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Abstract
Stability in distribution for uncertain delay differential equations based on the strong Lipschitz condition only involving the 
current state has been successfully investigated. In reality, the uncertain delay differential equation is not only relate to the 
current state, but also relate to the past state, so it is very hard to obtain the strong Lipschitz condition. In this paper, the new 
Lipschitz condition concerning the current state and the past state is provided, if the uncertain delay differential equation 
satisfies the strong Lipschitz condition, it must satisfy the new Lipschitz condition, conversely, it may not be established. 
By means of the new Lipschitz condition, a sufficient theorem for the uncertain delay differential equation being stable in 
distribution is proved. Meanwhile, a class of uncertain delay differential equation is certified to be stable in distribution with-
out any limited condition. Besides, the effectiveness of the above sufficient theorem is verified by two numerical examples.

Keywords  Liu process · Uncertain process · Stability in distribution · Uncertain delay differential equations

Abbreviations
SIS	� Susceptible-Infectious-Susceptible
SDDEs	� Stochastic delay differential equations
UDEs	� Uncertain differential equations
UDDEs	� Uncertain delay differential equations

Symbols
M	� Uncertain measure
Φ,Ψ	� Uncertain distribution functions
Φ−1,Ψ−1	� Inverse uncertain distribution functions
Ct	� Liu process
Λ	� The distribution function of normal uncertain 

variable
Λ−1	� The inverse distribution function of normal 

uncertain variable
Ut,Vt	� Uncertain process⋁

	� Maximum operator

E	� Expected value
�	� Delay time

1  Introduction

Delay differential equations have been successfully applied 
in the feedback mechanism systems, such as the SIS epi-
demic system (Liu 2015a), the competitive diffusive sys-
tem (Lin 2018), and the hepatitis B virus infection system 
(Guo and Cai 2012). The feedback mechanism systems are 
affected by the “noise”, such as the biologically motivated 
signal transmission system (Xu et al. 2009), the optimal 
control system (Ma and Liu 2017), and the financial sys-
tem (Shen et al. 2014). If the “noise” are modelled by 
Wiener processes, stochastic delay differential equations 
(Hereinafter called SDDEs for short) involving the Wiener 
processes are employed to model the feedback mechanism 
systems, where the Wiener processes stand for a series 
of random variables under the framework of probability 
theory. A prerequisite of probability theory is that the dis-
tribution is close enough to the real frequency. In some 
cases, this prerequisite can not be satisfied, for example, 
Liu (2015b) pointed out evolutions of some undetermined 
phenomena do not behave like randomness, Tang and Yang 
(2021) presented that stochastic chemical reaction involv-
ing the Wiener process is unsuitable, Lio and Liu (2021) 
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introduced that stochastic COVID-19 spread model involv-
ing the Wiener process is unreasonable.

In addition to probability theory, Liu processes under 
the framework of uncertainty theory (Liu 2015b) were 
applied to describe the “noise”. Liu processes indexed 
by a series of uncertain variables were designed by Liu 
(2008). By means of the Liu process, uncertain differen-
tial equations (Hereinafter called UDEs for short) were 
suggested by Liu (2008). After that, Liu (2009), Sheng 
and Gao (2016), and Sheng and Wang (2014) investigated 
the stability of UDEs, Yao and Chen (2013), Yang and 
Shen (2015), and Yang and Ralescu (2015) used different 
numerical methods to obtain the numerical solutions of 
UDEs. Moreover, the UDEs have been extensively used in 
the spread of COVID-19 (Lio and Liu 2021), the pharma-
cokinetics (Liu and Yang 2021), the finance (Zhu 2014), 
and the insurance (Liu and Yang 2020). Besides, the dif-
ferent styles of UDEs were explored, including the UDEs 
with jump (Yao 2012), the multi-dimensional UDEs (Yao 
2014), the high-order UDEs (Yao 2016), the UDEs with 
a delay time (Hereinafter called UDDEs for short) (Bar-
bacioru 2010), the UDEs with partial information (Liu 
and Zhang 2020), and the UDEs with multifactor (Li et al. 
2015).

The stability of systems plays a significant role in mod-
elling the real world. In other words, if the system is not 
stable, even though the difference between the given ini-
tial value and the precise initial value is small, the differ-
ence between the results becomes larger. At present, many 
styles of stability for UDDEs were investigated containing 
the stability in measure (Wang and Ning 2017), the almost 
sure stability (Wang and Ning 2019), and the stability in 
distribution (Jia and Sheng 2019). The above stability in 
distribution for UDDEs was studied based on the strong Lip-
schitz condition only concerning the current state, which 
was difficult to be obtained due to the fact that the UDDEs 
include both the current and the past states. Therefore, the 
new Lipscitz conditions involving the current and the past 
states are proposed to solve this issue in this paper. In fact, 
the new Lipschitz condition is weaker than the strong Lip-
schitz condition. In other words, if the UDDEs satisfy the 
strong Lipschitz condition, it must satisfy the new Lipschitz 
condition, conversely, it may not be established. Based on 
the new Lipschitz condition, a sufficient theorem for UDDEs 
being stable in distribution is verified. Meanwhile, a class 
of UDDEs is proved to be stable in distribution without any 
limited condition. Moreover, two numerical examples are 
provided to verify the effectiveness of the above sufficient 
theorem. If we can not obtain the new Lipschitz condition, 
we can not judge the stability in distribution for UDDEs. 
In the future, we can consider the stability in p-th moment 
based on the new Lipschitz condition and the p-th moment 
exponential stability for UDDEs.

The rest of this paper is structured as follows. Section 2 
introduces the related work. Section 3 gives an overview of 
UDDEs. Section 4 presents a sufficient theroem of stability 
in distribution based on new Lipschitz condition for UDDEs. 
Section 5 proves a class of UDDEs being stable in distribu-
tion without any limited condition. Section 6 provides two 
numerical examples to verify the effectiveness of the above 
sufficient theorem. Section 7 discusses some results of this 
article.

2 � Related work

Uncertainty theory was founded by Liu (2015b), which has 
been investigated by many scholars. Uncertain process in 
uncertainty theory stands for a sequence of uncertain vari-
ables indexed by time. Liu process as a class of uncertain 
process satisfies the conditions that almost all sample paths 
are Lipschitz continuous, and has stationary and independent 
increments, every increment is a normal uncertain variable 
with expected value 0 and variance t2.

Differential equations involving the Liu process were 
called uncertain differential equations(UDEs) (2008), the 
existence and uniqueness theorem of solution for UDEs was 
proved by Chen and Liu (2010) and Gao (2012). Later, the 
concept of stability in measure was provided by Liu (2009), 
and the corresponding theorems of stability in measure was 
verified by Yao et al. (2013). Moreover, the stability in mean 
(Yao et al. 2015), the stability in p-th moment (Sheng and 
Wang 2014), the stability in inverse distribution (Yang et al. 
2017a), the almost sure stability (Liu et al. 2014), and the 
exponential stability (Sheng and Gao 2016) of UDEs were 
successfully explored. In order to obtain the numerical solu-
tion of UDEs, many numerical methods are proposed includ-
ing the 99-method (Yao and Chen 2013), the Runge–Kutta 
method (Yang and Shen 2015; Yang and D 2015), the Milne 
method (Gao 2016), and the Hamming method (Zhang et al. 
2017).

As a special UDEs, the UDEs with jumps have been 
investigated by many scholars, for example, the existence 
and uniqueness theorem of solutions was considered by 
Yao (2015), the stability in measure (Yao 2015), the almost 
sure stability (Ji and Ke 2016), the stability in mean (Gao 
2019), the stability in p-th moment (Ma et al. 2017b), and 
the p-th moment exponential stability (Liu et  al. 2020) 
were presented. Except for the above UDEs with jumps, the 
existence and uniqueness theorem (Ji and Zhou 2015), the 
stability in measure (Su et al. 2016), the stability in p-th 
moment (Shi et al. 2020), the stability in mean (Sheng and 
Shi 2019) for multi-dimensional UDEs were successfully 
explored. Besides, the stability analysis of nonlinear uncer-
tain fractional differential equations with Caputo derivative 
was presented by Lu et al. (2021), and the stability in mean 
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for uncertain delay differential equations based on new Lip-
schitz conditions was investigated by Gao and Jia (2021).

In some special cases, the systems were affected by 
many factors, multifactor uncertain differential equations 
were proposed by Li et al. (2015), the almost sure stabil-
ity (Sheng et al. 2017), the stability in mean (Zhang et al. 
2016), the stability in measure (Zhang et al. 2016), and 
the stability in distribution (Ma et al. 2017a) for multi-
factor uncertain differential equations were investigated. 
Additionally, many scholars studied the stability analysis 
for uncertain spring vibration equations (Jia et al. 2021), 
uncertain wave equations (Gao et al. 2019), and uncertain 
heat equations (Liu and Zhang 2020).

3 � Preliminaries

For the purpose of modelling the dynamics of uncertain 
phenomena, Liu (2009) designed a Liu process to cope 
with the environmental noise perturbations.

Definition 1  Liu (2015b) An uncertain process Ct is said to 
be a Liu process if:

–	 C0 = 0 and almost all sample paths are Lipschitz con-
tinuous.

–	 Ct has stationary and independent increments.
–	 Every increment Cs+t − Cs is a normal uncertain vari-

able with expected value 0 and variance t2 , whose 
uncertain distribution is 

Based on the Liu process, Barbacioru (2010) defined 
the following UDDEs.

Definition 2  Barbacioru (2010) Assume that f1 and f2 are 
two real-valued functions, Ct stands for the Liu process, then 
the following equation

is termed as an UDDE, where Ct and the positive number 
� stand for the Liu process and a time delay, respectively.

Moreover, Yao and Chen (2013) proved the following 
existence and uniqueness theorem.

Theorem 1  Yao and Chen (2013) The UDDE (1) with initial 
states has a unique solution if the coefficients

Λ(x) =

�
1 + exp

�
−�x
√
3t

��
, x ∈ R.

(1)dUt = f1(t,Ut,Ut−�)dt + f2(t,Ut,Ut−�)dCt

and

for some positive constant L.

Theorem 2  Yao and Chen (2013) Let M denotes the uncer-
tain measure defined in Liu’s book Liu (2015b), Ut be the 
solution of the uncertain differential equation

and U�

t
 stands for the �-path of Ut , 0 < 𝛼 < 1 , it is obtained 

by solving the following equation

where Λ−1(�) be the inverse distribution function of normal 
uncertain variables, i.e.,

then

Besides, Wang and Ning (2017) defined the stability 
in measure, the stability in mean, and the stability in p-th 
moment, and gave the corresponding sufficient theorem 
based on the strong Lipschitz condition, Jia and Sheng 
(2019) introduced the definition of the stability in distribu-
tion, and provided a sufficient theorem based on the strong 
Lipschitz condition.

Definition 3  Wang and Ning (2017) The UDDE (1) is said to 
be stable in measure if for any two solutions Ut and Vt with 
different initial states, we have

for any given number 𝜖 > 0.

Theorem 3  Wang and Ning (2017) Assume the UDDE (1) 
has a unique solution for each given initial state. Then it is 
stable in measure if the coefficients f1(t, u, v) and f2(t, u, v) 
satisfy the strong Lipschitz condition

where Lt is a bounded function satisfying

|f1(t, u, v)| + |f2(t, u, v)| ≤ L(1 + |u| + |v|), ∀u, v ∈ ℜ, t ≥ 0

|f1(t, u1, v) − f1(t, u2, v)| + |f2(t, u1, v) − f2(t, u2, v)|
≤ L|u1 − u2|, ∀u1, u2, v ∈ ℜ, t ≥ 0

(2)dUt = f1(t,Ut)dt + f2(t,Ut)dCt,

(3)dU�

t
= f1(t,U

�

t
)dt + |f2(t,U�

t
)|Λ−1(�)dt,

Λ−1(�) =

√
3

�
ln

�

1 − �
,

(4)M{Ut ≤ U𝛼

t
,∀t} = 𝛼,M{Ut > U𝛼

t
,∀t} = 1 − 𝛼.

(5)
lim

sup
s∈[−𝜏,0]

|Us−Vs|→0
M{|Ut − Vt| > 𝜖} = 0, ∀t > 0

|f1(t, u1, v) − f1(t, u2, v)| ∨ |f2(t, u1, v) − f2(t, u2, v)|
≤ Lt|u1 − u2|, ∀u1, u2, v ∈ ℜ, t > 0
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Definition 4  Wang and Ning (2017) The UDDE (1) is said 
to be stable in mean if for any two solutions Ut and Vt with 
different initial states, we have

Theorem 4  Wang and Ning (2017) Assume the UDDE (1) 
has a unique solution for each given initial state. Then it 
is stable in mean if the coefficients f1(t, u, v) and f2(t, u, v) 
satisfy the strong Lipschitz condition

where Ft and Gt are two bounded functions satisfying

Definition 5  Wang and Ning (2017) The UDDE (1) is said to 
be stable in p-th moment ( 0 < p < +∞ ) if for any two solu-
tions Ut and Vt with different initial states, we have

Theorem 5  Wang and Ning (2017) Assume the UDDE (1) 
has a unique solution for each given initial state. Then it 
is stable in p-th moments ( 0 < p < +∞ ) if the coefficients 
f1(t, u, v) and f2(t, u, v) satisfy the strong Lipschitz condition

where Ft and Gt are two bounded functions satisfying

Theorem 6  Wang and Ning (2017) For any two real numbers 
p1 and p2 ( 0 < p1 < p2 < +∞ ), if the UDDE (1) is stable in 
p2-th moment, then it is stable in p1-th moment.

Theorem 7  Wang and Ning (2017) If the UDDE (1) is stable 
in mean, then it is stable in measure.

Theorem 8  Wang and Ning (2017) If the UDDE (1) is stable 
in p-th moment ( 0 < p < +∞ ), then it is stable in measure.

∫
+∞

0

Ltdt < +∞.

(6)
lim

sup
s∈[−𝜏,0]

|Us−Vs|→0
E[|Ut − Vt|] = 0, ∀t > 0.

|f1(t, u1, v) − f1(t, u2, v)| ≤ Ft|u1 − u2|,
|f2(t, u1, v) − f2(t, u2, v)| ≤ Gt|u1 − u2|,

∀u1, u2, v ∈ ℜ, t > 0,

∫
+∞

0

Ftdt < +∞,∫
+∞

0

Gtdt <
𝜋
√
3
.

(7)
lim

sup
s∈[−𝜏,0]

|Us−Vs|→0
E[(|Ut − Vt|)p] = 0, ∀t > 0.

|f1(t, u1, v) − f1(t, u2, v)| ≤ Ft|u1 − u2|,
|f2(t, u1, v) − f2(t, u2, v)| ≤ Gt|u1 − u2|,

∀u1, u2, v ∈ ℜ, t > 0

∫
+∞

0

Ftdt < +∞,∫
+∞

0

Gtdt <
𝜋

√
3p

.

Definition 6  Wang and Ning (2019) Suppose that Ut and 
Vt are two solutions of the UDDE (1) with different initial 
states uj and vj for any j ∈ [−�, 0] , respectively. Uncertain 
delay differential equation is said to be stable almost surely if

Theorem 9  Wang and Ning (2019) Suppose that the UDDE 
(1) has a unique solution for each given initial state, then the 
UDDE (1) is stable almost surely if the coefficients f1(t, u, v) 
and f2(t, u, v) satisfy

where Lt ≥ 0 and

Definition 7  Jia and Sheng (2019) Assume that Ut and Vt are 
the solutions of the UDDE (1) for different prescribed initial 
states Us and Vs ( s ∈ [−�, 0] ), respectively. If the following 
condition holds,

where Θt(⋅) and Ψt(⋅) stand for the distribution functions of 
Ut and Vt , respectively, ∀x ∈ ℜ , then the UDDE (1) is stable 
in distribution.

Theorem 10  Jia and Sheng (2019) Assume the coefficients 
of the UDDE (1) with a unique solution for each prescribed 
initial state satisfy the strong Lipschitz condition

where Ht is a positive function satisfying

then the UDDE (1) is stable in distribution.

4 � A sufficient theorem

In this section, a sufficient theorem of stability in distri-
bution for UDDEs based on new Lipschitz condition is 
explored. Firstly, we introduce two important theorems as 

M

⎧
⎪
⎨
⎪
⎩

� ∈ Γ� lim
sup

j∈[−�,0]

�uj−vj�→0
�Ut(�) − Vt(�)� = 0

⎫
⎪
⎬
⎪
⎭

= 1.

|f1(t, u1, v) − f1(t, u2, v)| + |f2(t, u1, v) − f2(t, u2, v)|
≤ Lt|u1 − u2|, ∀u1, u2, v ∈ ℜ, t ≥ 0,

∫
+∞

0

Ltdt < +∞.

(8)
lim

sup
s∈[−𝜏,0]

|Us−Vs|→0
|Θt(x) − Ψt(x)| = 0, ∀t > 0,

|f1(t, u1, v) − f1(t, u2, v)| + |f2(t, u1, v) − f2(t, u2, v)|
≤ Ht|u1 − u2|, ∀u1, u2, v ∈ ℜ, t > 0

∫
+∞

0

Htdt < +∞,
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below, which play a significant role in proving the sufficient 
theorem.

Theorem 11  Yang et al. (2017b) Let �, �1, �2,… be a series 
of uncertain variables, their corresponding regular uncer-
tainty distributions be Φ,Φ1,Φ2,… , respectively. Then {�n} 
converges in inverse distribution to � if and only if it con-
verges in distribution to �.

Theorem 12  Gronwall (1919) Set I denotes [c1,+∞) , [c1, c2] 
or [c1, c2) with c1 < c2 . Let � and � defined on I are two real-
valued non-negative continuous functions, � is integrable on 
every closed and bounded subinterval of I. If the following 
inequality

holds and � is non-decreasing, then we have

Theorem 13  If the coefficients of the UDDE (1) with a 
unique solution for each prescribed initial state satisfy the 
new Lipschitz condition

∀ui, vi ∈ ℜ, i = 1, 2, t > 0 , where the functions Bjt satisfies 
the conditions

then the UDDE (1) is stable in distribution.

Proof   For the different prescribed initial states us 
( s ∈ [−�, 0] ) and vs ( s ∈ [−�, 0] ), we assume that Ut and Vt 
are the corresponding solutions of the UDDE (1). Accord-
ing to the Theorem 2, the corresponding inverse uncertainty 
distributions Θ−1

t
(�) and Ψ−1

t
(�) of Ut and Vt satisfy the fol-

lowing equations

respectively, where

�(s) ≤ �(s) + �
s

c

�(u)�(u)du, ∀s ∈ I

�(s) ≤ �(s) exp

(

�
s

c

�(u)du

)
, ∀s ∈ I.

(9)
|f1(t, u1, v1) − f1(t, u2, v2)| ≤ B1t|u1 − u2| + B2t|v1 − v2|
|f2(t, u1, v1) − f2(t, u2, v2)| ≤ B3t|u1 − u2| + B4t|v1 − v2|

∫
+∞

0

Bjtdt < +∞, j = 1, 2, 3, 4,

dΘ−1
t
(�) = f1(t,Θ

−1
t
(�),Θ−1

t−�
(�))dt

+ |f2(t,Θ−1
t
(�),Θ−1

t−�
(�))|Λ−1(�)dt,

dΨ−1
t
(�) = f1(t,Ψ

−1
t
(�),Ψ−1

t−�
(�))dt

+ |f2(t,Ψ−1
t
(�),Ψ−1

t−�
(�))|Λ−1(�)dt,

Λ−1(�) =

√
3

�
ln

�

1 − �
.

For all � ∈ (0,1) , we obtain

Apply the new Lipschitz condition (9), we have

Meanwhile, we set u = s − � , and obtain

Θ−1
t
(�) = U0 + ∫

t

0

f1(s,Θ
−1
s
(�),Θ−1

s−�
(�))ds

+ ∫
t

0

|f2(s,Θ−1
s
(�),Θ−1

s−�
(�))|Λ−1(�)ds,

Ψ−1
t
(�) = V0 + ∫

t

0

f1(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))ds

+ ∫
t

0

|f2(s,Ψ−1
s
(�),Ψ−1

s−�
(�))|Λ−1(�)ds.

|Θ−1
t
(�) − Ψ−1

t
(�)|

=
|||||

{
U0 + �

t

0

f1(s,Θ
−1
s
(�),Θ−1

s−�
(�))ds

+ �
t

0

|f2(s,Θ−1
s
(�),Θ−1

s−�
(�))|Λ−1(�)ds

}

−

{
V0 + �

t

0

f1(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))ds

+ �
t

0

|f2(s,Ψ−1
s
(�),Ψ−1

s−�
(�))|Λ−1(�)ds

}|||||

≤|U0 − V0| +
|||||�

t

0

f1(s,Θ
−1
s
(�),Θ−1

s−�
(�))

− f1(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))ds

||||

+
|||Λ

−1(�)
|||
|||||�

t

0

f2(s,Θ
−1
s
(�),Θ−1

s−�
(�))

− f2(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))ds

||||

≤|U0 − V0| + �
t

0

|||f1(s,Θ
−1
s
(�),Θ−1

s−�
(�))

−f1(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))

|||ds

+
|||Λ

−1(�)
|||�

t

0

|||f2(s,Θ
−1
s
(�),Θ−1

s−�
(�))

−f2(s,Ψ
−1
s
(�),Ψ−1

s−�
(�))

|||ds

≤|U0 − V0| + �
t

0

{
B1s|Θ−1

s
(�) − Ψ−1

s
(�)|

+B2s|Θ−1
s−�

(�) − Ψ−1
s−�

(�)|
}
ds

+
|||Λ

−1(�)
|||�

t

0

{
B3s|Θ−1

s
(�) − Ψ−1

s
(�)|

+B4s|Θ−1
s−�

(�) − Ψ−1
s−�

(�)|
}
ds.
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Similarly, we have

Set N1 = ∫ �

0
B2udu and N2 = ∫ �

0
B4udu , we have

The above Eq. (10) satisfies the Theorem 12, then we have

∫
t

0

B2s|Θ−1
s−�

(�) − Ψ−1
s−�

(�)|ds

= ∫
t−�

−�

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du

= ∫
0

−�

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du

+ ∫
t−�

0

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du

= ∫
0

−�

B2(u+�)|Uu − Vu|du

+ ∫
t−�

0

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du

≤ sup
s∈[−�,0]

{|Us − Vs|}�
0

−�

B2(u+�)du

+ �
t−�

0

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du

≤ sup
s∈[−�,0]

{|Us − Vs|}�
�

0

B2udu

+ �
t

0

B2(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du.

�
t

0

B4s|Θ−1
s−�

(�) − Ψ−1
s−�

(�)|ds

≤ sup
s∈[−�,0]

{|Us − Vs|}�
�

0

B4udu

+ �
t

0

B4(u+�)|Θ−1
u
(�) − Ψ−1

u
(�)|du.

(10)

|Θ−1
t
(�) − Ψ−1

t
(�)| ≤ |U0 − V0|

+ (N1 + N2|Λ−1(�)|) sup
u∈[−�,0]

{|Θ−1
u
(�) − Ψ−1

u
(�)|}

+ �
t

0

(B1s + B2(s+�))|Θ−1
s
(�) − Ψ−1

s
(�)|ds

+ |Λ−1(�)|�
t

0

(B3s + B4(s+�))|Θ−1
s
(�) − Ψ−1

s
(�)|ds

≤ {
1 + (N1 + N2|Λ−1(�)|)

}
sup

s∈[−�,0]

{|Us − Vs|}

+ �
t

0

{
(B1s + B2(s+�))

+ |Λ−1(�)|(B3s + B4(s+�))
}
|Θ−1

s
(�) − Ψ−1

s
(�)|ds.

Since

there exists a real number M > 0 such that

Assume that � = �∕M , then we have

for any t ≥ 0 and 𝜖 > 0 provided

Thus, we have

|Θ−1
t
(�) − Ψ−1

t
(�)|

≤ {
1 + (N1 + N2|Λ−1(�)|)

}
sup

s∈[−�,0]

{|Us − Vs|}⋅

exp

{

�
t

0

B1s + B2(s+�) + |Λ−1(�)|(B3s + B4(s+�))ds

}

≤ exp
{
(N1 + N2|Λ−1(�)|)

}
sup

s∈[−�,0]

{|Us − Vs|}

⋅ exp

{

�
+∞

0

(B1s + B2(s+�))ds

+|Λ−1(�)|�
+∞

0

(B3s + B4(s+�))ds

}

≤ sup
s∈[−�,0]

{|Us − Vs|} exp
{
(N1 + N2|Λ−1(�)|)

+ �
+∞

0

(B1s + B2s)ds+|Λ−1(�)|�
+∞

0

(B3s + B4s)ds

}

≤ sup
s∈[−�,0]

{|Us − Vs|} exp
{

�
+∞

0

(B1s + 2B2s)ds

+|Λ−1(�)|�
+∞

0

(B3s + 2B4s)ds

}
.

∫
+∞

0

B1tdt < +∞,∫
+∞

0

B2tdt < +∞,

∫
+∞

0

B3tdt < +∞,∫
+∞

0

B4tdt < +∞,

exp

{

∫
+∞

0

(B1s + 2B2s)ds

+ |Λ−1(𝛼)|∫
+∞

0

(B3s + 2B4s)ds

}
< M.

|Θ−1
t
(𝛼) − Ψ−1

t
(𝛼)| ≤ sup

s∈[−𝜏,0]

{|Us − Us|}

⋅ exp

{

�
+∞

0

(B1s + 2B2s)ds

+|Λ−1(𝛼)|�
+∞

0

(B3s + 2B4s)ds

}

< 𝛿M = 𝜖

sup
s∈[−𝜏,0]

{|Us − Vs|} < 𝛿.
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According to the Theorem 11, we have

Therefore, the UDDE (1) is stable in distribution based on 
the new Lipschitz condition (9).

Remark 41  If the UDDEs satisfy the strong Lipschitz condi-
tion of Theorem 10, we set B2t = 0 and B4t = 0 , it must sat-
isfy the new Lipschitz condition in Theorem 13. In contrast, 
it is obvious that it may not be established, the Example 1 
can be employed to illustrate this point.

Example 1  Consider the UDDE 

Firstly, we set

If we want to use the Theorem 10, we can easily find that it 
does not follow the strong Lipschitz condition, and if we use 
the Theorem 13, we obtain that the following equations hold,

According to the Theorem 13, the UDDE (11) is stable in 
distribution.

Corollary 41  If the coefficients of the UDDE (1) with a 
unique solution for each prescribed initial state satisfy the 
new Lipschitz condition

∀ui, vi ∈ ℜ, i = 1, 2, t > 0 , where the functions Djt satisfy the 
conditions

lim
sup

s∈[−�,0]

{|Us−Vs|}→0
|Θ−1

t
(�) − Ψ−1

t
(�)| = 0, ∀� ∈ (0, 1).

lim
sup

s∈[−𝜏,0]

{|Us−Vs|}→0
|Θt(y) − Ψt(y)| = 0, ∀t > 0, y ∈ ℜ.

(11)
dUt =

(
2t

1 + t4
Ut + exp(−t2)Ut−0.4

)
dt

+

(
t

1 + t4
Ut + 2 exp(−t2)Ut−0.4

)
dCt.

f1(t, u, v) =
2t

1 + t4
u + exp(−t2)v,

f2(t, u, v) =
t

1 + t4
u + 2 exp(−t2)v.

∫
+∞

0

B1tdt = ∫
+∞

0

2t

1 + t4
dt =

𝜋

2
< +∞,

∫
+∞

0

B2tdt = ∫
+∞

0

exp(−t2)dt =

√
𝜋

2
< +∞,

∫
+∞

0

B3tdt = ∫
+∞

0

t

1 + t4
dt =

𝜋

4
< +∞,

∫
+∞

0

B4tdt = ∫
+∞

0

exp(−t2)dt =

√
𝜋

4
< +∞.

(12)
|f1(t, u1, v1) − f1(t, u2, v2)| + |f2(t, u1, v1) − f2(t, u2, v2)|

≤ D1t|u1 − u2| + D2t|v1 − v2|

then the UDDE (1) is stable in distribution.

Proof   By using the condition (12), we obtain

According to the Theorem 13, we set

then the UDDE (1) based on the new Lipschitz condition 
(12) is stable in distribution.

Remark 42  In fact,  Theorem  13 and Corollary 
41 have a equivalence relation. If the new Lip-
schitz condition of Theorem  13 holds, we set 
B1t = D1t,B2t = D2t,B3t = D1t,B4t = D2t , then the Lip-
schitz condition of Corollary 41 holds. Conversely, if the 
new Lipschitz condition of Corollary 41 holds, we set 
D1t = B1t + B3t,D2t = B2t + B4t , then the new Lipschitz 
condition of Theorem 13 holds.

Corollary 42  Assume the UDDE

satisfying

then the UDDE (13) is stable in distribution.

P r o o f   We  s e t  f1(t, u, v) = b1tu + b2tv + b3t  a n d 
f2(t, u, v) = b4tu + b5tv + b6t , then we have

By use of the condition (14) and Theorem 13, we obtain that 
the UDDE (13) is stable in distribution.

Example 2  Consider the UDDE

Then, we have

∫
+∞

0

Djtdt < +∞, j = 1, 2,

|f1(t, u1, v1) − f1(t, u2, v2)| ≤ D1t|u1 − u2| + D2t|v1 − v2|,
|f2(t, u1, v1) − f2(t, u2, v2)| ≤ D1t|u1 − u2| + D2t|v1 − v2|.

B1t = D1t,B2t = D2t,B3t = D1t,B4t = D2t,

(13)
dUt = (b1tUt + b2tUt−� + b3t)dt + (b4tUt + b5tUt−� + b6t)dCt

(14)
∫

+∞

0

b1tdt < +∞,∫
+∞

0

b2tdt < +∞,

∫
+∞

0

b4tdt < +∞,∫
+∞

0

b5tdt < +∞,

B1t = b1t,B2t = b2t,B3t = b4t,B4t = b5t.

(15)

dUt =

�
exp(−t)Ut +

1

1 + t2
Ut−1

�
dt

+

�
1

2
t exp(−t)Ut +

�

2
√
3
t exp(−t2)Ut−1

�
dCt.
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By using the Corollary 42, the UDDE (15) is stable in 
distribution.

5 � Stability in distribution for a special 
UDDEs

In this section, a class of UDDEs being stable in distribution 
are investigated.

Theorem 14  Consider the UDDEs

where Kt and a are the real-valued function and the constant 
number, respectively, t ∈ [0, T] , then the UDDE (16) is sta-
ble in distribution.

Proof  For the different prescribed initial states n� and m� , 
� ∈ [−�, 0] , the corresponding solutions are Ut and Vt . 
According to the Theorem 2, we have

and

Thus,

∫
+∞

0

b1tdt = ∫
+∞

0

exp(−t)dt = 1 < +∞,

∫
+∞

0

b2tdt = ∫
+∞

0

1

1 + t2
dt =

𝜋

2
< +∞,

∫
+∞

0

b4tdt = ∫
+∞

0

1

2
t exp(−t)dt =

1

2
<

𝜋
√
3
,

∫
+∞

0

b5tdt = ∫
+∞

0

𝜋

2
√
3
t exp(−t2)dt =

𝜋

4
√
3
< +∞.

(16)dUt = KtUt−�dt + adCt,

dΘ−1
t
(�) = KtΘ

−1
t−�

(�)dt + aΛ−1(�)dt,

dΨ−1
t
(�) = KtΨ

−1
t−�

(�)dt + aΛ−1(�)dt,

Θ−1
t
(�) = U0 + ∫

t

0

KsΘ
−1
s−�

(�)ds + aΛ−1(�)t,

Ψ−1
t
(�) = Y0 + ∫

t

0

KsΨ
−1
s−�

(�)dt + aΛ−1(�)t.

�Θ−1
t
(�) − Ψ−1

t
(�)�

≤
⎧
⎪
⎪
⎨
⎪
⎪
⎩

�nt − mt�, t ∈ [−�, 0]

�n0 − m0� + ∫ t

0
�Ks��ns−� − ms−� �ds, t ∈ (0, �]

�Θ−1
�
(�) − Ψ−1

�
(�)� + ∫ t

�
�Ks��Φ−1

s−�
(�) − Ψ−1

s−�
(�)�ds,

t ∈ (�, 2�]

…

Then,

According to the Theorem 11, we have

Remark 51  The Theorem 14 is different from the Theorems 
7 and 13. Example 3 shows that it is stable in distribution, 
but it becomes invalid by using the Theorems 7 and 13.

Example 3  Consider the UDDE

According to the Theorem 14, the UDDE (17) is stable in 
distribution. Due to the fact that

so the Theorems 7 and 13 are invalid for this example.

6 � Numerical experiments

The stability is a significant issue for systems to model the 
real world. In other words, if the system is not stable, even 
though the difference between the given initial value and 
the precise initial value is small, the difference between the 
results becomes larger. This section devotes to illustrating 
the effectiveness of the Theorem 13.

Example 4  The UDDE (15) has been proved that it is stable 
in distribution, and has a following �-path obtained by the 
Theorem 2,

According to the Eq. (18), the algorithm to calculate Ut 
is design as below.

Step 0: Set ti = iT∕M, i = 1, 2,… ,M, where M are two 
large numbers.
Step 1: Set i = 0.
Step 2: Set i =← i + 1.

lim
sup

s∈[−�,0]

{|Us−Vs|}→0
|Θ−1

t
(�) − Ψ−1

t
(�)| = 0, ∀� ∈ (0, 1).

lim
sup

s∈[−𝜏,0]

{|Us−Vs|}→0
|Θt(y) − Ψt(y)| = 0, ∀t > 0, y ∈ ℜ.

(17)dUt = t2Ut−1dt + dCt, t ∈ [0, 1000].

∫
+∞

0

t2dt = +∞,

(18)

dU�

t
=

�
exp(−t)U�

t
+

1

1 + t2
U�

t−1

�
dt

+

������

�
1

2
t exp(−t)U�

t
+

�

2
√
3
t exp(−t2)U�

t−1

�������
Λ−1(�)dt.
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Step 3: Set U�

ti+1
= U�

ti
+

{(
exp(−ti)U

�

ti
+

1

1+t2
i

U�

ti−1

)

+
����
1

2
ti exp(−ti)U

�

ti
+

�

2
√
3
ti exp(−t

2
i
)U�

ti−1

����
Λ−1(�)

�
(ti+1 − ti).

In the Figs. 1 and 2, Tables 1 and 2, we found that, when 
the difference between two initial values is enough small, 
the difference between the corresponding values Ut is suf-
ficiently close together after a period of time. Therefore, it is 
verified that the UDDE (15) is stable in distribution.

Example 5  The well-known delay Logistic model

was introduced to model population by Hutchinson 1948, 
where Pt is the number of population at time t, r is a constant 
of proportionality, and N is the carrying capacity, which 
means Ps < N,∀s > 0 . Assume that this ecological system 
suffers from infectious diseases, then we set that r is expo-
nential decrease with t, and have

(19)dPt = rPt

(
1 −

Pt−�

N

)
dt,

(20)dPt = r exp(−rt)Pt

(
1 −

Pt−�

N

)
dt.

In real world, there must be many uncertain factors for popu-
lation growth, such as man-made and natural disasters, so 
we add an uncertain term in the above Logistic model to 
write as

with constant a > 0 . Next, we analyze the stability in distri-
bution of system (21).

Let

then, we obtain

and

(21)dPt = exp(−rt)rPt

(
1 −

Pt−�

N

)
dt + exp(−at)PtdCt

f1(t, u, v) = r exp(−rt)u
(
1 −

v

N

)
, f2(t, u, v) = exp(−at)u,

|f1(t, u1, v1) − f1(t, u2, v2)|

= r exp(−rt)
||||
u1

(
1 −

v1

N

)
− u2

(
1 −

v2

N

)||||
≤ r exp(−rt)

{
|u1 − u2| +

1

N
|u1(v1 − v2) + (u1 − u2)v2|

}

≤ 2r exp(−rt)|u1 − u2| + r exp(−rt)|v1 − v2|,

Table 1   Data of Fig. 1
h=0.1
t 0.17 0.3 0.45 0.6 0.9 1
Ut 0.1341 0.1594 0.1868 0.2115 0.2527 0.2641
t 1.3 1.6 2 2.3 3 3.8228
Ut 0.2953 0.3235 0.3563 0.3769 0.4131 0.4407
h=0.14
t 0.17 0.3 0.45 0.6 0.9 1
Ut 0.1877 0.2232 0.2615 0.2962 0.3537 0.3697
t 1.3 1.6 2 2.3 3 3.8228
Ut 0.4134 0.4529 0.4989 0.5277 0.5783 0.6170
h=0.15
t 0.17 0.3 0.45 0.6 0.9 1
Ut 0.2011 0.2391 0.2802 0.3173 0.3790 0.3961
t 1.3 1.6 2 2.3 3 3.8228
Ut 0.4429 0.4853 0.5345 0.5654 0.6196 0.6611
h=0.18
t 0.17 0.3 0.45 0.6 0.9 1
Ut 0.2414 0.2870 0.3362 0.3808 0.4548 0.4753
t 1.3 1.6 2 2.3 3 3.8228
Ut 0.5315 0.5824 0.6414 0.6785 0.7435 0.7933
h=0.19
t 0.17 0.3 0.45 0.6 0.9 1
Ut 0.2548 0.3029 0.3549 0.4019 0.4801 0.5017
t 1.3 1.6 2 2.3 3 3.8228
Ut 0.5610 0.6147 0.6770 0.7162 0.7848 0.8374
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Table 2   Data of Fig. 2
h=0.1
t 0.17 0.3 0.45 0.6 0.75 0.9
Ut 0.1368 0.1681 0.2067 0.2467 0.2870 0.3268
t 1 1.3 1.6 2 2.3 3
Ut 0.3526 0.4314 0.5103 0.6068 0.6701 0.7898
h=0.14
t 0.17 0.3 0.45 0.6 0.75 0.9
Ut 0.1915 0.2354 0.2893 0.3453 0.4018 0.4575
t 1 1.3 1.6 2 2.3 3
Ut 0.4937 0.6039 0.7144 0.8495 0.9382 1.1057
h=0.15
t 0.17 0.3 0.45 0.6 0.75 0.9
Ut 0.2052 0.2522 0.31 0.37 0.4305 0.4902
t 1 1.3 1.6 2 2.3 3
Ut 0.5289 0.6471 0.7654 0.9102 1.0052 1.1847
h=0.18
t 0.17 0.3 0.45 0.6 0.75 0.9
Ut 0.2462 0.3026 0.372 0.444 0.5166 0.5882
t 1 1.3 1.6 2 2.3 3
Ut 0.6347 0.7765 0.9185 1.0922 1.2062 1.4217
h=0.19
t 0.17 0.3 0.45 0.6 0.75 0.9
Ut 0.2599 0.3194 0.3927 0.4687 0.5453 0.6209
t 1 1.3 1.6 2 2.3 3
Ut 0.67 0.8196 0.9695 1.1529 1.2732 1.5007

Fig. 1   Relations of Ut and h in 
the UDDE (15)
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Due to the fact that

According to the Theorem 13, the system (21) is stable in 
distribution. Next, we verify the above conclusion by numer-
ical experiments. The following �-path of the system (21) 
can be obtained by the Theorem 2,

 According to the Eq. (22), the algorithm to calculate Ut is 
design as below.

Step 0: Set ti = iT∕N, i = 1, 2,… ,N, where N are two 
large numbers.
Step 1: Set i = 0.
Step 2: Set i =← i + 1.
Step 3:  Set  P�

ti+1
= P�

ti
+

{
exp(−rti)rP

�

ti

(
1 −

P�

ti−�

N

)

+
|||exp(−ati)P

�

ti

|||Λ
−1(�)

}
(ti+1 − ti).

|f2(t, u1, v1) − f2(t, u2, v2)| = exp(−at) ⋅ |u1 − u2|.

∫
+∞

0

r exp(−rt)dt = 1,∫
+∞

0

exp(−at)dt =
1

a
.

(22)
dP�

t
= exp(−rt)rP�

t

(
1 −

P�

t−�

N

)
dt

+ ||exp(−at)P
�

t
||Λ

−1(�)dt.

In the Fig.  3 and Table  3, we assume that 
N = 100, r = 0.1, a = 0.4, � = 0.1, � = 0.3, then, we found 
that, when the difference among the initial values is enough 
small, the number of population Pt is also sufficiently close 
together after a period of time. In the Fig. 4and Tab.4, we 
assume that N = 1000, r = 0.7, a = 0.2, � = 0.7, � = 0.65, 
then the conclusion is the same as the Fig. 3. Therefore, 
the system (21) is confirmed that it is stable in distribution 
obtained from the Figs. 3 and 4.

7 � Conclusions

The stability in distribution for UDDEs has been inves-
tigated by means of the strong Lipschitz condition, but 
it was difficult to obtain the strong Lipschitz condition. 
In this paper, the new Lipschitz condition concerning the 
current and the past states was proposed. Based on the new 
Lipschitz condition, a sufficient theorem of stability in dis-
tribution for the UDDEs was proved. Without any limited 
condition, a class of UDDEs being stable in distribution 
was successfully proved. Through the Figs. 1,  2,  3 and 4, 
Tables 1, 2, 3 and 4, the difference between the given ini-
tial value and the precise initial value is small enough, the 

Fig. 2   Relations of Ut and h in 
the UDDE (15)
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Fig. 3   Relations of Pt and h in 
the system (21)
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Fig. 4   Relations of Pt and h in 
the system (21)
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Table 3   Data of Fig. 3
h=1
t 0.1 0.2 0.3 0.4 0.5 0.6
Ut 0.9647 0.9322 0.9023 0.8747 0.8493 0.8257
t 0.7 0.9 1.4385 2.0411 2.7355 3.545
Ut 0.8039 0.7651 0.6851 0.6259 0.5831 0.555
h=1.45
t 0.1 0.2 0.3 0.4 0.5 0.6
Ut 1.3987 1.3516 1.3082 1.2681 1.2312 1.197
t 0.7 0.9 1.4382 2.0402 2.7341 3.543
Ut 1.1654 1.109 0.993 0.9071 0.8449 0.8041
h=1.5
t 0.1 0.2 0.3 0.4 0.5 0.6
Ut 1.447 1.3982 1.3533 1.3118 1.2736 1.2382
t 0.7 0.9 1.4381 2.0401 2.734 3.5428
Ut 1.2055 1.1472 1.0272 0.9383 0.874 0.8317
h=1.6
t 0.1 0.2 0.3 0.4 0.5 0.6
Ut 1.5434 1.4914 1.4434 1.3992 1.3584 1.3207
t 0.7 0.9 1.438 2.04 2.7337 3.5423
Ut 1.2858 1.2236 1.0956 1.0007 0.9321 0.887
h=1.8
t 0.1 0.2 0.3 0.4 0.5 0.6
Ut 1.7363 1.6777 1.6238 1.574 1.5281 1.4857
t 0.7 0.9 1.4378 2.0396 2.7331 3.5414
Ut 1.4464 1.3763 1.2323 1.1255 1.0483 0.9975

Table 4   Data of Fig. 4
h=0.35
t 0.3 0.6 0.7 0.9 1 1.3
Ut 0.4671 0.598 0.6442 0.7396 0.7887 0.9399
t 1.4 1.7 2.1 2.9289 4.0324 5.8398
Ut 0.9913 1.1473 1.3566 1.7813 2.304 3.0299
h=0.45
t 0.3 0.6 0.7 0.9 1 1.3
Ut 0.6006 0.7689 0.8282 0.9509 1.014 1.2083
t 1.4 1.7 2.1 2.929 4.0328 5.8416
Ut 1.2744 1.4749 1.744 2.29 2.9621 3.8956
h=0.5
t 0.3 0.6 0.7 0.9 1 1.3
Ut 0.6673 0.8543 0.9202 1.0566 1.1266 1.3425
t 1.4 1.7 2.1 2.929 4.033 5.8425
Ut 1.416 1.6387 1.9377 2.5443 3.291 4.3285
h=0.65
t 0.3 0.6 0.7 0.9 1 1.3
Ut 0.8675 1.1105 1.1962 1.3734 1.4645 1.7451
t 1.4 1.7 2.1 2.9292 4.0336 5.8452
Ut 1.8406 2.1301 2.5186 3.3071 4.2778 5.6271
h=0.8
t 0.3 0.6 0.7 0.9 1 1.3
Ut 1.0676 1.3667 1.4722 1.6903 1.8023 2.1476
t 1.4 1.7 2.1 2.9293 4.0343 5.8479
Ut 2.2651 2.6213 3.0994 4.0696 5.2642 6.9258
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difference between the results becomes smaller. In other 
words, the effectiveness of the above sufficient theorem 
was verified. If the new Lipschitz condition can not be 
obtained, we can not judge the stability in distribution for 
the UDDEs. In the future, we can consider the stability in 
p-th moment based on the new Lipschitz condition and the 
p-th moment exponential stability for the UDDEs.
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