neural network variant used in 
this study is described as follows:

2.1 � Long short term memory (LSTM)

One type of recurrent neural network is LSTM (Hochre-
iter and Schmidhuber 1997). LSTM is more effective at 
preserving long-term dependency and sequence modeling 
than other RNN variants. It consists of three gates: a forget 
gate, an input gate, and an output gate. Figure 2 shows the 
internal cell structure of LSTM. Below is an explanation of 
how the cell structure works and how it processes informa-
tion (Hochreiter and Schmidhuber 1997).

Forget gate: It determines which information needs more 
attention and which may be ignored. The input data Xt and 
the previous hidden state ht−1 are passed to the activation 
function � , which is a sigmoid. If older output is required, 
forget gate returns a value closer to 1; otherwise, forget gate 
ignores it. Wf  represents the forget gate’s weight matrices, 
and bf  represents the bias. The forget gate equation Eq. 1 is 
shown below:

Input gate: To update the cell state, the input gate transfers 
the previous ht−1 hidden state and the current input Xt to 
the next activation function for outputting of the appropri-
ate information, with the sigmoid set to 1 or 0 (to ignore). 
Tanh activation is used to regulate the network by taking 
into account the Xt and ht−1 as well as the cell state Ct as 
shown in Eq. 3. The forget factor ft is employed. The bias 
is represented by bi , while the input gate weight matrix is 
represented by Wi . The input gate Eq. 2 is shown below:

(1)Γf = �(Wf [ht−1,Xt]) + bf )

(2)Γi = �(Wi[ht−1,Xt]) + bi)

(3)Ct = tanh(Wc[ht−1,Xt]) + bc)

Fig. 2   Long Short Term Memory cell diagram
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Output gate: The next hidden state value will be decided 
by the output gate. The output gate Eq. 4 is shown below:

In Eq. 4, Γo represents the output gate, and � denotes the 
sigmoid activation function. The bias is denoted by bo , while 
the output gate weight matrix is denoted by Wo . tanh is an 
activation function.

For the generation of new cell state Eq. 6 and next hidden 
state Eq. 5 illustrated below,

In Eq. 5, Γo represents output of the output gate, tanh is an 
activation function and Ct represents the current cell state. 
In Eq. 6, Γu represents the update gate output, the cell state 
Ct and Ct−1 represent the current and previous cell state, and 
Γf  represents the forget gate output.

2.2 � Gated recurrent unit (GRU)

GRU is  a  s impl i f ied  and faster  var iant  of 
LSTM (Junyoung Chung and Bengio 2014). GRU makes 
use of the update and resets gates. It efficiently preserves 
long-term dependency (Junyoung Chung and Bengio 2014). 
Figure 3 shows the internal cell structure of GRU. Below is 
an explanation of how the cell structure works and processes 
the information. In GRU, Ct presents the memory cell to 
preserve the past knowledge, fat is the activation function, 
Xt represents the input data, and b is the bias. GRU is faster 
to train than other recurrent neural network types (Liu et al. 
2017). In GRU, every timestamp considers the overwriting 
of the memory cell.

The memory cell Ct+1 represents the knowledge of next input 
data, the Xt+1 represents the next input data, and WC repre-
sents the weight matrix in the Eq. 7.

(4)Γo = �(Wo[ht−1,Xt]) + bo)

(5)ht = Γo ∗ tanh(Ct)

(6)Ct+1 = Γu ∗ Ct + Γf ∗ Ct−1

(7)Ct+1 = fat (WC[Ct,Xt+1]) + b)

Update gate: It determines how much past information 
needs to be preserved and passed in the future. It gives a 
value between 0 and 1. The sigmoid activation � is applied 
to calculate the value of update gate ΓU.

The update gate memorizes the value until the value is 
updated. In Eq. 8, Wu represents the weight matrices for the 
update gate, the Ct memory cell represents the knowledge 
of the current input data, and Xt+1 represents the next input 
data. The GRU equation is shown in Eq. 9; the equation 
shows that if the gate value is 0, do not update it.

Reset Gate- It gives the provision to forget the past infor-
mation, which is not useful and is represented as Γr . The Γr 
computed as follows:

In Eq. 10, � is an activation function, Wr represents the 
reset gate’s weight matrices, Ct represents the knowledge 
of current input data, and Xt+1 represents the next input data 
instance. In Eq. 11 tanh is an activation function and Γr 
represents reset gate.

3 � Related work

In data stream classification, concept drift handling has risen 
as an emerging area of research due to the rapid growth 
of different applications in data mining communities. Sig-
nificant work has been done in machine learning to identify 
and deal with drifts in a variety of applications such as tel-
ecommunication (Charu 2015), weather forecasting (Shi-
kha Mehta 2017), energy consumption, and fraud detec-
tion (Charu 2015; Lu Jie and Zhang 2018).

The study (Bifet and Kirkby 2009) presented neural net-
works for data stream processing, demonstrating how their 
simplicity successfully handles the data stream. The study 
suggested that to manage the data stream, a neural network 
with back-propagation can be used, which avoids repetitive 
scanning of data streams. In the non-stationary time series 
(A time series is a collection of data that emerges in succes-
sion across time, with statistical characteristics such as co-
variance, mean, and variance changing with time.), a feed-
forward neural network with auto regressive procedures is 
used to address the concept drift problem and its influence 
on risk forecasting (Suicheng Gu and He 2013). However, 
the challenge with this technique lies in determining a drift 
type in the real world.

(8)ΓU = �(Wu[Ct,Xt+1]) + b)

(9)Ct+1 = ΓU ∗ Ct+1 + (1 − ΓU) ∗ Ct

(10)Γr = �(Wr[Ct,Xt+1]) + b)

(11)Ct+1 = tanh(WC[Γr ∗ Ct,Xt+1]) + b)

Fig. 3   Gated recurrent unit cell diagram
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The study (Ksieniewicz et al. 2019) employed a multi-
layer perceptron with a hidden layer to evaluate labeling 
costs in data streams and their impact on classification 
accuracy. Catastrophic forgetting was used in the study to 
avoid the problem of forgetting and to manage both abrupt 
and gradual drifts. The author proposed a neural network 
ensemble for various types of drifts. Another study (Jun Gao 
and Murphey 2020) applied an LSTM neural network with 
adjustable windowing to identify temporal dependency 
and obtain greater accuracy in advanced driver assistance 
systems in real-time. LSTM with adaptive windowing was 
utilized to extract the patterns from the data; the efficacy of 
dynamic window size adaptations aided in the selection of 
the most prominent features in multi-modal data.

In one of our studies (Suryawanshi et al. 2021), a one-
class ensemble classifier was progressively trained on posi-
tive data samples to handle both gradual and abrupt drifts. A 
one-class classifier predicts its counterparts based on simply 
a positive sample. It is difficult to distinguish between outli-
ers and drifts when only considering positive samples in 
one-class classification.

Several machine learning algorithms, including decision 
trees, random forests, Naive Bayes, Hoeffding trees, and 
support vector machines, are used to identify and handle 
concept drift (Ayad 2014; Yang and Fong 2012; Hemalatha 
and Pathak 2019; Rad and Haeri 2019). Machine learning-
based techniques need decades of domain expertise to adapt 
to drift (Ksieniewicz et al. 2019; Nishimura et al. 2008), 
whereas deep learning algorithms excel in identifying 
and adapting the complex structure in evolving streaming 
data (Jun Gao and Murphey 2020).

The study presented the most widely used dynamic 
weighted majority (DWM) (Kolter and Maloof 2007) for 
drift adaptation using a prediction technique employs a 
voting mechanism and a combination of a base classifier 
and a global ensemble. It trains a new classifier if one of 
the ensemble’s classifiers fails, penalizing the classifier, 
and replaces the previous classifier if the threshold value 
is reached. It can manage both gradual and sudden drifts. 
In the research study (Sidhu and Bhatia 2017) compared 
the recurrent dynamic weighted majority and dynamic 
weighted majority ensemble classifier in their research 
article.

The research study (Priya and Uthra 2020) employed an 
ensemble approach to address the issue of class imbalance 
and concept drift. Different drift detectors and ensemble 
classifiers were evaluated on real-world and synthetic data-
sets. The dynamic weighted majority and accuracy weighted 
ensemble methods outperformed traditional ensemble classi-
fiers for both sudden and gradual drifts. For the implementa-
tion, a Massive Online Analysis was employed.

For drift detection, the study (Song et al. 2016; Pesa-
ranghader and Viktor 2016) combined the Hoeffding 

inequality and a sliding window. The proper window size 
is determined and utilized the Hoeffding tree and Naive 
Bayes as base classifiers to identify both gradual and 
sudden drifts. Moreover, it obtained the smallest detec-
tion latency and, more importantly, the best accuracy by 
employing the Naive Bayes and Hoeffding tree as base 
classifiers.

Many novel ensemble techniques based on diverse vot-
ing criteria handle the concept drift (Mahdi et al. 2018; 
Jadhav and Deshpande 2017). The Learn Non-stationary 
Environments(Learn NSE) (Yan Shena and Yuquan Zhub 
2017) algorithm overcomes the performance problem expe-
rienced by various ensemble classifiers by assessing predic-
tion error on the most recent batch of data example. Evalu-
ated the online error rate of the base classifier, and if the 
errors rose, a new classifier was trained on the new data. 
This reduced the memory requirements by simply saving 
the current batch of data and removing the under-performing 
model immediately.

In an OzaBagADWIN method, an incremental ensemble 
is combined with the adaptive windowing drift detector. It 
is an adaptation of the classic bagging classifier. To monitor 
the change in adaptive windowing, a variable-size window is 
employed and cuts are applied in its window to better adapt 
to the change (Oza and Russell 2001; Bifet and Pfahringer 
2009).

The study (Alvaro et al. 2020) presented the incremental 
LSTM (ILSTM) to adapt to concept drift in data streams. 
The model used a fixed batch size and a static structure. In 
this investigation, explicit drift detection was not required.

In the study (Baier et al. 2021), uncertainty drift detec-
tion (UDD) approach was proposed to detect concept drift 
without the necessity for true labels; for this, a deep neural 
network using Monte Carlo dropouts was utilized. To detect 
changes in the data, the adaptive windowing technique was 
used to estimate the data’s uncertainty over time, and the 
impact of the input data on the model was analyzed to avoid 
model retraining.

The accuracy weighted ensemble (AWE) classi-
fier  (Haixun Wang et al. 2003) that employs N static classi-
fiers that are fixed at the start and aggregate their predictions 
by applying function f for training in batch mode or online 
streaming mode. Accuracy weighted ensemble outperforms 
a single classifier in terms of effectiveness. It divides the 
input into portions and assigns a different classifier to each 
portion while removing an old classifier. It effortlessly han-
dles both stationary and non-stationary data streams.

The study  (Lee et  al. 2017) presented elastic weight 
consolidation, which introduces a regularization term that 
causes the current network parameters to be near the net-
work parameters provided by previous tasks. Moreover, The 
study (Li and Hoiem 2016) utilized the learning-without-for-
getting method to preserve the knowledge of previous steps.



14130	 S. Suryawanshi et al.

1 3

The study (Kirkpatrick et al. 2017) demonstrated the elas-
tic consolidation weight technique, which overcomes the dif-
ficulty associated with incremental learning and prevents the 
current weight from deviating from the prior one.

4 � Experiment design

In this section, the research goals, dataset, proposed meth-
odology, and evaluation measures are detailed. The experi-
mentation was carried out on real-world and synthetic data-
sets with various drifts. The proposed model used forgetting 
mechanism with an adaptive neural network structure to 
adapt to the drift and was compared to the best-performing 
state-of-the-art methods such as accuracy weighted ensem-
ble, dynamic weighted majority, Learn NSE, OzaBagAD-
WIN, Hoeffding tree, UDD, and ILSTM (Shikha Mehta 
2017; Lu Jie and Zhang 2018; Agustin et al. 2015; Alvaro 
et al. 2020; Baier et al. 2021).

4.1 � Research goal

The main goal of this study is to improve drift adaptation 
without compromising classification accuracy as well as to 
evaluate how well an adaptive windowing-based recurrent 
neural network model can adapt to changes in a non-station-
ary data stream without forgetting.

4.2 � Dataset

The datasets used in the experiment are described below:

–	 Airlines dataset - There are 7 attributes and 37,900 
instances in the real-world airlines’ dataset, and two 
classes. Time, Airline, Flight, AirportFrom, AirportTo, 
DayOfWeek, and Length are the attributes. These are 
used to predict whether or not a flight will be delayed.1

–	 Streaming Ensemble Algorithm (SEA) - SEA is a syn-
thetic stream generator that generates a synthetic data 
stream dataset with sudden and gradual concept drifts. 
The SEA dataset is a synthetic dataset with three attrib-
utes: 50000 instances have two essential attributes, and 
b is a predetermined threshold. This dataset simulates 
both gradual and abrupt changes. There is 10% noise in 
the dataset.2

4.3 � Evaluation measure

The following evaluation measures were used to evaluate 
the proposed model on a real-world and synthetic dataset: 

(a)	 Accuracy - It is determined by taking the total number 
of correct predictions out of all possible outcomes. 
Accuracy = Correctly predicted values

Total no of predictions

(b)	 Recall - It is a measure of how well the model recog-
nizes positive values. It is the ratio of correctly pre-
dicted positive values to the total of true positive and 
false negative values  (Goutte and Gaussier 2005). 
Recall= True Positive

(True Positive+False Negative)

(c)	 Precision - It is the ratio of true positive values to all 
positive values predicted by the model. Precision gives 
the number of data points in the relevant class predicted 
by our model (Goutte and Gaussier 2005). Precision= 

True Positive

(True Positive+False Positive)

(d)	 F1-Score - To calculate the F1-score, the harmonic 
mean of precision and recall are used. It accurately 
measures the precision and recall balance (Goutte and 
Gaussier 2005). F1-Score = 2 * (Precision∗Recall)

Precision+Recall

(e)	 Receiver Operating Characteristics (ROC) - It is a 
probability curve, and the area under the curve (AUC) 
represents the degree or measure of separability. It 
demonstrates the model’s ability to distinguish among 
classes.

4.4 � Methodology

Figure 4 depicts the proposed model’s workflow: import-
ing and pre-processing, creating the adaptive window, 
drift detection, forgetting mechanism, and implementing 
the adaptive GRU model. Finally, the proposed model was 
assessed in terms of F1-score, accuracy, precision, recall, 
ROC curve, and confusion matrix. Python and the Sklearn 
library were used for the implementation. The workflow of 
the proposed study is described in this section. The summary 
of notations used to describe the proposed model and their 
description is summarized in Table 1.

Step 1: Pre-processing
The min-max scaler is used to scale values from 0 to 

1 when the dataset is imported. The record with the miss-
ing values is removed, and label values ranging from 0 to 1 
are encoded using the label encoder. The dataset is divided 
into equal-sized chunks to incrementally train the model on 
chunks.

Step 2: Adaptive Window
The adaptive window utilized in this study works in the 

same way as the sliding window. The difference in the size 
of the window varies based on whether the drift occurs or 
not. The data samples are separated into sub-batches using 

1  [Airline Dataset] https://​moa.​cms.​Waika​to.​ac.​nz/​datas​ets.
2  [SEA Dataset] https://​github.​com/​vlosi​ng/​drift​Datas​ets/​tree/​artif​
icial/.

https://moa.cms.Waikato.ac.nz/datasets
https://github.com/vlosing/driftDatasets/tree/artificial/
https://github.com/vlosing/driftDatasets/tree/artificial/
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a window after they are received. If the drift is identified, 
the window is considered as its half, and the model training 
is done on the smaller window size.

The data elements arrive in a continuous stream, and only 
the most recent N elements are used in window strategies. 
If the N*2 predictions are correct, the size of the window 
is extended to its original size. The experiments were per-
formed with window size w = 10, 100, 200, 300, 400, and 
500. Several experiments were conducted to determine the 
optimal window size, which was chosen based on the mod-
el’s performance.

Step 3: Drift Detection
The drift detector module is called if the classifier mis-

classifies an instance. To track changes, the Page-Hinckley 
statistical test is employed (Sebastião and Fernandes 2017). 
It senses the change by incrementally calculating the mean 
of input data.

The test calculates the cumulative difference Dc between 
the mean of the current window and prior values as well as 
the minimum difference Dm and determines the threshold 
value � . If the condition presented in Eq. 12 is met, an alert 
is raised.

If the drift is spotted, the window size is halved, and the 
model is then trained using that small amount of data. The 
window size is expanded to its original size if no drift is 
detected and after N*2 correct predictions.

Step 4: Forgetting Mechanism
In data stream, incremental learning causes a learning 

problem known as catastrophic forgetting, wherein the 
model abruptly forgets previously learned knowledge while 
learning new information. When a model learns a new data 

(12)𝜆 > Dc − Dm

Fig. 4   Adaptive windowing based recurrent neural network for drift adaption in non-stationary environments

Table 1   Summary of notations 
used to describe the proposed 
model

Notations Meaning

w Window size
D

c
The cumulative difference between the mean of the current window and prior values

D
m

The minimum difference between the mean of the current window and prior values
� Threshold value
� The magnitude of the changes that are allowed
N Number of elements in a window
X Input features dimensions
Y Target Label
e Number of epochs
t Task
�
c−1 Parameters for the previous task
�
c

Parameters for Current task
F
i

Fisher Information Matrix
p(Y

i
∣ X

i
;�

c
). The log-likelihood of posterior probability for the current task

C Constant Parameter
L(�

c−1) The loss from the previous task
L(�

c
) The loss of the current task
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and forgets the old one, its performance deteriorates. The 
task/chunk borders are determined using the change detec-
tion approach. When a change is observed, it is marked as 
a new task boundary. To overcome this difficulty, the diver-
gence of the current weights from their prior ones may be 
prevented.

We used elastic weight consolidation with the Fisher 
information matrix to decrease the effect of catastrophic 
forgetting.

In the provided dataset D(Xi,Yi ), Xi contains the Xi � { X1

,X2,.....Xn } data samples and Yi � { Y1,Y2,......Yn } labels. The 
ideal set of parameters learned from the previous task t1 is 
�c−1 . To determine the optimal parameters �c for the current 
task, the elastic weight consolidation factorizes the preced-
ing model using Bayesian estimation.

Eq. 13 gives the probability of �c−1 , which represents the 
previous model’s optimal parameters, and �c , which indi-
cates the current parameters. The previous batch’s/task’s 
optimum parameters �c−1 are fed into the Fisher information 
matrix Fc−1 shown in Eq. 14, which defines the relevance of 
each current parameter �c and confines the previous batch 
parameters �c−1 while training on task t. The Laplace approx-
imation is used to choose the optimal parameters �c for the 
current task. log(p(Yi ∣ Xi;�c) ) represents the log-likelihood 
of posterior probability distribution function p(Yi ∣ Xi;�c ). 
The constant parameters C can be ignored during training 
shown in Eq. 14. The probability of parameter �c gives an ith 
batch target label and input data Yi ∣ Xi.

The penalization regularization term is shown in Eq. 15. 
The Fisher information matrix Fi represents the ith diagonal 
element. The Fisher information quantifies how much infor-
mation the parameters provide about the data. After comput-
ing first-order derivatives, the Fisher information matrix is 
utilized to estimate the importance of each connection or 
parameter. L(�c−1 ) is the loss from the previous task, and 
L(�c ) is the loss from the current task.

In Eq. 14, the log-likelihood gradient is computed with 
the model performance, and the gradient squared mean is 
also computed. In Eq. 15, the loss till the previous task 
parameters is calculated, and the symbol � reflects how sig-
nificant the previous stage parameter is in comparison to 
the new one. It is evident that the Fisher regularization will 
attempt to maintain the essential parameters near to the pre-
viously learned values. The elastic weighted computation 

(13)�c−1 = p(�c ∣ �c−1)

(14)
logpc = log(p(Yi ∣ Xi);�c) − �∕2(� − �c−1)Fc−1(� − �c−1)

2 + C

(15)L(�c) = L(�c−1) +
∑

i

�∕2Fi(�i − �c−i)
2

maintains the current parameter’s weights close to the previ-
ous parameter’s values.

Step 5: Adaptive Neural Network for Drift Adaption
The proposed model employs a GRU, which is a simpli-

fied variant of a recurrent neural network. A GRU layer, a 
hidden layer, and an output layer are the only layers in the 
initial structure of an adaptive neural network.

When a drift is detected, a new layer is added to the exist-
ing model, while the other layers are kept frozen, and the 
new layer is initialized with the preceding layer’s optimal 
weights. For the GRU, the ReLU activation function is used. 
ReLU will output the input straight if the input is positive; 
otherwise, it will output 0. The memory cell captures the 
drifts automatically.

The sigmoid activation was used for the output layer. 
Selecting the optimized hyper-parameters is crucial, as it 
influences the model’s performance. In addition, optimized 
hyper-parameters, such as a learning rate of 0.01, the Adam 
optimizer, and a binary cross entropy loss function were 
utilized.

The standard test-then-train (prequential) procedure was 
utilized to evaluate the data stream. The procedure is car-
ried out by first testing and then training. In the procedure, 
the dataset is processed incrementally in a sequence of b 
batches. In incremental learning, the catastrophic forgetting 
issue is also considered.

Step 6: Prediction Result
The final prediction is determined by dividing the total 

prediction by the number of correct predictions. F1-score, 
precision, recall, ROC curve, and confusion matrix were 
also computed to evaluate the performance of the proposed 
model.

5 � Results and discussion

The state-of-the-art methods such as accuracy weighted 
ensemble(AWE), dynamic weighted majority(DWM), Learn 
NSE, OzaBagADWIN, hoeffding tree, UDD, and ILSTM 
were compared with the proposed model adaptive window-
ing-based recurrent neural network for drift adaptation, and 
the comparative analysis is provided below.

5.1 � Analytical results for proposed model

Sklearn and the Scikit-Multiflow were utilized in the 
implementation, while the Matplotlib was used to plot the 
graph (Hunter 2007). The experimental setup was as follows:

To avoid catastrophic forgetting, elastic weight consoli-
dation with a Fisher information matrix was used, which 
prevents the deviation of the current weight from the previ-
ous one. As a result, it retains information from previous 
tasks while learning new ones. Data samples were handled 
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in chunks, and the model was trained using incremental 
learning and evaluated using prequential evaluation. This 
approach was repeated until the models had used all of the 
data instances available. Adaptive windowing was combined 
with drift detection, and an adaptive neural network was 
used once the drift was discovered. The accuracy, F1-score, 
precision, recall, confusion matrix, and ROC curve were 
used to assess the model’s performance.

The layers in the initial configuration of a neural network 
were one GRU layer, one hidden middle layer with 128 neu-
rons, and the output layer with one neuron with sigmoid 
activation. The learning rate was set to 0.01, the Adam opti-
mizer was used, and binary cross-entropy was used as the 
loss function.

Experimentation was carried out to determine the best 
window size by taking into account various window sizes. 
Several experiments were run w = 10, 100, 200, 300, 400, 
and 500 to discover the optimal window size w, which was 
chosen based on the model’s performance and the results.

The Page-Hinckley statistical test was used for the drift 
detection. The parameters � and � in the Page-Hinckley sta-
tistical test were set to 50 and 0.005, respectively. � is the 
threshold of the change detection and the forgetting factor � , 
which is used to weigh the observed value and the mean. The 
threshold value � is determined by considering the admis-
sible false alarm rate. While increasing threshold value � 
reduces false alarms, it also increases the risk of missing or 
delaying changes. Change detection is a crucial factor in this 
study; thus, the threshold value is set to 50 to balance the 
false alarm rate and the risk of missing or delaying changes.

The model was trained with 1, 5, 10, and 20 epochs, and 
its performance was assessed. If the drift was discovered, 
the window size was halved. A new layer was added to the 
existing model, and the model was incrementally trained on 
the lesser number of data samples from the halved window 
size. A small window was utilized to detect sudden changes 
quickly, whereas a larger window efficiently detected gradual 
changes.

Adaptive windowing based on LSTM recurrent neural 
network was employed with the aforementioned hyperpa-
rameter values, and the results were compared to the adap-
tive GRU model using synthetic and real-world datasets. The 
comparative study of adaptive windowing-based recurrent 
neural networks based on GRU and LSTM is presented in 
Table 2 and 3.

The results of an experiment on airline and SEA data-
sets using the proposed model based on adaptive GRU and 
LSTM were compared and evaluated. Table 2 shows the 
comparison for the synthetic dataset, and Table 3 shows the 
comparison of the classifier on the real-world dataset.

The results show that the adaptive windowing-based GRU 
model outperforms the LSTM model.

The proposed model with one pass performs poorly on 
synthetic and real-world datasets, as shown in Tables 2 
and 3. This is because it scans the data in a single pass and 
is unable to discover the data’s underlying structure, result-
ing in performance degradation.

The accuracy, F1-score, precision, and recall of the SEA 
dataset improve as the number of epochs increase until e = 
10. The difference between e = 10 and e = 20 is the smallest, 
as indicated in Table 2.

Table 3 depicts that the accuracy, F1-score, precision, 
and recall of the airline dataset improve until e = 10, after 
which they remain constant or show the least improvement.

The proposed model’s confusion matrix for the SEA and 
the airline dataset is shown in Figs. 5 and 6, respectively. A 
confusion matrix is used to demonstrate a classifier’s perfor-
mance. It represents the count of predicted and actual val-
ues. True positive values indicate that the classifier correctly 
classified the positive samples, while true negative values 
indicate that the classifier correctly classified the negative 
samples. False negative values indicate that the classifier 
misclassified actual positive samples as negative, whereas 
false positive values indicate that the classifier misclassified 
actual negative samples as positive. The proposed method 
has better true positive and true negative values as well as 
lower false negative and false positive rates, as shown by 
the confusion matrix. The proposed model performs better 
for airlines and the SEA dataset, as demonstrated by the 
confusion matrix.

Figures 7 and 8 demonstrate the ROC curves for the pro-
posed model using the SEA dataset and the airline dataset, 
respectively. Figures 7 and 8 show that the proposed model 
gained proficient performance, with AUC values of 0.86 and 
0.69, respectively. The GRU model has a larger AUC than 
the LSTM model, indicating that it is better for the SEA and 
airline datasets.

5.2 � Comparative results with other methods

Tables 4 and 5 present the summary of the comparison of 
different methods applied to the SEA and airline datasets 
with the proposed model. The tables show that the pro-
posed model outperforms existing state-of-the-art methods 
in terms of accuracy, F1-score, precision, and recall.

In most real-world applications, data distribution is unbal-
anced; therefore, F1-score, recall, and precision measures for 
assessment are more accurate matrices than accuracy.

The accuracy of the classifier on synthetic and real-world 
datasets was compared and is depicted in Fig. 9. In 9, meth-
ods on different datasets are displayed along the x-axis, 
represented by different colors, while the y-axis represents 
accuracy. The graph indicates that the proposed model 
based on GRU can adapt to the different types of drifts more 
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Table 2   Comparison of the 
classifier on SEA synthetic 
dataset

Significant results are indicated by bold

Model Accuracy F1-Score Recall Precision

GRU​
w = 10 Proposed model with single pass 81.07 83.25 82.94 86.24

Proposed model with e = 5 82.08 82.79 82.49 86.49
Proposed model with e = 10 84.41 83.08 82.77 83.37
Proposed model with e = 20 89.69 88.42 89.27 88.02

w = 100 Proposed model with single pass 76.75 88.07 89.34 87.49
Proposed model with e = 5 89.76 88.28 89.36 87.49
Proposed model with e = 10 91.70 88.57 89.68 87.81
Proposed model with e = 20 91.59 88.49 89.63 87.68

w = 200 Proposed model with single pass 84.05 88.39 89.60 87.62
Proposed model with e = 5 88.21 88.51 89.65 87.74
Proposed model with e = 10 90.11 88.52 88.77 87.75
Proposed model with e = 20 91.09 88.49 88.63 87.68

w = 300 Proposed model with single pass 85.28 88.25 89.48 87.46
Proposed model with e = 5 88.71 88.33 89.49 87.64
Proposed model with e = 10 87.32 88.41 89.32 87.89
Proposed model with e = 20 91.00 88.04 89.54 88.11

w = 400 Proposed model with single pass 83.42 88.39 89.51 87.68
Proposed model with e = 5 89.66 88.54 89.60 87.79
Proposed model with e = 10 86.4 88.12 89.4 87.82
Proposed model with e = 20 91.41 88.45 89.55 87.79

w = 500 Proposed model with single pass 81.90 88.11 89.31 87.28
Proposed model with e = 5 87.68 87.62 88.85 87.80
Proposed model with e = 10 91.12 88.15 89.14 87.99
Proposed model with e = 20 89.78 88.08 89.64 87.91

LSTM
w = 10 Proposed model with single pass 71.31 88.19 89.31 87.48

Proposed model with e = 5 82.09 88.42 89.31 87.68
Proposed model with e = 10 83.15 88.22 89.14 87.94
Proposed model with e = 20 85.87 88.54 89.57 88.00

w = 100 Proposed model with single pass 86.59 88.08 89.28 87.39
Proposed model with e = 5 85.01 88.51 89.54 87.88
Proposed model with e = 10 90.85 88.14 89.24 89.94
Proposed model with e = 20 87.52 88.51 89.51 87.84

w = 200 Proposed model with single pass 83.55 88.25 89.42 87.37
Proposed model with e = 5 87.32 88.31 89.32 87.89
Proposed model with e = 10 88.25 88.11 89.85 87.85
Proposed model with e = 20 88.58 88.17 89.11 87.94

w = 300 Proposed model with single pass 86.71 88.25 89.51 87.41
Proposed model with e = 5 89.02 88.12 89.65 87.71
Proposed model with e = 10 90.03 88.38 89.02 87.88
Proposed model with e = 20 91.20 87.82 88.82 86.82

w = 400 Proposed model with single pass 84.21 88.14 89.28 87.37
Proposed model with e = 5 87.63 88.25 89.31 87.85
Proposed model with e = 10 91.01 87.77 89.94 88.02
Proposed model with e = 20 91.12 87.82 88.89 88.01

w = 500 Proposed model with single pass 83.74 88.28 89.45 87.51
Proposed model with e = 5 89.22 88.48 89.44 87.68
Proposed model with e = 10 89.34 88.12 89.25 87.97
Proposed model with e = 20 89.54 88.09 89.01 87.97
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Table 3   Comparison of the 
classifier on airline real-world 
dataset

Significant results are indicated by bold

Model Accuracy F1 score Recall Precision

GRU​
w = 10 Proposed model with single pass 67.36 41.93 43.25 50.29

Proposed model with e = 5 67.13 51.06 55.67 54.94
Proposed model with e = 10 67.36 48.81 54.67 53.53
Proposed model with e = 20 61.85 50.71 53.46 50.89

w = 100 Proposed model with single pass 67.63 53.43 56.96 56.49
Proposed model with e = 5 67.41 57.49 62.73 58.16
Proposed model with e = 10 67.74 59.17 64.42 59.21
Proposed model with e = 20 62.32 54.32 56.50 54.14

w = 200 Proposed model with single pass 67.03 52.89 57.89 55.57
Proposed model with e = 5 66.54 59.02 63.39 59.64
Proposed model with e = 10 65.34 58.85 63.42 59.00
Proposed model with e = 20 62.61 54.42 57.25 54.39

w = 300 Proposed model with single pass 67.60 55.07 59.89 57.32
Proposed model with e = 5 67.0 57.92 64.35 58.82
Proposed model with e = 10 65.8 58.35 64.25 60.42
Proposed model with e = 20 62.95 59.06 62.35 59.21

w = 400 Proposed model with single pass 67.71 53.32 58.53 56.07
Proposed model with e = 5 66.24 59.05 63.53 58.82
Proposed model with e = 10 65.17 58.39 63.14 58.42
Proposed model with e = 20 64.55 55.14 58.71 55.03

w = 500 Proposed model with single pass 67.43 56.30 60.90 57.90
Proposed model with e = 5 66.58 58.43 62.83 59.06
Proposed model with e = 10 65.57 58.09 62.56 58.23
Proposed model with e = 20 64.53 57.46 58.10 58.10

LSTM
w = 10 Proposed model with single pass 67.16 41.83 41.03 50.12

Proposed model with e = 5 67.10 50.59 56.83 54.90
Proposed model with e = 10 67.73 56.38 60.09 58.31

w = 100 Proposed model with single pass 67.02 51.96 58.64 55.42
Proposed model with e = 5 67.41 58.35 63.17 58.99
Proposed model with e = 10 65.97 58.64 63.32 58.60
Proposed model with e = 20 66.32 58.63 63.24 59.54

w = 200 Proposed model with single pass 67.13 52.64 57.46 55.89
Proposed model with e = 5 67.14 41.52 43.78 50.10
Proposed model with e = 10 67.08 47.94 56.85 53.18
Proposed model with e = 20 67.15 54.98 61.07 57.03

w = 300 Proposed model with single pass 67.67 53.42 58.17 56.39
Proposed model with e = 5 66.8 58.75 63.25 59.53
Proposed model with e = 10 64.61 59.07 63.21 59.42
Proposed model with e = 20 63.59 58.85 62.57 59.64

w = 400 Proposed model with single pass 67.63 53.03 56.92 56.21
Proposed model with e = 5 66.93 57.92 64.14 58.89
Proposed model with e = 10 65.43 57.39 62.64 57.57
Proposed model with e = 20 64.54 56.96 55.85 57.57

w = 500 Proposed model with single pass 67.57 52.39 60.03 55.82
Proposed model with e = 5 66.59 58.49 64.15 60.57
Proposed model with e = 10 65.36 58.07 64.21 59.74
Proposed model with e = 20 64.78 59.07 63.39 59.03
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effectively without forgetting than the other state-of-the-art 
methods. The proposed model outperformed the classifier by 
achieving 67.74% and 91.70% accuracy on the airline and 
the SEA dataset, respectively.

The experiments indicated that adaptive windowing effi-
ciently adjusts the window size if there are drifts or a more 
volatile data distribution and expands the window size when 
there are no drifts. Multiple types of drifts occur simultane-
ously in a SEA synthetic dataset, and state-of-the-art meth-
ods fail to adjust to the different types of drift at the same 
time. The comparative result is provided in Table 4.

The proposed model with an adaptive GRU model with 
optimized hyper-parameters, forgetting mechanism, and self-
adapting window adapted to several types of drifts occurring 
at the same time.

Figures 10 and 11 compare the proposed model to state-
of-the-art methods in terms of F1-score, precision, and 
recall. Precision demonstrates the proposed model’s abil-
ity to correctly identify and predict positive data samples 
in the presence of a drift. Existing methods, on the other 
hand, consider the impact of current input data on the clas-
sification model, which leads to inaccurate prediction when 
concept drifts exist.

Recall illustrates the proposed model’s ability to pro-
duce less false negatives. In terms of recall, the proposed 
model exceeded previous methods by 64.42% for airlines 
and 89.68% for the SEA dataset. F1-score is computed and 
compared when false negatives and positives are essential 
and the class distribution in the real-world dataset is unbal-
anced. The proposed model outperformed existing methods 
by 59.17% and 88.57% F1-score for the airline and the SEA 
dataset, respectively.

Higher accuracy and F1-score indicate that incrementally 
training the adaptive GRU model by automatically selecting 
the optimal window size for the input data can help to adapt 

Fig. 5   Confusion matrix for SEA dataset

Fig. 6   Confusion matrix for airline dataset

Fig. 7   ROC curve for proposed model with SEA dataset

Fig. 8   ROC curve for proposed model with airline Dataset



14137Adaptive windowing based recurrent neural network for drift adaption in non‑stationary…

1 3

to non-stationary data stream changes and provide consistent 
performance even when drift occurs.

The results demonstrated that the proposed model can 
successfully adjust its size in response to drifts or changes 
and the adaptive neural network adapts to drifts efficiently by 
taking the catastrophic forgetting effect into account.

6 � Conclusion

This study aimed to validate the effectiveness of an adaptive 
windowing-based recurrent neural network on various types 
of drifts and compare it with the state-of-the-art methods 
such as accuracy weighted ensemble, dynamic weighted 
majority, Learn NSE, OzaBagADWIN, hoeffding tree, 
UDD, and ILSTM.

The study proposed an adaptive windowing-based recur-
rent neural network model (based on the GRU model) with a 
forgetting mechanism to evaluate the sequential relationship 
and drift adaption effectively. When checking for less fluc-
tuating or stable data distributions or drifts, a wider window 

Table 4   Summary of the 
different methods applied to the 
SEA dataset

Significant results are indicated by bold

Method name Accuracy Precision Recall F1-Score

Learn NSE (Shena and Yuquan Zhub 2017) 86.04 85.96 83.15 84.53
Hoeffding Tree 86.8 88.38 86.42 87.39
OzaBagAdwin (Agustin et al. 2015) 87.25 84.26 83.15 84.23
DWM (Kolter and Maloof 2007; Sidhu and 

Bhatia 2017; Priya and Uthra 2020)
88.09 86.46 85.30 86.85

AWE (Agustin et al. 2015) 87.68 87.66 86.71 87.46
UDD 88.53 88.79 88.11 87.93
ILSTM (Alvaro et al. 2020) 84.68 86.51 88.45 87.46
Proposed Model 91.70 87.81 89.68 88.57

Table 5   Summary of the different methods applied to the airlines 
dataset

Significant results are indicated by bold

Method name Accuracy Precision Recall F1-Score

Learn NSE (Agustin et al. 
2015)

59.47 56.79 56.84 56.81

Hoeffding Tree (Nyati et al. 
2017)

65.08 58.99 58.24 57.62

OzaBagAdwin (Nyati et al. 
2017)

66.06 54.83 52.73 49.83

DWM 65.13 61.16 56.08 54.87
AWE (Nyati et al. 2017) 59.89 51.13 51.23 49.42
UDD 53.09 32.91 54.11 40.89
ILSTM (Alvaro et al. 2020) 64.78 59.08 61.39 59.01
Proposed Model 67.74 59.21 64.42 59.17

Fig. 9   Classifier accuracy on a real-world and synthetic dataset
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was utilized, but when the data distribution was more vola-
tile or was evolving, a narrower window was employed.

The proposed model’s performance was assessed using a 
real-world airline and a synthetic SEA dataset that included 
a simultaneous gradual and abrupt drifts. The state-of-the-
art methods failed to adjust to several types of drifts occur-
ring at the same time. The observed results revealed that on 
the airline and the SEA dataset, the proposed model outper-
forms the state-of-the-art methods by achieving 67.74% and 
91.70% accuracy, respectively.

Our findings demonstrate that the adaptive window can 
successfully adjust its size in response to drifts or changes 
and the adaptive neural network adapts to the drifts effi-
ciently by taking into account the problem of catastrophic 
forgetting. In the future, an adaptive ensemble of neural net-
works could be used to adapt to drifts by considering the 
unstructured data streams and avoiding forgetting.

Data availability  The two datasets that we used, are available online 
and links are provided in the article.
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