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Abstract
This paper proposes an optimal structured deep convolutional neural network (DCNN) based on the marine predator algo-
rithm (MPA) to construct a novel automatic diagnosis platform that may help radiologists identify COVID-19 and non-
COVID-19 patients based on CT scan categorization and analysis. The goal is met with the help of three modifications 
based on the regular MPA. First, a novel encoding scheme based on Internet Protocol (IP) addresses is proposed, followed 
by introducing an Enfeebled layer to build a variable-length DCNN. Finally, the learning process divides big datasets into 
smaller chunks that are randomly evaluated. The proposed model is compared to the COVID-CT and SARS-CoV-2 datasets 
to undertake a complete evaluation. Following that, the performance of the developed model (DCNN-IPMPA) is compared to 
that of a typical DCNN and seven variable-length models using five well-known comparison metrics, as well as the receiver 
operating characteristic and precision-recall curves. The results show that the DCNN-IPMPA outperforms other benchmarks, 
with a final accuracy of 97.21% on the SARS-CoV-2 dataset and 97.94% on the COVID-CT dataset. Also, timing analysis 
indicates that the DCNN processing time is the best among all benchmarks as expected; however, DCNN-IPMPA represents 
a competitive result compared to the standard DCNN.
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1  Introduction

Due to the widespread of COVID-19 and its variations in 
all nations, the timely and exact diagnosis of COVID-19 
is essential. The initial stage in the COVID-19 diagnosis is 
to take the reverse transcription-polymerase chain reaction 
(RT-PCR) (Hu et al., 2021a); however, in a few situations, 
the RT-PCR test of a subject is negative, yet the associ-
ated patient obtains difficulty in breathing (Wu et al., 2021a, 
b). The chest CT scan is advised as a second-line diagnos-
tic in this situation. If the lungs are heavily infected with 
COVID-19, its diagnosis by thorough observation can be 
easily made. However, when the disease is in its early stages, 

a visual diagnosis of this condition is accompanied by some 
doubt. COVID-19 lung damage has recently been identified 
using X-rays and CT scans (Khishe et al., 2021). However, 
the diagnostic accuracy is dependent on the expert’s assess-
ment (Zhang et al., 2022). Since changes in pixels’ value 
may be better identified by image processing techniques 
as a quantitive method, this research aims to automatically 
and more accurately identify the contaminated CT images 
(Cao et al., 2022; Liu et al., 2022a, b). Deep learning (DL) 
algorithms can automatically identify this condition to 
address the mentioned problem (Saffari et al., 2020).

CT Scans reveal the bones, blood vessels, and other inter-
nal organs. As a result, they enable clinicians to assess the 
size and structure of internal organs. Compared to X-rays, 
CT Scans may isolate a specific body location without dam-
aging nearby areas, and they can also reveal detailed images 
of the patient’s body (Shah et al., 2021). This data can be 
evaluated to determine the exact location of the problem. 
As a result, deep learning techniques have made extensive 
use of the potential of chest CT scans for early detection 
and diagnosis of COVID-19 (Afshar et al., 2021; Dai et al., 
2020; Shah et al., 2021). Grewal et al., for example, used 
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DenseNet and RNNs to interpret brain CT images (Grewal 
et al., 2018). Song et al. developed three deep neural mod-
els for lung cancer detection (SAE, DNN, and CNN) (Song 
et al., 2017). They discovered that the DCNN architecture 
surpasses the other models regarding accuracy. Gonzales 
et al. employed deep learning to investigate the neural sys-
tem’s ability to identify lung diseases and predict acute res-
piratory problems (González et al., 2018).

During the pandemic, it was discovered that CT Scan-
based analysis methods accurately diagnosed COVID-19 
disease. Zhao et al., for example, examined the association 
between chest CT scan data and pneumonia in COVID-
19 patients (Bernheim et al., 2020). Due to the scarcity of 
acceptable COVID-19 CT Scan datasets, Zhao et al. con-
structed a freely accessible dataset consisting of 363 healthy 
persons and 349 COVID-19 occurrences from 216 patients 
(Jiang et al., 2019). Gozes et al. investigated the detection 
and tracking of COVID-19-positive cases. The accuracy of 
this improved model has been evaluated to be 95% (Gozes 
et al., 2020). Zheng et al., on the other hand, proposed a deep 
learning system for COVID-19 detection in 3D CT images 
(Zheng et al., 2020). Ai et al. demonstrated 97 percent sen-
sitivity when using a pre-trained UNet to predict infection 
in 630 patients’ CT scans (Ai et al., 2020).

COVID-CT was perhaps the first freely released data-
set of this type. Following the presentation, this data set 
was used by a variety of researchers (Breban et al., 2013; 
Liu et al., 2020; Ozturk et al., 2020). Previously, the best 
F1-score,  accuracy,  and AUC were 86.5%, 85%, and 
94%  (Breban et  al., 2013). Soares et  al. (Angelov and 
Almeida Soares, 2020) presented a dataset of 2482 SARS-
CoV-2 CT scans. Nonetheless, the aforementioned tech-
niques need considerable processing time (He et al., 2020). 
As a result, a precise and rapid COVID-19 detector is nec-
essary. Following a comprehensive investigation of the 
methods recently published for identifying and diagnosing 
COVID-19, it is clear that the DCNN is one of the most 
widely used techniques (Liu et al., 2017); thus, this research 
recommends utilizing DCNN’s extraordinary potential as a 
detector of COVID-19 scans.

DCNN design complexity has been reduced by 
metaheuristics (Khishe and Mosavi, 2020a, b; Mosavi et al., 
2017; Qiao et al., 2021), which develop an architecture with-
out the assistance of a human designer (Rastogi and Choud-
hary, 2019). Numerous metaheuristics have been effectively 
studied and applied, including genetic programming (GP) 
(Suganuma et al., 2017), particle swarm optimization (PSO) 
(Mosavi and Khishe, 2017; Wang et al., 2018; J. Wu et al., 
2021a, b), Position-transitional particle swarm optimization 
(Luo et al., 2020), sine–cosine algorithm (SCA) (Wang et al., 
2020; C. Wu et al., 2021a, b), chimp optimization algorithm 
(ChOA) (Hu et al., 2021b), salp swarm algorithm (Khishe 
and Mohammadi, 2019), and genetic algorithms (GAs) (Liu 

et al., 2022a, b). However, learning from large data sets is 
impracticable due to the high cost of computing and the 
time of the learning process (Yuan et al., 2020). Perhaps, the 
EvoCNN was the first model that employed metaheuristic 
algorithms to evolve DCNN structures (Stanley and Miik-
kulainen, 2002). The EvoCNN helps save time by learning 
the classifier ten epochs rather than 25,600 epochs like the 
LEIC does.

Regardless of the advantages of different metaheuris-
tic algorithms, the No-Free-Lunch (NFL) theorem (Webb 
et  al., 2011) states that no metaheuristic technique can 
resolve all optimization problems satisfactorily. To address 
various optimization problems, scientists have attempted to 
develop new metaheuristics or improve existing ones. To 
overcome the difficulty of constructing DCNN structures 
without human intervention, we employ powerful nature-
inspired techniques called Marine Predator Algorithms 
(MPA) (Mirjalili, 2016). A novel flexible encoding strategy 
is proposed in order to circumvent the limitations of fixed-
length encodings.

As a result, the fundamental objective of the proposed 
model is to develop and implement a complementary MPA 
capable of discovering optimal DCNN structures auto-
matically. To summarize, this article makes the following 
contributions:

1.	 Develop a novel variable-length MPA method that effec-
tively encodes a DCNN architecture using a unique can-
did solution encoding technique.

2.	 Develop a method for learning variable-length DCNN 
structures independent of the fixed-length encoding con-
straint imposed by existing MPA; a new layer dubbed 
Enfeebled will be presented to construct a variable-
length predator.

3.	 Develop a technique for evaluating fitness that uses a 
portion of the dataset rather than the complete dataset 
to accelerate the development process.

The following is the organization of the paper. Section 2 
summarizes the DCNN, MPA algorithms, and the CT Scan 
datasets. Section 3 discusses the proposed approach for var-
iable-length encoding. Section 4 summarizes and discusses 
the simulation results. Section 5 is the concluding section.

2 � Background and materials

This section describes the background knowledge of the 
LeNet-5 DCNN, MPA, and CT Scan datasets.
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2.1 � Deep convolutional neural network

DCNN is a straightforward yet successful model among 
the emerging deep learning-based techniques (Le Cun, 
2015). We chose this network since its structure is straight-
forward and needs minimal parameters. As illustrated in 
Fig. 1, the DCNN is composed of three major components: 
convolution, subsampling, and fully connected layers. 
Additionally, feature maps, i.e.,FMk

ij
 and sub-sampling 

operation, are respectively formulated by Eqs. (1) and (2).

where b and � are respectively bias values and learning con-
stants, and also �n×n

i
 are inputs (Liu et al., 2022a, b). The last 

fully-connected layer then performs classification. This layer 
has one neuron since our problem is a binary task (COVID 
and non-COVID).

2.2 � Marine predator algorithm

In line with most metaheuristic algorithms, MPA is cat-
egorized as a population-based algorithm. Thus, the ini-
tial solution is regularly disseminated across the searching 
space as initial testing:

where Xmin and Xmax signify the lower and upper bound of 
variables, respectively, and rand represents a uniformly 
distributed random vector that fluctuates from 0 to 1. It is 
worth stating that the best solution obtained so far in MPA 
is appointed as a leading predator for constructing a matrix 
named Elite, as expressed in Eq. (3). It is also essential to 
indicate that based on the information of the prey position, 
these matrix arrays will manage searching and finding the 
Prey.

(1)FMk
ij
= tanh((Wk × x)ij + bk)

(2)�j = tanh(�
∑
N×N

�n×n
i

+ b)

(3)X0 = Xmin + rand(Xmax − Xmin)

Here, XI signifies the best searching agent vector repro-
duced n times for constructing the Elite matrix. In which n 
represents the search agents count, d represents dimension 
numbers. The Elite is updated if the best searching agent is 
replaced with the better agent. Prey is another matrix that 
has a similar dimension as Elite. Prey is a matrix in which 
the searching agents update their position. This means that 
the initial Prey in which the best searching agent creates 
the Elite is produced by the initialization. The Prey is 
expressed in Eq. (5).

X i,j In Eq. (5), signifies the jth dimension of ith searching 
agents. It is worth noting that the entire optimization proce-
dure gets primarily and precisely associated with Elite and 
Prey matrices.

2.2.1 � The MPA’s optimization outline

The MPA’s optimization procedure consists of three stages 
taking into consideration the various ratio of velocity, and 
together with simulating the complete life of both predator 
and Prey, these stages are (I) High-Velocity Ratio (HVR) 
or once a predator gets moving slower than Prey, (II) Unit-
Velocity Ratio (UVR) or once both Prey and predator 
would have practically the identical speed, and (III) Low-
Velocity Ratio (LVR) once the Prey gets moving slower 
than predator. The above three stages could further be 
described as follows:

(4)����� =

⎡
⎢⎢⎢⎢⎢⎣
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1,1
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1,2

⋯ XI
1,d
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2,1

XI
2,2

⋯ XI
2,d

⋮ ⋮ ⋮ ⋮
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n,1
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n,2
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⎤
⎥⎥⎥⎥⎥⎦n×d

(5)���� =
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1,2

⋯ X
1,d

X
2,1

X
2,2

⋯ X
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X
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⎤
⎥⎥⎥⎥⎥⎦n×d

Fig. 1   The DCNN architecture
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•	 Stage 1: HVR or once the Prey gets moving slower than 
the predator. This setup takes place in the early itera-
tions of optimization, where the exploration matters. The 
mathematical model of this rule is expressed as below:

Here RBM represents a normally distributed random vec-
tor signifying the BM. The symbol ⊗ indicates entry-wise 
multiplications. In which the multiplication of RBM by Prey 
mimics the prey motion. P signifies a constant number and 
its value set to 0.5, and R is a vector of uniform random 
numbers ranging from 0 to 1.

•	 Stage 2: In this stage, the Prey and predator move very 
similarly in pace. Here both exploitation and explora-
tion are very crucial. Accordingly, 50% of the searching 
agents are allocated for exploration, and the remaining 
50% are given for exploitation. The predator in this stage 
is accountable for exploration and the Prey for exploi-
tation. Depending on the rule, in the UVR (v ≈1), the 
safest policy for a predator is BM if the Prey goes in LF. 
Accordingly, this research deems predator moves in BM 
while Prey moves in LF, as Eq. 7.

Here RLF represents a random number vector depend-
ing on the LF. RLF and Prey multiplication mimic the prey 
movement in LF, whereas adding the prey position to the 
step size imitates the prey movement. The MPA supposes the 
following expressions for the other half of the populations:

Here CF represents a parameter that can be adaptive to 
manage the predator movements step size. RBM and Elite 
multiplication mimic predator movement in BF, whereas 
prey modifies its position depending on the predator’s move-
ment in BM.

•	 Stage 3: This is where the Prey is moving slower than 
the predator, which can be introduced as follows:

(6)

While Iteration <
1

3
×maximum (Iteration)

��������� = ��� ⊗ (������ − ��� ⊗ �����) i = 1, ..., n

����� = ����� + P.�⊗ ���������

(7)

while
1

3
Maximum(Iteration) < Iteration <

2

3
Maximum(Iteration)

For: the first
1

2
× searching agents

��������� = ��� ⊗ (������ − ��� ⊗ �����) i = 1, ..., n/2

����� = ����� + P.�⊗ ���������

(8)

��������� = ��� ⊗ (��� ⊗ ������ − �����) i = n/2, ..., n

����� = ������ + P.CF⊗ ���������

CF = (1 −
Iteration

Maximum(Iteration)
)
2×

Iteration

Maximum(Iteration)

2.2.2 � The effect of fish aggregating devices and Eddy 
formation 

One more thing that triggers a change of behavior in marine 
predators is environmental or ecological problems, for 
instance, the Eddy formation or Fish Aggregating Devices 
(FADs) effects (Filmalter et al., 2011), which is deemed as 
local optima avoidance operator. Stagnation in local optima 
can be avoided by considering these longer jumps during the 
simulation. Therefore, the FADs impact is precisely given 
as:

Here, the value of FADs = 0.2, which is considered the 
FADs probability impact on the process of optimization. 
U signifies the binary vector in conjunction with arrays as 
well as 0 and 1. This is created by producing a random vec-
tor ranging from 0 to 1 and modifying its array to 1 if it is 
greater than 0.2 and 0 if it is smaller than 0.2. r represents 
the uniform random number, which ranges from 0 to 1. Both 
Xmin and Xmax are considered vectors containing the lower 
and upper bound of the dimensions. r1 and r2 signify random 
indexes of the Prey matrix.

2.2.3 � Memory of marine

Depending on the emphasized regions, marine predators 
hold an excellent memory in recapping where they have had 
successful hunting. The ability is mimicked through mem-
ory preservation within the MPA. The Elite matrix will be 
updated by modifying the Prey and executing FADs impact. 
The suitability of every searching agent of the existing itera-
tion is assessed to its corresponding in an earlier iteration, 
and the existing one supersedes the searching agent if it is 
a better one.

2.3 � Datasets

COVID-CT (Yang et al., 2020) and SARS-CoV-2 [20] are 
two CT Scan datasets used in this study, whose details are 
discussed in the following subsections.

(9)

While Iteration >
2

3
Maximum (Iteration)

��������� = ��� ⊗ (��� ⊗ ������ − �����) i = 1, ..., n

����� = ������ + P.CF⊗ ���������

CF = (1 −
Iteration

Maximum(Iteration)
)
2×

Iteration

Maximum(Iteration)

(10)

����� =
⎧

⎪

⎨

⎪

⎩

����� + CF × [�min + �⊗ (�max − �min)]⊗ � if r ≤ FADs

����� + [FADs(1 − r) + r](����r1 − ����r2) if r > FADs
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2.3.1 � SARS‑CoV‑2 CT‑Scan dataset

SARS-CoV-2 was established at hospitals in Sao Paulo. This 
dataset contains 2482 CT scans of 120 patients, 1252 of 
whom are SARS-CoV-2 patients, and 1230 of whom are 
not infected but have a variety of respiratory ailments. Typi-
cal, COVID-19 positive and normal samples are depicted 
in Fig. 2. The first raw contains some COVID-19-infected 
instances, whereas the second raw contains regular (non-
infected) instances. It should be noted that the SARS-CoV-2 
has no extraordinary uniformity in terms of contrast and 
image sizes, as shown in Fig. 3.

2.3.2 � COVID‑CT dataset

The COVID-CT dataset1 (Yang et al., 2020) contains CT 
scans of people infected with COVID-19. This collection 
includes 349 photos of 216 patients. Two more datasets, 
LUNA and MedPix, were employed to provide images of 
non-COVID and healthy individuals. This dataset segment 
contains 463 photographs of 55 healthy individuals. Similar 
to the first dataset, the second contains no specified image 

contrast and size adjustment. As a result, as described in 
Perumal and Velmurugan (2018), we begin by enhancing 
the quality and size of the low-contrast images. Fig. Fig-
ure 4 illustrates both the unaltered and improved versions. 
The datasets utilized in this study are listed in Table 1.

3 � Internet protocol marine predator 
algorithm

In order to evolve a DCNN, this section describes the IP-
based MPA (IPMPA) technique in detail. The IPMPA algo-
rithm is structured in Algorithm 1. The population will be 
initialized in three steps: encoding candid solutions, updat-
ing positions, and checking for termination.

Fig. 2   Typical CT images from the SARS-CoV-2 CT-Scan dataset

Fig. 3   The representation of two images with different sizes and con-
trast

Fig. 4   An illustration of the standard image (left image) and 
enhanced image (right image)

Table 1   The datasets' specification

Dataset Number SARS-CoV-2 CT-
Scan [20]

COVID-
CT [22]

COVID-19 Patients 60 216
Images 1252 349

Non-COVID-19 Patients 60 55
Images 1230 463

1  https://​github.​com/​UCSD-​AI4H/​COVID-​CT.

https://github.com/UCSD-AI4H/COVID-CT
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3.1 � Predator encoding strategy

The IP address structure of the network affects the IPMPA 
encoding strategy. Three layers comprise the DCNN struc-
ture, each with its own parameters. The following table sum-
marizes the various layers. We can establish a network IP 
address with a fixed length and split it to allow different 
DCNN layers.

The IPMPA uses the IP address as the basis for its encod-
ing technique. Three different types of layers comprise the 
DCNN architecture: convolutional, pooling, and fully con-
nected. As illustrated in Table 2, each layer type has its own 
unique set of values and ranges for parameter settings.

A length must first be calculated for an IP-based encod-
ing system. Three key parameters for convolutional layers, 
namely the number of feature maps, the filter size, and the 
stride size, are listed in the Parameter column of Table 2. 
Second, parameter ranges are adjusted to [1,8], [1,128], 
and [1,4], respectively, based on the sizes of the datasets. 
The decimal values 3, 5, and 3 can be converted to digi-
tized strings 011, 000 0101, and 11, respectively, where the 
digitized string is finished with zeros until it reaches the 
appropriate bit length, as illustrated in the example value 
column of Table 2. Eventually, the summary row of the con-
volutional layer in Table 2 presents the total bit count of 12 
and the sample digitized string 011 000 0101 01 obtained 
by connecting the strings of the three previously discussed 
parameters. The total number of bits and the sample binary 
string can be obtained using the same technique as with con-
volutional layers from pooling and fully-connected layers, as 
shown in Table 2. Because a layer’s maximum bit count is 
twelve and an IP address is eight bits (one byte), a twelve-bit 
IP address will require 2 bytes.

As specified in Table 3, all DCNN layers must have 
CIDR-compliant subnets. Since DCNN layers are classified 
into three types, each type requires three subnets to be com-
pletely supported. The length of the IP address 0.0 plus the 
bit numbers of the convolution layer constitute the subnet 
mask (12 bits). 0.0/4 (0.0–15.255) is the subnet mask. The 
initial IP address for the pooling layer is 16.0, calculated by 
adding one to the IP address for the final convolution layer. 
Like the convolution layer, the subnet mask has a length of 
five, resulting in 16.0/5. As a result, subnets 16.0–23.255 
correspond to the pooling layer. A similar issue arises with 
the fully-connected layer subnet 24.0/5, which spans the 
range 24.0–31.255. The subnets’ arrangement is depicted 
in Table 3.

To adjust DCNN topologies with varying lengths, several 
layers in the IP-coded candid solution vector are disabled 
during initialization. To compensate, the Enfeebled layer and 
subnet are introduced. When all three DCNN layers are used, 
the Enfeebled subnet has an IP address range of 32.0/5, as 
demonstrated in Table 3. A binary string representing a par-
ticular layer is padded with zeros until it reaches the length 
of 2 bytes, at which point the subnet mask is implemented, 
and the string is converted to an IP address by splitting it 
by full stops as shown in Table 4. As a result, the 2-byte 
digitized strings 0000 0011 and 100 001 can be found in 

Table 2   The information of the 
DCCN’s layers with an example

Layer type Parameter Range No. bits Example

Convolutional Filter size [1, 8] 3 3 (011)
No. feature maps [1, 128] 7 5 (000 0101)
Stride size [1, 4] 2 3 (11)
Summary 12 011 000 0101 11

Pooling Kernel size [1, 4] 2 3 (11)
Stride size [1, 4] 2 3 (11)
Type:1(max),2(ave) [1, 2] 1 1 (1)
Place holder [1, 128] 6 8 (00 1000)
Summary 11 11 11 1 00 1000

Fully-connected No. Neurons [1, 2048] 11 128 (00,010,000,000)
Summary 11 00,010,000,000

Enfeebled Place holder [1, 2048] 11 128 (00,010,000,000)
Summary 11 00,010,000,000

Table 3   Four utilized subnets for four types of DCNN's layers

Layer type Convolution Fully-con-
nected

Pooling Enfeebled

Subnet 
(CIDR)

0.0/4 16.0/5 24.0/5 32.0/5

IP range 0.0–15.255 16.0–23.255 24.0–31.255 32.0–39.255



457Evolving deep convolutional neural networks by IP‑based marine predator algorithm for COVID‑19…

1 3

Table 2. In order to obtain the IP address 6.33, the first byte 
was converted to 6 and the second to 33.

Before computing search agents, each layer must be 
converted to a two-byte IP address. First, some properties 
such as maximum length and maximum completely linked 
length must be stated. These are detailed in Table 5. The 
array that stores position data will be twice the size of a 
single byte, with each byte representing one dimension of 
the candid solution.

Consider the following candid solution vector illustra-
tion to better understand DCNN encoding and its variable-
length architecture. In the DCNN architecture depicted in 
Fig. 5, the Pooling (P), Convolution (C), Fully Connected 
(F), and Enfeebled (E) layers can all be expressed by IP 

addresses. The size of the relevant candid solution vector 
is depicted in Fig. 6.

Following many MPA modifications, the 9th and 10th 
dimensions of the candid candidate solution may change 
to 18 and 139, respectively, converting the 3rd IP address 
indicating an Enfeebled layer to a Pooling layer and so 
changing the candid solution’s DCNN architecture to five 
layers. In summary, as illustrated in this example, IPMPA-
encoded searching agents can represent DCNN topologies 
with various lengths, namely 3, 4, and 5.

3.2 � Initializing population

Population size is determined after initialization and cre-
ated until the population size is met. Each empty vector 
of predators contains a network interface, including the 
individual’s IP address and subnet information. Each sub-
sequent layer may contain a convolution, a pooling, or an 
enfeebled layer. Any four layer types may be employed 
before the final fully connected layer. The last layer is 
formed of a layer that is fully connected. Each layer’s sub-
nets will be issued a random IP address.

3.3 � Fitness assessment

Prior to fitness evaluation, a weight initialization method 
must be chosen, and the Xavier weight initialization 
approach (Postel, 1980) is chosen since it has been dem-
onstrated to be effective and is utilized in a large number 
of deep learning systems. For the first half of the training 
dataset, individuals will be trained using the settings for 
their previously decoded DCNN architecture (as described 
in Algorithm  2). After batch evaluating the partially 
trained DCNN on the second segment of the training data-
set, a sequence of accuracy rates is created. Following that, 
we calculate the candid solution’s fitness by averaging the 
accuracy rate of each participant.

Table 4   IP addresses' examples Layer Type Convolution Fully-connected Pooling Enfeebled

Binary (0000) 011 000 1000 01 (00,000)011 11,111,001 (00,000)01 
01 0 00 
1011

(00,000)01,111,111,001

IP address 6.33 27.249 18.139 35.249

Table 5   The list of parameters

Parameters Parameter definition Value

Max-length Max. length of DCNN layers 13
N Population size 40
Max-totally-connected Max. fully-connected layers (at 

least one fully-connected layer is 
required)

3

k The training epoch number before 
evaluating the trained DCNN

10

No. batch The batch size for evaluating the 
DCNN

200

Optimizer The type of optimizer Adam

6.33 (C) 18.139 (P) 3.58 (C) 27.249 (F) 35.249 (E)

Fig. 5   An IP address for five DCNN layers

6 33 18 139 3 58 27 249 35 249

Fig. 6   The illustration of an encoded candid solution vector
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The next step is to alter the position of the candid solu-
tion by applying the coefficient values for each byte included 
inside it. Each interface in the candid solution vector should 
have a unique IP address given to it to ensure that they all 
have access to the same subnet. The restrictions of each 
interface, such as the second interface’s ability to act as a 
convolution layer, pooling layer, or enfeebled layer, may 
change depending on its position in the overall solution 
vector.

4 � Results of the experiment and discussion

Generally, we incorporate IPMPA to increase the DCNN’s 
diagnostic accuracy. For all tests, the number of predators 
(population size) is limited to 50, and the maximum num-
ber of iterations is limited to 200. DCNN is designed to 
learn at a rate of 11 at a batch size of 0.0002. Addition-
ally, the epochs for each assessment are chosen between 1 
and 10, and it is underlined that pictures must be down-
sampled to 31 × 31 before being fed to DCNNs. All experi-
ments were carried out in MATLAB R2019b on a computer 
provided with an Intel Core i7-7700HQ processor running 
at a maximum frequency of 3.8 GHz, Windows 10, and 
16 GB RAM. This paper compares IPMPA’s performance 
to that of IPPSO (Wang et al., 2018), variable-length genetic 
algorithm (VLGA) (Qiongbing and Lixin, 2016), variable-
length NSGA-II (VLNSGA-II) (Pal et al., 2021), variable-
length brain storm optimization algorithm (VLBSO) (Cheng 
et al., 2021), IP-Modified PSO (IPMPSO) (Abbas, 2018), 

variable-length biogeography-based optimizer (VLBBO) 
(Khishe et al., 2021), and variable-length ant colony opti-
mization (VLACO) (Liao et al., 2013) on the two datasets 
used in the study. The MPA and other benchmark models’ 
parameters are summarized in Table 6.

4.1 � Metrics for evaluation

This research employs several performance indicators, 
including sensitivity, accuracy, specificity, F1-score, and 
precision. Equations 11–15represent the metrics’ equations.

(11)Sensitivity(TPR) =
TP

P
=

TP

TP + FN

(12)Specificity(TNR) =
TN

N
=

TN

TN + FP

(13)Accuracy =
TP + TN

TP + FP + FN + TN

(14)Precision =
TP

TP + FP

Table 6   The setting parameters and initial values

Algorithms Parameters Value

VLBBO Pc 1
The range of migration prob-

ability
[0, 1]

Max (I) and Max(E) 1
Step size 1
Mutation probability 0.005

VLGA and 
VLNSGA-II

Type Real coded
Crossover Single-point (1)
Selection Roulette wheel
Mutation Uniform (0.01)

VLACO �
0

0.000001
Q 20
q0 1
Pg 0.9
Pt 0.5
a 1
� 5

VLBSO m 5
P5a 0.2
P6b 0.8
P6biii 0.4
P6c 0.5
k 20
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T N   d e n o t e s   t h e   n u m b e r   o f   t r u e   n e ga -
tive  cases,  TP  denotes  the  number  of  true  posi-
tive  cases,  FP  denotes  the  number  of  false-posi-
tive  cases,  and  FN  denotes  the  number  of  false-nega-
tive cases.

(15)F
1
− score =

TP

TP +
1

2
(FP + FN)

4.2 � Model performance analysis

As previously stated, while various resilient deep convolu-
tional neural network designs have been developed recently, 
we choose the fundamental DCNN architecture due to the 
computational expense of this task. The first experiment 
assigns a probability rank to each image in the two data-
sets, SARS-CoV-2 CT-Scan and COVID-CT, reflecting the 
likelihood that each image is associated with COVID19 
positive cases. This likelihood is then compared to a preset 
cut-off number in order to determine whether the inputs are 
infected. Notably, the planned model should obtain a prob-
ability of one for infected samples and zero for uninfected 
samples. Figures 7 and 8 illustrate the EPG distributions 
for SARS-CoV-2 and COVID-CT. Infected photos, by defi-
nition, have a higher probability than uninfected images. 
The confusion matrices for the SARS-CoV-2 CT-Scan and 
COVID-CT datasets are depicted in Figs. 9 and 10.

The specificity, sensitivity, precision, accuracy, and 
F1-Score of the DCNN-IPMPA and other benchmarks 
used in the second experiment, namely IPPSO, VLGA, 
VLNSGA-II, VLBSO, IPMPSO, VLBBO, and VLACO, 
are summarized in Tables 7 and 8. The results indicate that 
DCNN-IPMPA has the highest accuracy score, 97.21 per-
cent for the SARS-CoV-2 dataset and 97.94 percent for the 
COVID-CT dataset. Additionally, the second-best result 
obtained utilizing DCNN-VLNSGA-II is 97.31 and 97.00 
percent for SARS-CoV-2 CT-Scan and COVID-CT, respec-
tively. Notably, the optimal outcome is highlighted in bold 
letters.

While a variety of metrics can be used to compare pattern 
recognizers, only one metric can provide a comprehensive 
view of the performance of benchmark algorithms across 
a range of thresholds, i.e., precision-recall curve. This dia-
gram illustrates the relationship between recall and preci-
sion rate. The precision-recall curves for DCNN-IPMPA and 
eight benchmarks on the SARS-CoV-2 and COVID-CT data-
sets are shown in Figs. 11 and 12. The Receiver Operating 

Fig. 7   The EPG for SARS-CoV-2 CT-Scan dataset

Fig. 8   The EPG for COVID-CT dataset
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Fig. 9   The confusion matrix for the SARS-CoV-2 CT-Scan dataset
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Fig. 10   The confusion matrix for the COVID-CT dataset
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Characteristic (ROC) curve is another appropriate graph for 
illustrating the TPR as a function of the FPR. Thus, Figs. 11 
and 12 depict the receiver operating characteristic (ROC) 
plots for DCNN-IPMPA and benchmarks, respectively. On 
both datasets, these figures demonstrate that DCNN-IPMPA 
surpasses other variable-length DCNNs.

When comparing metaheuristic algorithms, convergence 
speed is a critical metric to consider. In addition to the plots 
discussed above, Fig. 13 depicts the convergence curves of 
comparison benchmarks to enable comparisons.

The above figures show that the DCNN-IPMPA model 
surpasses all other comparable models. Additionally, it can 

Table 7   The reults of 
benchmark models for SARS-
CoV-2 dataset

Bold indicates the optimal outcome

Model precision (%) F1-Score (%) Accuracy (%) Sensitivity (%) Specificity (%)

DCNN 93.85 92.74 92.46 93.43 92.31
DCNN-IPPSO 94.43 93.20 93.14 93.11 92.44
DCNN-VLBSO 93.62 92.21 93.03 92.75 91.33
DCNN-IPMPSO 95.31 94.91 94.77 94.30 94.70
DCNN-VLGA 93.43 94.33 95.02 93.44 93.02
DCNN-VLBBO 95.32 95.72 95.77 98.32 95.78
DCNN-VLACO 96.31 95.22 95.33 95.51 95.33
DCNN-VLNSGA-II 96.98 96.26 96.84 95.90 95.81
DCNN-IPMPA 97.21 96.98 97.31 96.21 95.76

Table 8   The reults of 
benchmark models for 
COVID-CT dataset

Bold indicates the optimal outcome

Model precision (%) F1-Score (%) Accuracy (%) Sensitivity (%) Specificity (%)

DCNN 94.24 93.38 93.55 93.87 93.21
DCNN-IPPSO 95.55 94.41 93.02 92.01 93.46
DCNN-VLBSO 95.40 95.22 95.75 94.11 95.34
DCNN-IPMPSO 97.25 96.01 96.46 95.72 95.86
DCNN-VLGA 94.70 94.11 96.12 95.16 94.17
DCNN-VLBBO 96.55 95.33 96.99 95.89 94.65
DCNN-VLACO 96.18 96.66 95.33 95.28 95.41
DCNN-VLNSGA-II 97.21 96.56 97.99 95.33 95.91
DCNN-IPMPA 97.94 96.44 97.00 95.22 95.43

Fig. 11   The Precision-recall and ROC curves for the SARS-CoV-2 dataset
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be stated that the canonical DCNN performs poorly com-
pared to all other benchmarks.

4.3 � The Analysis of time complexity

As previously stated, accuracy rate vs. processing time is a 
trade-off. In the preceding section, the accuracy of the pro-
posed model was compared to that of various benchmarks. 
This section compares the processing time of the developed 
framework to ensure an accurate comparison. On an Intel 
Core i7-7700HQ CPU and an NVidia Tesla K20 GPU, we 
built the DCNN-IPMPA and comparison networks. The time 
values for the 2633 training images and 659 test images are 
shown in Table 9. Additionally, the best outcome is high-
lighted in bold type. Comparing the test and training times 
of benchmark networks implemented on GPU and CPU is 
shown in Table 9.

The results of Table 9 reveal that the DCNN-IPMPA out-
performs other IP-based benchmarks by 61 s and 215 ms on 
the CPU and GPU, respectively. By considering the entire 
amount of processed images, i.e., 3392, it is concluded that 
DCNN-IPMPA requires less than 0.001 s for each image for 
testing and training. It must be noted that the DCNN pro-
cessing time is the best among all benchmarks as expected; 
however, DCNN-IPMPA represents a competitive result 
compared to the standard DCNN.

4.4 � Sensitivity analysis

This subsection assesses the sensitivity of the DCNN-con-
trol IPMPA’s parameters. The parameter FADs is deemed a 
local optima avoidance operator for MPA. The second and 
third parameters (NLayer and Nbatch, respectively) address the 
network structure. The analytical results demonstrate the 
robustness and sensitivity of the parameters to input. Four 
different parameter values were used in the corresponding 
tests (Wu et al., 2021a, b). Numerous parameter combina-
tions were established using an orthogonal array, as illus-
trated in Table 10. The model is trained for all potential 
parameter combinations. Additionally, Table 11 summarizes 
the mean square error (MSE) values obtained for each test. 
Figure 14 shows the trend in the parameter values concern-
ing the data in Table 11. The result indicates that NLayer = 5, 
FADs = 0.2, and Nbatch = 10 produce the best results.

5 � Conclusion

This paper evaluates the MPA’s effectiveness in deter-
mining the best structure of DCNNs without requiring 
manual effort to achieve both speed and accuracy. Three 
enhancements based on standard MPA were developed to 
accomplish the purpose. First, a novel encoding technique 

Fig. 12   The Precision-recall and ROC curves for the COVID-CT dataset

Fig. 13   The convergence curves for utilized benchmark algorithms
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based on the IP address was proposed; then, an Enfee-
bled layer was presented to cover the dimensions of speci-
fied candid solution vectors. Finally, the learning process 
partitioned enormous datasets. The DCNN-IPMPA was 
applied to the SARS-CoV-2 and COVID-CT datasets to 
conduct a detailed comparison. The performance of the 
DCNN-IPMPA was compared to that of standard DCNNs, 
and DCNNs evolved using IPPSO, VLGA, VLNSGA-II, 
VLBSO, IP-MPSO, VLBBO, and VLACO using five 
well-known metrics: sensitivity, accuracy, specificity, 
F1-Score, and precision, as well as ROC and precision-
recall curves. The study established that the presented 
system outperforms competing models, achieving a final 
accuracy of 97.21 percent on the SARS-CoV-2 dataset and 
97.94 percent on the COVID-CT dataset. Timing analy-
sis indicated that the DCNN processing time is the best 
among all benchmarks as expected; however, DCNN-
IPMPA represents a competitive result compared to the 
standard DCNN. Numerous directions for future research 
study exist, including the application of DCNN-IPMPA to 
various image processing tasks. Researchers can explore 
the IPMPA in order to address multi-objective optimiza-
tion problems. Additionally, a unique fitness function can 
be built to more accurately model the issue. As additional 
study directions, the use of oppositional-based learning, 
chaotic maps, orthogonal learning, and Gaussian walks 
can be investigated to optimize DCNN performance. Also, 
other DCNN structures or vision transformers can be used 
for future research studies.

Table 9   The comparison of test 
and training time of benchmark 
networks implemented on GPU 
and CPU

Model CPU vs. GPU Training time Testing time P value

DCNN GPU 125 s 598 ms 0.0033
CPU 1 h, 6 min, 1 s 54 s 0.0045

DCNN-IPPSO GPU 1199 ms 824 ms 0.0075
CPU 1 h, 14 min, 33 s 1 min, 55 s 0.0032

DCNN-VLBSO GPU 746.2 ms 623 ms 0.0014
CPU 1 h, 27 min, 52 s 2 min, 00 s 0.0002

DCNN-IPMPSO GPU 2195 ms 928 ms 0.0001
CPU 1 h, 16 min, 25 s 2 min, 11 s 0.0043

DCNN-VLGA GPU 632 ms 415 ms 0.0056
CPU 1 h, 58 min, 58 s 1 min, 48 s 0.0021

DCNN-VLBBO GPU 744.6 ms 621 ms 0.0008
CPU 2 h, 12 min, 3 s 1 min, 03 s 0.0008

DCNN-VLACO GPU 1242 ms 822 ms 0.0014
CPU 2 h, 5 min, 45 s 2 min, 02 s 0.0033

DCNN-VLNSGA-II GPU 1101 ms 876 ms 0.0012
CPU 2 h, 1 min, 1 s 2 min, 12 s 0.0004

DCNN-IPMPA GPU 324 ms 215 ms 0.0007
CPU 1 h, 8 min, 3 s 1 min, 01 s N/A

Table 10   the parameters’ 
specification

Level Nlayer FADs Nbatch

1 3 0.1 6
2 4 0.2 8
3 5 0.3 10
4 6 0.4 12

Table 11   The MSE for various control parameter values

Experiments Parameters Result (MSE)

Nlayer FADs Nbatch

#1 1 4 1 0.0621
#2 1 3 2 0.0435
#3 1 2 3 0.0235
#4 1 1 4 0.0132
#5 2 1 2 0.0414
#6 2 2 1 0.0342
#7 2 3 4 0.0115
#8 2 4 3 0.0082
#9 3 4 1 0.0198
#10 3 3 4 0.0096
#11 3 1 2 0.0045
#12 3 2 3 0.0018
#13 4 2 4 0.0252
#14 4 3 3 0.0121
#15 4 4 2 0.0063
#16 4 1 1 0.0035
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