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Abstract
In this paper, we propose an unsupervised lightweight network with a single layer for ear print recognition. We refer to this 
method by MDFNet because it relies on gradient Magnitude and Direction alongside with responses of data-driven Filters. 
At first, we align ear using Convolution Neural Network (CNN) and Principal Component Analysis (PCA). MDFNet starts 
by generating a filter bank from training images using PCA. This is followed by a twofold layer, which comprises two opera-
tions namely convolution using learned filters and computation of gradient image. To prevent over-fitting, a binary hashing 
process is done by combining different filter responses into a single feature map. Then, we separately construct histograms 
for each of gradient magnitude and direction according to the feature map. These histograms are then normalized, using 
power-L2 rule, to cope with illumination disparity. Several fusion rules are evaluated to combine the two histograms. The 
main novelty of MDFNet lies in its simple architecture, effectiveness, the good compromise between processing time and 
performance it provides along with its high robustness to occlusion. We conduct extensive experiments on three public data-
sets namely AWE, AMI and IIT Delhi II. Experimental results demonstrate the effectiveness of MDFNet, which achieves 
high recognition rates (82.5%, 97.67% and 98.96%, respectively), and outperformed several state of the art methods with a 
high robustness to occlusion. Experiments revealed also the actual need for considering ear alignment.
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1 Introduction

Nowadays, the need for biometric systems that are capable 
to reliably recognize persons is quite ostensible. Emerging 
applications of biometrics include self-driving, smartphone 
security, prevention of human trafficking, e-voting, crime 
investigation, etc. Moreover, with the development of smart 
cities, cloud and mobile computing, biometric systems have 
become increasingly demanded. For instance, biometrics can 
be used to enhance the quality of service in a smart city. 
Typical examples include ubiquitous healthcare, privacy 

protection, access control, screening, traveling facilitation 
and law enforcement (Barra et al. 2018). In order to perform 
identification, different physiological and behavioural traits 
including face, iris, ear, gait and signature can be utilized. 
Each of these traits should satisfy certain constraints in order 
to be eligible for identification tasks. The main constraints 
are measurability, permanence, uniqueness, universality and 
collectability.

In recent years, ear has attracted considerable and grow-
ing interest in biometric community due to its inherent 
characteristics compared to other traits. Unlike face, ear is 
insusceptible to facial expressions, emotions, glasses, make-
up and it keeps unchanged from 8 to 70 years old (Kam-
boj et al. 2021). Nowadays, with outbreak of COVID-19, 
people wearing masks for prevention purposes. Hence, it is 
very challenging for face identification systems to recognize 
persons. Additionally, ear is a non-intrusive trait because it 
can typically be acquired without informing the concerned 
person. Another appealing property of the ear is its high 
distinctiveness even in the case of identical twins (Emeršič 
et al. 2017a; b). Figure 1 presents the anatomy of human ear.
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In the literature, several attempts have been made to 
develop a reliable automatic system for ear recognition. 
They can be categorized into three groups. Works (Hans-
ley et al. 2018; Khaldi and Benzaoui 2020a, b; Khaldi and 
Benzaoui 2020a, b) within the first category are concerned 
with pre-process ear image to facilitate the subsequent steps 
in the recognition pipeline. With impressive performance 
of deep learning on different vision tasks (Samai et  al. 
2018; Hamrouni et al. 2021; Kumar et al. 2021; Zhang et al. 
2021), deep-based approaches (Emeršič et al. 2018; Khaldi 
and Benzaoui 2020a, b) have been integrated to improve 
the lucidity of ear print. The second type of methods try to 
handle a crucial step in recognition process namely features 
learning. As for the third category of methods (Dodge et al. 
2018; Alshazly et al. 2019a, b; Kacar and Kirci 2019; Omara 
et al. 2021), it aims at designing learning models that can 
discriminate different classes successfully. In spite of the 
huge amount of works devoted to cope with ear recognition 
problem, we believe that there is still room for improvement. 
What is actually coveted is a method capable to perform 
accurate identification, yet, in a reasonable time.

In this paper, we put forward a new unsupervised light-
weight single layer-based network for human ear description 
and recognition. This method is denoted by MDFNet, as 
it integrates gradient information, namely Magnitude and 
Direction, together with feature maps produced using data-
driven Filters. To sum up, contributions of the current paper 
can be summarized as follows.

– We propose an unsupervised lightweight network with a 
single-layer (MDFNet) for faithful ear recognition.

– Compared to certain state-of-the-art methods, which are 
computationally expensive, MDFNet provides a good 
trade-off between processing time and performance.

– We show the indispensable role of ear alignment in 
improving the performance of ear identification.

– We conduct comprehensive experiments on three pub-
lic datasets, namely: AWE, AMI and IIT Delhi II. The 
obtained results demonstrate the efficiency of the pro-

posed method, which outscored relevant networks as well 
as several state of the art methods.

– We assess the performance of MDFNet under different 
occlusion levels. MDFNet has shown high tolerance 
towards occlusion.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview on the related works for ear rec-
ognition. Section 3 is devoted to present MDFNet. In Sect. 4, 
we provide details about the proposed method. Experimental 
results and discussions are given in Sect. 5. Finally, Sect. 6 
draws some conclusions and perspectives.

2  Related work

2.1  Pre‑processing‑based methods

In unconstrained scenarios, ear pre-processing plays a vital 
role in the recognition pipeline. Main pre-processing acts 
including ear alignment, inpainting, colorization and region 
of interest segmentation. In Ribič et al. (2016), authors has 
addressed the first point and studied the impact of ear align-
ment on ear recognition for the case of AWE dataset. As for 
the case of ear images with slight roll and yaw, experiments 
have revealed that ear alignment improves the recognition 
outcomes. However, aligning ears with strong roll and yaw 
has negatively affected the recognition results. Authors sug-
gested that further sophisticated ear alignment procedures 
are required.

More recently, deep learning techniques were utilized 
for ear image pre-processing. In Emeršič et  al. (2018), 
authors proposed using inpainting techniques to replace 
the ear accessory by a surrogate region using CNN-based 
auto-encoders. Authors assumed that both shape and loca-
tion of ear accessory is already know, and adopted three 
different approaches to replace the removed region. The first 
approach replaces the removed region with naturally look-
ing regions, while the second approach simply fill in the 
blank region by a black color. As for the last approach it 
considers replacing the removed region by the average color 
of the image. A landmark detection-based geometrical ear 
normalization method is proposed in Hansley et al. (2018). 
In particular, a customized CNN is trained on augmented 
data to detect ear landmarks, scale and pose of ear images 
are then normalized using Principal Components Analysis 
(PCA). Different image features were considered, where an 
improvement of about 5% was achieved over results obtained 
using unaligned ear images. Ear alignment based on deform-
able models has consistently improved performance of the 
system proposed in Zhou and Zaferiou (2017). In addition, 
authors have compared different discriminant and generative 
approaches for ear landmark detection. Color information 

Fig. 1  Anatomy of the human ear
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losing once performing training using color images and test-
ing using gray-scale images was the concern of the study in 
Khaldi and Benzaoui (2020a, b). To handle this problem, 
authors proposed colorizing test images using conditional 
deep convolutional generative adversarial networks. In 
Khaldi and Benzaoui (2020a, b), an image-to-image trans-
lation technique is used to segment region of interest within 
ear image, and to synthetize missing parts of ear such as 
occluded regions. In particular, a pix2pix GAN which is 
trained on the AWE dataset is used to synthetize the miss-
ing parts of the ear. Then, different handcrafted features, 
such as local binary patterns and local phase quantization, 
are extracted from different color channels of the ear image 
to describe and classify ear images. As can be noticed, the 
previous works differ from each other in terms of the work 
target i.e., colorization, inpainting and alignment. Mean-
while, they commonly used deep learning architectures due 
to their achievements on different vision tasks.

2.2  Feature extraction‑based methods

Extract features that can effectively describe rich ear struc-
ture was the subject matter of several studies during the last 
few years. Local features, such as Local Phase Quantiza-
tion (LPQ), have widely been used for different recogni-
tion tasks, including ear recognition (Al Rahhal et al. 2018; 
Korichi et al. 2018; Sarangi et al. 2021). As instance, in 
Al Rahhal et al. (2018), images are divided into horizontal 
stripes, where LPQ features are extracted from each stripe. 
The stripe-wise features are then concatenated to form the 
final descriptor. This local approach has greatly improved 
the recognition performance of LPQ with about 20%. To 
deal with 3D ear images, a descriptor has been formed from 
key-points in 2D ear images detected using curvilinear struc-
ture in Ganapathi et al. (2018). Authors suggested detecting 
the feature key-points from 2D ear images by using curvilin-
ear structure and then mapping those features to the 3D ear 
images. In Sajadi and Fathi (2020), authors have considered 
extracting local and global spectral features such as LPQ 
and Gabor Zernike operators, which are combined using a 
genetic algorithm. To classify test images, k-nearest neigh-
bor classifier (KNN) with Canberra distance is used. Due 
to the remarkable performance they reached, local features 
are extracted based on tunable filter bank for ear verifica-
tion in Chowdhury et al. (2018). Authors in Hassaballah 
et al. (2020) presented a Local Binary Pattern (LBP) variant 
termed as robust local oriented patterns (RLOP), which is 
designed to be robust against noise and rotation. To make 
RLOP invariant to rotation, neighboring pixels are binarized 
according to the mean value of each patch instead of the cen-
tral pixel value. More recently, local features, involving LPQ 
and Local Directional Pattern (LDP), were used for multi-
modal recognition using ear and face images (Sarangi et al. 

2021). The kernel discriminative common vector (KDCV) 
technique is utilized to derive discriminative and non-linear 
features from the extracted features.

Authors in Alshazly et al. (2019a, b) compared the perfor-
mance of handcrafted against deep learning-based features. 
Experiments on different public datasets revealed that deep 
learning-based features considerably outscored the conven-
tional handcrafted features including LBP, Histogram of 
Gradient (HoG) and Binarized Statistical Image Features 
(BSIF). Noting that comparison of deep with handcrafted 
features has largely been debated in several literature works 
(Khaldi et al. 2019; Korichi et al. 2020). In another study 
(Priyadharshini et al. 2021), a customized six layer deep 
CNN which is composed of stacked convolution, subsam-
pling, batch and output layers is proposed. The performance 
of this network is tested on AMI and IIT Delhi II datasets, 
where effect of varying the network parameters (e.g., learn-
ing rate and activation function) was studied. Similarly, 
Hamdany et al. (2021) proposed a CNN architecture for ear 
recognition. Different back-propagation techniques, includ-
ing Adaptive moment estimation (ADAM) and stochastic 
gradient descent with momentum (SGDM), were tested. In 
general, due to its generalization capabilities, deep learn-
ing has been widely applied to solve different vision tasks 
(Kamilaris and Prenafeta-Boldú 2018; Połap 2019; Połap 
et al. 2021). Therefore, compared to the other kinds of fea-
tures, features learned from deep networks have reached best 
performance in the task of ear recognition.

2.3  Learning‑based methods

Designing the learning model is a challenging task, as it has 
a decisive role in determining the quality of recognition out-
comes. The method proposed in Omara et al. (2021) is based 
on learning Mahalanobis distance metric using the LogDet 
divergence metric learning. This metric is learned on deep 
features that are extracted using pre-trained networks, where 
discriminant correlation analysis is used to fuse features 
from the last two layers of the selected networks. Authors 
in Alshazly et al. (2019a, b) suggested building an ensem-
ble of deep models by combining decisions from multiple 
models to boost recognition yields. Different models have 
been investigated including pre-trained models, fine-tuned 
models and models trained with random weights. Fine-tuned 
models have shown superior performance over the others, 
thus, they have been considered for constructing ensembles 
based on voting committees. Another ensemble learning 
scheme based on CNN was presented in Dodge et al. (2018) 
to prevent individual networks from over-fitting. A set of 
CNNs are firstly fine-tuned, then, an ensemble of CNN is 
formed by averaging the soft-max outputs of the considered 
networks. In Mawloud et al. (2016), a sparse coding joint 
decision rule has been introduced for ear recognition, where 
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multi-scale co-occurrence of adjacent LBP was used as a 
feature extractor. The proposed method has been tested on 
IIT Delhi II (225 subjects) and IIT Delhi I (125 subjects) 
datasets, and shown a promising tolerance to occlusion.

In the last few years, a remarkable advance has been made 
on the task of ear identification. However, existing methods 
suffer from some drawbacks. The first remark we can make 
is that most methods achieved a relatively good performance 
yet requiring a considerable amount of processing time, 
especially deep-based approaches. It would be beneficial if 
one can attain a good recognition accuracy in a reasonable 
processing time. In addition, a well-suited feature that con-
sider ear’s key characteristics, e.g., curvature degree of helix, 
could be a good alternative to generic handcrafted features.

3  MDFNet: an unsupervised lightweight 
network for ear description

This section presents the steps of our proposed lightweight 
network namely MDFNet, which is inspired by PCANet 
(Chan et al. 2015). The general flowchart of MDFNet is 
depicted by Fig. 2.

3.1  PCA filter bank generation

The first step in MDFNet is generating a filter bank from 
training images using PCA. In fact, compared to predefined 
filters, data-driven PCA filters have a better generalization 
capability (Chan et al. 2015). Assuming we are given a train-
ing set of N images of size m × n , denoted by 

{
Tri

}
 , such that 

i = 1,… ,N . Suppose also that around every pixel we con-
sider a p1 × p2 patch. All patches are gathered from the 
entire set Tri and then vectorized, such that patches of the ith 
image are refereed to as xi,1, xi,2,… , xi,m̃ñ ,  where 
m̃ = m −

[
p1

2

]
 and ñ = n −

[
p2

2

]
 , and ⌈b⌉ stands for the small-

est integer ≥ b . Patch mean is then subtracted from each 
patch, thus, we obtain Xi =

[
xi,1, xi,2,… , xi,m̃ñ

]
 . The same 

matrix is built for all the images and combined together as 
follows

PCA targets finding an orthogonal matrix that can mini-
mize the reconstruction error, such that number of filters is 
set to M , this can be done according to the next equation

where IM and V  stand for the unit matrix of size M ×M 
and the standard orthogonal matrix, respectively. PCA is 
performed on the set X to extract the principal eigenvec-
tors, which are then sorted in descending manner according 
to their eigenvalues. The top M principal eigenvectors are 
reconstructed as PCA filters, according to Eq. (3)

where Wk is the jth PCA filter, XXT represents the covariance 
matrix ofX , qk() extracts the principal eigenvectors from the 
covariance matrix, and matp1,p2 () is a function that maps a 

(1)X =

[
X1,X2,… ,XN

]

(2)minV∈ℝp1×p2×M
‖‖‖X − VVTX

‖‖‖
2

F
s.t. VVT = IM

(3)Wk = matp1,p2

(
qk
(
XXT

))
∈ ℝ

p1×p2 , k = 1, 2,… ,M

Fig. 2  General flowchart of MDFNet: (1) input image (2) filter bank 
generation using PCA, and preparing pre-fixed horizontal and verti-
cal filters (3) a twofold layer in which input image is convolved using 
learned filters and filtered using pre-fixed filters to compute gradient 
magnitude (image with red border) and direction (image with blue 

border), also a binary hashing process is done to fuse all feature maps 
in a single feature map (4) a dual histogram is generated based on the 
single feature map and both gradient images (5) dual histogram nor-
malization (6) concatenating histograms (color figure online)
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vector v ∈ ℝ
p1p2 to a matrixW ∈ ℝ

p1×p2 . Figure 3 presents 
some typical filters learned using PCA.

3.2  Twofold single layer for image convolution 
and filtering

MDFNet is composed of a twofold single layer along with 
other successive steps for features learning. Hereafter, we 
present the two components of this layer namely convolu-
tion and filtering.

3.2.1  Convolution

In this layer, the input image Tri is convolved using different 
PCA filters. At first, the boundary of image is zero-padded 
to have an output image, which is denoted by Ci , with same 
size as Tri . Convolution can be expressed as

3.2.2  Filtering

In this sub-step, to extract gradient image, the input image 
Tri is filtered in both vertical and horizontal directions using 
two pre-defined masks namely sv and sh , which are defined 
as sv = [−101]T and sh = [−101] . Images are filtered hori-
zontally and vertically using Eqs. (5) and (6), respectively

where the operator Δ stands for filtering operation. Then, 
magnitude and direction, which are refereed to as Oi

1
 and 

Oi
2
 , respectively, are computed from Gv and Gh as follows

(4)Ci = Tri ∗ Wk, i = 1,… ,Nandk = 1,… ,M

(5)Gv = TriΔsv

(6)Gh = TriΔsh

(7)Oi
1
=

√
G2

v
+ G2

h

Indeed, gradient magnitude and direction are adopted to 
depict the curvatures within different ear regions involving 
helix, tragus, lobe and the antihelix.

3.3  Binary hashing

Since that using a unique layer and several feature maps 
may cause our model to over-fit, a binary hashing process 
is conducted on feature maps to quantify filter responses 
and relieve over-fitting. Since filters responses are real-val-
ued, the first step is binarizing feature maps using zero as a 
threshold i.e., assign pixels having positive responses with a 
value equals to one, and zero otherwise. Then, the binarized 
feature maps are fused into a single image (denoted by Oi

3
 ), 

according to the next equation

such that bin stands for the binarization function. As a result, 
every pixel in Oi

3
 falls within the range 

[
02M − 1

]
 . Figure 4 

depicts the binary hashing process.

3.4  Block‑wise filter response‑based direction/
magnitude histograms generation

The bottleneck of MDFNet is to simultaneously characterize 
three types of crucial information namely: gradient direction 
and magnitude as well as filter responses. We separately 
extract two histograms: the first one binds gradient direc-
tion and filter responses, while the second one binds gradi-
ent magnitude and filter responses. Note that the histogram 
dimension is equal to 2M . Filter response-based magnitude 
histogram (denoted by HISTM ) is generated using Eq. (10)

(8)Oi
2
= arctan

Gv

Gh

(9)Oi
3
=

M∑

r=1

2r−1 × bin(Cr)

(10)HISTM(w) =

u∑

a=1

Oi
1

(
Indw

)

Fig. 3  Typical filters that are generated using PCA from AWE dataset

Fig. 4  Binary hashing process: images with red border are feature 
maps produced by the convolution layer, the rightmost image with 
the blue border is the result of fusing these feature maps (color figure 
online)
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where u = ||Indw|| , w is an index for the histogram bins, and 
Indw indicates the set of pixels’ spatial coordinates for which 
Oi

3
 equals to w , Indw is given by

such that ≡ stands for the assignment operator, which assigns 
Indw with spatial coordinates of pixels for which Oi

3
= w

Similarly, filter response-based direction histogram 
(denoted by HISTD ) is generated according to the follow-
ing equation

 where u = ||Indw|| and Indw ≡ (Oi
2
= w)

Such that ≡ assigns Indw with spatial coordinates of pixels 
for which Oi

2
= w . We point out that Oi

2
 is quantized, before 

generating the direction histogram, to consider significant 
angles and improve the method robustness. To incorporate 
spatial relationship, we extract both histograms in a block-
wise manner. Therefore, Oi

1
 , Oi

2
 and Oi

3
 are divided into 

blocks, and for each block a dual histogram is extracted.

3.5  Histograms normalization and concatenation

After having block-wise dual histogram (HISTD and HISTM) 
extracted, we normalize them for two reasons, the first one 
is to gain some robustness against illumination changes, 
while, the second is to cope with disparity of visual features. 
Moreover, normalization helps making the histogram evenly 
distributed, and alleviates disparity of visual features, which 
can actually, distort the recognition yields. We use power-L2 
norm, for a histogram H = (h1,… , hf ) , this normalization is 
done as follows

‖H‖ represents the  L2 norm of H and � is a constant, 
such that 0 ≤ �  ≤ 1. In this work, we set � to 0.5. Figure 5 
depicts the effect of normalization. To concatenate the two 

(11)Indw ≡
(
Oi

3
= w

)

(12)HISTD(w) =

u∑

a=1

Oi
2

(
Indw

)

(13)hi =
||hi||

�
× sign

(
hi
)

H

histograms, we evaluate different score-level fusion schemes 
including sum, min and max alongside with the baseline 
feature-level scheme.

3.6  Recapitulation

The architecture of the proposed network is designed to 
faithfully describe the ear image. The twofold layer acts as 
a feature detector, where input ear image is convolved using 
learned filters along with pre-fixed filters to extract image 
gradient magnitude and direction. By carefully inspecting 
the ear image, we can notice that gradient magnitude and 
direction can provide interesting description of the ear struc-
ture. In addition, convolving the ear image using learned 
filters will highlight the distinguishing regions in the ear, 
which can help discriminating different classes. Binary hash-
ing is considered to prevent the network from over-fitting 
and to quantify the filter responses by fusing different fea-
ture map into a single map. The bottleneck of the network 
is to establish a link between gradient images and the fused 
feature map. Such a representation can be reached by his-
tograming the gradient images based on the fused map. In 
addition, to strengthen our representation, we include the 
spatial relationship information by extracting the histograms 
from local image blocks. These local histograms are normal-
ized to improve the network robustness against illumination 
changes.

Indeed, one can apply transfer learning using MDFNet. 
However, it is worth noting that applying this strategy 
depends on the nature of the images on which the network is 
trained (original images) and the images to which the trans-
fer learning will be applied (targeted images). If the original 
and targeted images are close to each other, thus, it will be 
possible to use the learned filters for the targeted images. 
In addition, it should also be noted that it might be better to 
tune the other network parameters such as block size to get 
a better performance.

4  Proposed method

The proposed method consists in three main stages (Fig. 6) 
namely: pre-processing (alignment), features extraction and 
matching, as follows.

• Ear image alignment: as shown by the relevant studies, 
ear pre-processing helps improving recognition results 
by mitigating intra-class variation, particularly in uncon-
strained scenarios. Therefore, we consider, pre-process 
unconstrained ear images based on the method in (Hans-
ley et al. 2018). As a first step, landmarks provided with 
the ITWE dataset are used to train a customized CNN 
(Table 1) on landmarks locations. To prevent over-fitting 

Fig. 5  Histogram before normalization (at top) and histogram after 
normalization (at bottom). This latter seems to be more evenly dis-
tributed
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and improve the CNN generalization power, PCA is used 
to perform data augmentation on the available labeled 
ear images. Specifically, for a given training image PCA 
is used to get the upright orientation of the ear from 2D 
landmark coordinates. Afterwards, different images were 
generated by rotating the upright from − 45° to + 45° 
with a step of 3. Images are also transformed into a ran-
dom scale and translated of up 20% of the ear size in 
both axes. After generating these additional images, a 
total of 15,500 images are considered for training with a 
size of 96 × 96 pixels. We used a batch size of 36 images, 
and carried out the training for 2000 epochs, which gives 
about 860,000 iterations. Scales and poses of ear images 
are then normalized using PCA. Figure 7 shows examples 
for normalized ears and top of Fig. 6 presents the ear 
alignment procedure.

• Features extraction: in this step, features are extracted 
from training images using our MDFNet. To take advan-
tage of spatial relationship, we extract features from local 

image blocks. One advantage of the local approach is 
that it prevents pooling all features in a compacted vector 
where discriminative features may be dominated by the 
common global features.

• Matching: a linear one-versus-all support vector machine 
classifier is trained, and used to classify probe images.

Fig. 6  General flowchart of the 
proposed method: (1.a) input 
image (1.b) data augmentation 
(1.c) landmark detection using 
CNN (1.d) geometrical ear 
normalization using PCA (1.e) 
output image (2) block-wise 
features learning using MDFNet 
(3) classification using SVM

Table 1  CNN architecture for 
ear landmarks detection

No. Type Input Filter Stride Drop Output

1 Conv/Relu 96 × 96 × 1 3 × 3 × 1 × 32 1 10% 96 × 96 × 32
2 MaxPool 96 × 96 × 32 2 × 2 2 48 × 48 × 32
3 Conv/Relu 48 × 48 × 32 2 × 2 × 32 × 64 1 20% 48 × 48 × 64
4 MaxPool 48 × 48 × 64 2 × 2 2 24 × 24 × 64
5 Conv/Relu 24 × 24 × 64 2 × 2 × 64 × 128 1 30% 24 × 24 × 128
6 MaxPool 24 × 24 × 128 2 × 2 2 12 × 12 × 128

Flattening 12 × 12 × 128 – – – 18,432
7 Fc/Relu 18,432 – – 50% 1000
8 Fc/Relu 1000 – – – 1000
9 Fc 1000 – – – 110

Fig. 7  Geometrical ear normalization, first row presents original ear 
images, and the second row presents their respective normalized ears
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5  Evaluation and discussion

5.1  Experimental datasets

5.1.1  AWE

The Annotated Web Ear (AWE) database (Emeršič et al. 
2017a, b) involves images that are collected from the Inter-
net. AWE constituted of 1000 ear images for 100 subjects, 
where each subject has 10 images. Image sizes vary from 
15 × 29 to 473 × 1022 pixels. It is considered as one of the 
most challenging ear databases, as it has been taken under 
uncontrolled conditions with a significant difference in 
terms of image size, illumination and angles. It also con-
tains images that are occluded by ear accessories, earnings 
and hair.

5.1.2  AMI

The Mathematical Analysis of Images (AMI) ear dataset 
contains 700 ear images from 100 subjects. Images have 
been taken in an indoor environment, with a resolution of 
492 × 702 pixels. Each subject has seven different images 
taken at different poses namely right, left, forward, up and 
down. In particular, five images represent the right ear, such 
that each image is taken with a different head pose (i.e., 
right, left, forward, up and down). As for the remaining two 
images, the first one is also for the right ear, but it is taken 
with a different focal length, while the second one is for the 
left ear.

5.1.3  IIT Delhi II

This dataset (Kumar and Wu 2012) is acquired from student 
and staff at IIT Delhi University (India). It is made up of 
793 images of 221 subjects, where each subject includes at 
least 3 images. All images in the dataset are remotely taken 
in an indoor environment and under different lighting and 
pose conditions. Figure 8 presents typical samples from the 
three datasets.

5.2  Experimental settings and evaluation metrics

To perform recognition experiments, we split each dataset 
into two disjoint groups, one for training and the other for 
testing. Specifically, for the AWE and AMI datasets, 60% of 
images are used for training, and the remaining (40%) are 
intended for testing. Regarding the IIT Delhi II dataset, we 
considered two images from the first three images for train-
ing, while the remaining images are considered as probes. 
As each subject has at least three images, we performed 
three permutations and computed the average performance. 

It is worth noting that we have considered aligning images 
from the AWE dataset only, as IITD II and AMI are inher-
ently well aligned.

To measure the performance of the proposed method, 
we consider two metrics which are rank-1 recognition rate 
and Cumulative Match Characteristics (CMC) curve. Given 
a test image denoted by Ti , MDFNet produces a similarity 
matrix which indicates the similarity scores between train-
ing and testing samples. By sorting the similarity scores, we 
obtain the rank of the ground truth subjects i.e., rank

(
Ti
)
 . 

The rank-k recognition rate is given by Eq. (14)

where |.| stands for the set cardinality, and N represents the 
number of test images. As for the CMC curve, it is rank-
based metric that measures the probability of determining 
the correct matching within the top k ranks. CMC curve 
plots the recognition rate in terms of k rank, as follows

5.3  Experimental results

5.3.1  MDFNet parameters tuning

The aim of this experiment is to measure the performance 
of MDFNet by varying different parameters. Therefore, we 
carry out extensive experiments to determine the parameter 
subset that maximizes the recognition outcomes. Especially, 
three hyper-parameters namely number of filters, filter size 
and block size are required for computing MDFNet. Among 
several, we have experimented six subsets as reported by 
Table 2.

(14)Recognition_Rate(k) =

|||
{
Ti|rank

(
Ti
)
≤ k

}|||
N

(15)CMC(k) = Recognition_Rate(k)

Fig. 8  Representative samples from each dataset, first row corre-
sponds to AWE, second row to AMI and third row to IIT Delhi II
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Figure 9 presents rank-1 recognition rate for the three 
datasets. From this figure, we can make the following 
observations

– As for the number of filters, we note that, in most cases, 
using 9 filters scored the best results compared to 5 and 
7 filters. Note that by increasing number of filters, the 
dimension of feature vector increases exponentially, 
because dimension of block-wise histograms is power of 
two. Thus, it is recommended to choose the best trade-off 
between the number of filters and feature vector dimen-
sion.

– Regarding filter size, 9 × 9 filters have obtained the best 
results. Filter size in this case is big enough to capture 
interesting characteristics of ear.

– Regarding block size, we notice that each dataset requires 
a different size. This can be justified by the significant 
difference between images of each dataset as shown by 
Fig. 8.

– From the six subsets, we notice that the third (82%), fifth 
(97.67%) and fourth (98.86%) subsets have yielded the 
best score for AWE, AMI and IIT Delhi II, respectively.

– We can notice the better performance of MDFNet on 
IIT Delhi II compared to AWE and AMI. This can be 
attributed to the nature of images in these three data-

sets. Several images in the AWE dataset are occluded 
by ear accessories, earnings and hair. Moreover, images 
of this dataset are taken from different angles. This will 
maximizes the intra-class variance and increases the 
rate of potential confusion between different classes. 
Similarly, images of AMI dataset are taken at different 
poses, where ear is occluded by hair and accessories. In 
the contrary, compared to the AWE and AMI datasets, 
images in the IITD-II are well-aligned, taken in an indoor 
environment and manually cropped by the dataset crea-
tors, which makes possible for the proposed method to 
distinguish different ear classes successfully. Neverthe-
less, it is worth noting that the main challenge of IITD-II 
is the difference in illumination level of different images. 
To cope with this issue, we have considered normalizing 
the local histograms extracted from different ear regions.

– We notice also that subset 6 records a significantly 
low recognition rate on the AWE dataset. In fact, the 
main reason behind this low rate (46%) is the block 
size parameter (100 × 100). In the case of AWE dataset, 
after performing ear alignment using CNN, the image 
size becomes 128 × 128. This means that features are 
extracted from the entire image, without considering the 
block-wise strategy because the block size is roughly 
equal to the image size (100 × 100 and 128 × 128, respec-
tively). In such a case, the spatial relationship informa-
tion is lost and key features will be pooled in a compacted 
feature vector, which can negatively affect the network 
performance. Even by increasing the number of filters 
and keeping the same block size (subset 4), the recogni-
tion rate still low (53%) compared to the other subsets. 
In addition, if we look at AMI dataset, we can notice that 
using the same value (i.e., 100 × 100) as block size hasn’t 
much influenced the network performance because size 
of AMI images is 492 × 702, which allows extracting the 
features in a block-wise manner.

5.3.2  Evaluation of multimodal recognition system

A multimodal biometric system may consist in fusing infor-
mation provided by different modalities. Another form of 
multimodal systems considers fusing different feature extrac-
tion techniques. In this work, we fuse different features at 
score level to enhance the performance of unimodal systems. 
More precisely, we fuse filter responses-based magnitude/
direction histograms at score-level using three rules namely 
sum, min and max. In addition, we report performance of 
baseline fusion in which the two histograms are combined 
at feature level. Table 3 reports performance of multimodal 
system for the three datasets (bold scores are the best). Fig-
ures 10, 11 and 12 present the CMC curves of both baseline 
and multimodal systems for the three datasets.

Table 2  The subsets of parameters that are considered

Subset of param-
eters

Number of filters 
for PCA

Filter size Block size

1 5 5 × 5 16 × 16
2 5 7 × 7 32 × 32
3 9 9 × 9 16 × 16
4 9 9 × 9 100 × 100
5 9 9 × 9 25 × 25
6 7 7 × 7 100 × 100
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Fig. 9  Rank-1 recognition rates yielded by different subsets of param-
eters for the three datasets
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From Table 3, we note that by using min rule, recogni-
tion rates have been improved for the AWE and IIT Delhi 

II. As instance, the baseline scheme has yielded 82% for the 
AWE, an improvement of 0.5% is obtained by considering 
the multimodal system based on min rule. Similarly, a slight 
improvement of 0.1% has been reached in the case of IIT 
Delhi II dataset. This confirms the strength of multimodal 
system compared to unimodal system. In contrast, in AMI 
dataset, identification rate scored by the baseline scheme 
was slightly higher than rates yielded by the remaining rules. 
From the CMC curves, we can notice that curves of differ-
ent rules are, to some extent, close to each other, especially 
in the case of AWE dataset. However, the main difference 
appears in the rank value for which all rules attained 100% 
of performance. For instance, in the IIT Delhi II dataset, 
max rule has achieved 100% when the rank equals to 33, 
whereas, sum rule achieved the same performance when the 
rank equals to 41.

5.3.3  Comparing to relevant networks

In this experiment, we compare the performance of MDFNet 
with two relevant networks namely PCANet (Chan et al. 
2015) and DCTNet (Ng and Teoh 2015). Although these 
two methods are somewhat similar, they differ in the manner 
used for generating filter banks. PCANet generates a data-
driven filter bank as shown in Sect. 3.2, while, DCTNet, 
as its name indicates, considers a learning-free approach 
by using pre-fixed DCT filters. Another point differencing 
DCTNet from PCANet is the Tied-Rank normalization, 
which is integrated on the top of DCTNet to make local 
histograms more evenly distributed. We conduct an experi-
ment to assess the identification performance of the both net-
works. For a fair comparison, we consider the same param-
eters as in MDFNet. Table 4 shows the rank-1 recognition 

Table 3  Performance of different fusion schemes in terms of rank-1 
recognition rate

Schemes AWE AMI IITD II

Baseline 82 97.67 98.86
Sum 81.75 97.33 98.95
Min 82.5 97 98.96
Max 81 96.33 98.77

Fig. 10  CMC curve for different fusion schemes in AWE dataset

Fig. 11  CMC curve for different fusion schemes in AMI dataset

Fig. 12  CMC curve for different fusion schemes in IITD II dataset
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rate achieved by the three networks in AWE, AMI and IIT 
Delhi II (bold scores are the best).

The first observation we can make is that our MDFNet has 
outperformed the other networks in the three dataset. Specif-
ically, the proposed method has outperformed DCTNet and 
PCANet by 7.5% and 2.5% in AWE, 7.67% and 1% in AMI, 
respectively. In fact, IIT Delhi II is relatively easy than the 
two other datasets, thus, slight improvements of 0.10% and 
0.58% has been reached by MDFNet compared to DCTNet 
and PCANet, respectively. This outperformance confirms the 
utility of considering gradient information along with filters 
responses. This latter acts as features detectors, and gradi-
ent magnitude/direction provides interesting information on 
local ear structure. In brief, MDFNet has achieved a better 
performance than DCTNet and PCANet for two reasons. The 
first reason is that MDFNet considers additional and crucial 
features (i.e., gradient magnitude and direction) that can well 
describe the ear structure. The second reason is that local 
histograms are extracted by jointly considering the filter 
responses (which are fused in the binary hashing stage) and 
the gradient images (i.e., gradient magnitude and direction). 
This representation allows linking these two kinds of crucial 
information, and thus, strengthening the final descriptor.

From Table 4, we remark that PCANet has significantly 
outperformed, by 6%, DCTNet in the two challenging data-
sets AWE and AMI. Although DCT and PCA-learned fil-
ters are somewhat equivalent, as argued by DCTNet authors, 
this experiment indicates that data-driven learned filters are 
more faithful than DCT filters, and can generalize better for 
unseen test images. Figures 13, 14 and 15 present the CMC 
curves for the three networks.

From these CMC curves, we can note that MDFNet still 
yielding better performance than the two others until, at 
least, rank-5. Then, they interchangeably achieved the best 
performance in the three datasets. In AWE, performance of 
the three networks is somewhat similar, but, it is different 
for the case of AMI and IIT Delhi II datasets.

5.3.4  Measuring the processing time

We measure the computation time required by the proposed 
method compared to several others that are used by the 
related works (Table 5).

As can be seen from Table  5, the proposed method 
requires 0.05 compared to 0.02 s required by both PCANet 

and DCTNet. As a second observation, we note that Gabor 
filters and POEM are computationally demanding (0.22 and 
0.11 s, respectively), whereas, LBP is the fastest feature due 
to its simplicity. We also notice that HOG, LPQ and BSIF 
take a reasonable time. Because of the relatively high num-
ber of stacked layers in CNN, extracting deep features has 
taken a significant deal of time. Knowing that MDFNet has 
outscored all the cited features, we can conclude that it is 
the best compromise between accuracy and processing time.

Table 4  Performance of the relevant networks

Networks AWE AMI IITD II

PCANet 80 96.67 98.38
DCTNet 75 90 98.86
MDFNet 82.5 97.67 98.96

Fig. 13  CMC curve for the relevant networks along with MDFNet in 
AWE dataset

Fig. 14  CMC curve for the relevant networks along with MDFNet in 
AMI dataset
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5.3.5  Comparison with state of the art

To prove the effectiveness of the proposed method, we com-
pare it with several recent and relevant state of the art meth-
ods (Table 6, where bold scores are the best). We follow the 
evaluation protocol that is explained in Sect. 5.2 for the three 
datasets namely AWE, AMI and IIT Delhi II. 

From Table 6, it evidently appears that our proposed 
MDFNet outperforms the majority of the cited related 
works. As instance, a recognition rate of 82.5% has been 
reached compared to 78.13% and 75.6% achieved by Omara 
et al. (2021) and Hansley et al. (2018), respectively. Actually, 
the most substantial remark concerning the AWE dataset is 
the huge improvement that is made by MDFNet compared 
to some recent works. For instance, the proposed method 
surpassed the methods in Khaldi and Benzaoui (2020a, b) 
and Sajadi and Fathi (2020) by 32% and 29%, respectively. 
To take an idea about processing time required by the deep-
based competing methods, we present a concrete example. 
The method in Dodge et al. (2018) has a recognition rate 
of 68.5% based on deep ensemble learning using different 
fine-tuned CNNs of varying depths. Nevertheless, such an 
approach requires a significant deal of processing time. For 
the sake of illustration, according to Table 5, ResNet101 
and GoogleNet have taken 0.86 and 0.42 s (0.64 in aver-
age), respectively, compared to 0.05 taken by our method. 
Approximately, if three networks are used in the ensem-
ble learning, the whole feature extraction procedure will 
take about 1.92 s, which is equal to the processing time of 
MDFNet multiplied by 38. This confirms once again that 
MDFNet provides a good trade-off between performance 
and speed. Now, if we look at AMI dataset, we notice that 
our proposed method has surpassed all the cited methods 

except the method in Omara et al. (2021) which has slightly 
outperformed our method. Similarly, by taking a look on 
the IIT Delhi II, we notice that the proposed method slightly 
outscored most of the compared works in terms of rank-1 
recognition rate.

We report the performance of MDFNet on AWE without 
alignment to show the great importance of taking such an 
aspect into account. Obviously, it can be seen how much 
performance of MDFNet has been enhanced when aligning 
ear images. In particular, a huge leap of about 20% has been 

Fig. 15  CMC curve for the relevant networks along with MDFNet in 
IITD II dataset

Table 5  Processing time 
required by each method in 
seconds for one image

Method Processing time

BSIF 0.0372
HOG 0.0206
LPQ 0.0421
POEM 0.1106
LBP 0.0179
Gabor 0.2201
PCANet 0.0204
DCTNet 0.0239
GoogleNet 0.4270
ResNet101 0.8697
MDFNet 0.0573

Table 6  Comparison with state of the art methods based on rank-1 
recognition rate

Method AWE AMI IITD II

(Benzaoui et al. 2017) – – 97.63
(Hansley et al. 2018) 75.6 – –
(Dodge et al. 2018) 68.5
(Al Rahhal et al. 2018) – – 98.4
(Raghavendra et al. 2016) – 86.36 –
(Chowdhury et al. 2018) – 67.26 –
(Emeršič et al. 2017a; b) 49.60 – –
(Omara et al. 2018) – 95.5 –
(Hassaballah et al. 2020) 54.10 72.29 –
(Alshazly et al. 2019a; b) – 94.50 –
(Alshazly et al. 2019a; b) – 97.50 –
(Zhang et al. 2019) 50 – –
(Priyadharshini et al. 2021) – 96.99 –
(Sajadi and Fathi 2020) 53.5 – 97.13
(Hassaballah et al. 2019) – 73.71 –
(Sarangi et al. 2018) – – 98.79
(Khaldi and Benzaoui 2020a, b) 50.53 96.00 –
(Khaldi and Benzaoui 2020a, b) 48.48 – –
(Omara et al. 2021) 78.13 97.84 –
(Hamdany et al. 2021) – – 94
MDFNet (without alignment) 60.25 – –
MDFNet 82.5 97.67 98.96
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gained. This confirms the actual need for considering this 
pre-processing step.

5.3.6  Occluded ear recognition

In unconstrained scenarios, ear may be occluded by ear-
rings or by ear accessories, which makes very challenging 
to recognize it. One way to overcome such an issue is by 
eliminating pixels from the bottom of the ear image. The aim 
of this experiment is to assess the robustness of the proposed 
method when performing such an elimination. In particular, 
to perform a meaningful elimination, we repeatedly truncate 
one block in each time from the bottom of ear image i.e., 
one block in the first time, then, two blocks, three blocks 
and so on. Noting that, for each dataset, we have considered 
the block size yielding the best performance in experiment 
1. We report the method performance in each iteration as 
shown by Table 7 (bold scores are the best).

From Table  7, we can notice the high robustness of 
the proposed method, which yields high recognition rates 
in spite of the successive cropping. We remark that iden-
tification rates slightly decreased whenever the crop size 
increased. What is actually surprising is the high recogni-
tion rates still attained despite significant truncation on ear 
images. As instance, in AWE, even though by cropping a 
total of 5 blocks, a high rate of 58.5% is scored. Similarly, 
in AMI and IITD II, although 5 blocks are entirely elimi-
nated, recognition accuracy remains relatively high (90% 
and 93.16%, respectively). This suggests that top ear regions, 
including helix and crus of antihelix, are more distinguish-
ing than the other ear parts. In fact, in the case of AWE 
dataset, ear alignment is a crucial factor in providing more 
robustness to the proposed method because AWE images are 
taken from different angles. Figure 16 illustrates different 
occlusion degrees.

6  Conclusion

In this paper, we introduced an unsupervised lightweight 
single layer network, which is referred to as MDFNet, for 
human ear recognition. To extract faithful features, MDFNet 

jointly considers gradient magnitude and direction beside 
outputs from PCA-based filters. To help our method extract-
ing features that actually reflects the rich ear structure, we 
have aligned ear image using landmark-based approach, 
which incorporates both Convolution Neural Network 
(CNN) and Principal Component Analysis (PCA). To eval-
uate the proposed method, we carried out comprehensive 
experiments and analysis on three public datasets namely 
AWE, AMI and IITD II. Experimental results revealed some 
noteworthy points. First, MDFNet makes a good compro-
mise between running time and recognition accuracy. Sec-
ond, ear alignment has greatly improved the performance of 
ear recognition, and it seems to be indispensable in the case 
of unconstrained scenario. Third, MDFNet has outscored 
several state of the art methods and showed a high robust-
ness to occlusion. As a future direction, one can investigate 
other strategies for filters learning and selection. Another 
track is to integrate other useful information within MDFNet 
such as filter responses in pixel’s neighborhood.
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