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Abstract
The fundamental prerequisite of decision making is how to aggregate individual expert’s preference information. For con-
structing various aggregation operators on intuitionistic fuzzy set, various kinds of t-norms and co-norms are the most sig-
nificant tools. This work takes a closer look on various fuzzy triangular norms and uses them for the first time in an economic 
order quantity (EOQ) model. Traditional economic theory has a paradigm shift on objective factors affecting demand such 
as price and income. Recently, behavioural economics gives more weightage to psychological and social factors that affect 
our preferences and choices in markets differently. As per literature survey concern, this paper may indeed be the first to 
adopt the concept of the number of variations of a tourist’s dependent demand in inventory management problems. Utiliz-
ing several triangular norms, we have characterized Attanassov (standard) and non-Attanassov’s (non-standard) feasible 
region. A case study has been performed for numerical illustration and model validation. A solution algorithm, has also 
been developed which proves Attanassov’s solution space is quite inferior to non-Attanassov’s domain. Finally, sensitivity 
analysis and graphical illustrations are also provided to justify the model.

Graphical abstract
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1 Introduction

In the first few decades, inventory models by considering 
various realistic assumptions have widely been studied. In 
general, demand is the most crucial factor in inventory man-
agement problems. According to the customer needs demand 
varies with various parameters like price, advertisement, 
stocks etc. and the demand function can be of different type 
such as ramp type, seasonal demand or it can follow some 
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distribution, for example, Weibull distribution. A long dec-
ades ago, Goswami and Choudhuri (1991) examined the 
linear trend in demand. Kumar et al. (2012) analysed the 
ramp type demand in analysing inventory model. Recently, 
De et al. (2021) assumed the demand rate dependent on car-
bon emission, unit selling price and length of credit period 
offered by the retailer to the customers explicitly in a sup-
plier-retailer-customer model.

However, the concept of seasonal demand in inventory 
management problem is not new. Demand in retailing is 
known to vary depending on the day of the week and time 
of year, around important holiday and seasons. Chen and 
Chang (2007) proposed two new methods for solving sea-
sonal demand problem with variable lead time and resource 
constraints. Ehrenthal et al. (2014) investigated the demand 
seasonality in retail inventory management. Banerjee and 
Sharma (2010) considered an inventory model with seasonal 
demand where the distributor explores an alternative mar-
ket in order to maximize the revenue. In supply chain man-
agement Chang and Chou (2013) studied seasonal demand 
inventory using a periodic review policy. Literature survey 
suggests no articles over the choice of tourists though tour-
ism is one of the most flourishing sectors of many countries 
and it is considered to be the second largest industry in the 
world. Few of the various studies published on the tourism 
demand in stochastic or dynamical system. Nevertheless, 
there is a lack of adequate data and literature over the nature 
of tourism demand. Generally, the major demand in tourist 
spot is generated by the variation of tourists of those specific 
places. The demand in tourism can be sensitive, volatile and 
situation specific. The scale and the magnitude of demand 
differ with time and sometimes with seasons. Rosselló and 
Sansó (2017) used the case study of air arrivals and depar-
tures and studied tourism seasonality analysis.

Zadeh (1965) first developed the fuzzy set theory. Sub-
sequently it was applied by Bellman and Zadeh (1970) in 
decision making problem. In real life, a person may assume 
that an object belongs to a set to a certain degree, but it 
is possible that the person is not so sure about it. In other 
words, there may be a hesitation or uncertainty about the 
membership degree of a decision variable. The problems 
were resolved with the help of intuitionistic fuzzy sets (IFS) 
theory, developed by Atanassov (1986). The concept of an 
intuitionistic fuzzy set (IFS) can be viewed as an alterna-
tive approach to define a fuzzy set in cases where available 
information is not sufficient for the definition of an impre-
cise concept by means of a conventional fuzzy set. In fuzzy 
set, the degree of acceptance is considered only but IFS is 
characterized by a membership function (acceptance) and a 
non-membership function (rejection) so that the sum of both 

values is less than one. Chen and Tan (1994) and Dymova 
and Sevastjanov (2011) proposed the score function of IFS 
as S(x) = �(x) − �(x) . Researchers like De and Sana (2014), 
De et al. (2014) utilized this score function in a multi-period 
backlogging inventory management problem.

Moreover, there are some extensions on various kinds of 
fuzzy set theory like Singh et al. (2019) introduced knowl-
edge measure using accuracy measure. Over the years, 
since the introduction of triangular norm (shortly t-norm) 
by Menger (1942), a lot of research has been done con-
cerning both the theory and applications (disciplines like 
mathematics and computer science especially in artificial 
intelligence). Klement et al. (2004a, b, c) presented the basic 
analytical and algebraic properties of triangular norms in a 
series of three position papers. Bianchi (2015) discussed the 
strongest and the weakest t-norms. Moreover, for the cases 
of decision-making problems, Li and Liu (2014) discussed 
the linear optimization problem with max T composition 
and Lukasiewicz t-norm. Azadeh et al. (2015) considered an 
efficient model implementing the concept of trust in terms 
of performance measurement and utilized the t-norms and 
t-conorms as the final modelling tools. Based on Archime-
dean t-conorm and t-norm, Xia et al. (2012) extended some 
common aggregation techniques for discrete intuitionistic 
fuzzy numbers into more general forms. However, in some 
practical applications, we need to deal with the discrete intu-
itionistic fuzzy data having capabilities to solve plenty of 
problems related to the continuous intuitionistic fuzzy infor-
mation. Kumar et al. (2014) evaluated the reliability of sys-
tem in terms of membership function and non-membership 
function by using weakest t-norm. Lima et al. (2016) focused 
on interval-valued t-norms and t-conorms characterized 
by interval-valued homogenuous t-norms and t-conorms 
of interval-valued order. In addition, the recent literature 
survey shows that there are theoretical works available on 
t-norms, t-conorms and extended t-norms such as Bielawski 
and Tabor (2020) introduced T-convex hull of a fuzzy set 
in a notion of T-convexity and a metric which are based 
on a strict triangular norm T. Liu and Wang (2020) stud-
ied distributive laws on extended t-norms and t-conorms on 
fuzzy truth values. In multi-criteria decision making, Sarkar 
and Biswas (2019) analysed the more generalised forms of 
t-norms and t-conorms in terms of Archimedean t-norms and 
t-conorms in Pythagorean hesitant fuzzy number. Sun and 
Liu (2020) examined the additive generators of t-norms and 
t-conorms on bounded lattices which are important tools to 
study the representations of t-norms and t-conorms. Bejines 
et al. (2020) studied the t-norms on finite lattices. Petrik 
(2020) examined the dominance relation on the set of nil-
potent t-norms and Archimedean t-norms.
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In this paper, we study a simple EOQ model of a tourist 
spot where the demand is solely generated by the number of 
variations of tourists. This work considers on the demand for 
particular tourism related products though tourism is viewed 
as a major driving force of economic recovery and growth 
for some countries but this is not reflected in the attention 
of researchers yet. Also, we focus on the information aggre-
gation of IFS theory. The existing research on utilizing the 
score function gives the membership value (α) that assumes 
greater value (α > β) than that of non-membership value (β) 
always. Moreover, as per literature survey concern, not a 
single article has been developed yet where the non-mem-
bership grade (β) exceeds the membership grade (α < β) of 
the proposed fuzzy variables. For an indefinite universe of 
discourse (solution space) it is a common phenomenon to get 
solution with minimum membership value instead of hav-
ing greater membership value than their non-membership 
value exclusively. This article has been organised as fol-
lows: Sect. 2 includes various definitions on intuitionistic 
fuzzy set/fuzzy t-norms and the study of Attanassov and 
non-Attanassov’s regions. Section 3 describes the model 
assumptions, notations and a case study, Sect. 4 develops 
crisp mathematical model, Sect. 5 expresses the fuzzy math-
ematical problem of the proposed model, Sect. 6 develops a 
solution algorithm, Sect. 7 includes numerical illustrations, 
Sect. 8 indicates the sensitivity analysis, Sect. 9 gives the 
graphical illustrations and finally a conclusion is made at 
Sect. 10 alone.

2  Preliminaries

Here we discuss some definitions associated with intuition-
istic fuzzy set and triangular norms.

2.1  Definition ‑1: Intuitionistic fuzzy set (Atanassov 
1986, 1999)

Let  X = (x1, x2, x3 …… .x3) be a finite universal set. 
An Atanassov’s IFS  A  in X  is an object having the 
for m A =

{
< xi,𝜇A

(
xi
)
, 𝜈A

(
xi
)
>∶ xi𝜖X

}
 where  the 

�A

(
xi
)
∶ X → [0, 1] and �A

(
xi
)
∶ X → [0, 1] define the degree 

of membership and degree of non-membership respectively. 
If the element  xi�X to the set A , which is a subset of X , for 
every element of  xi�Xthen 0 ≤ �A

(
xi
)
+ �A(xi) ≤ 1.

2.2  Definition‑2: (˛,ˇ) level intervals or (˛,ˇ)‑cuts

A set of (�, �)-cut, generated by IFS-A , where � and � 
∈ [0 , 1] are fixed numbers such that (� + �) ∈ [0, 1] that

defined as A�,� =

{(
x,�A(x), �A(x)

)
∶ x ∈ X

�A(x) ≥ �, �A(x) ≤ �, �, � ∈ [0, 1]

}

(�, �) level intervals or (�, �)-cut denoted by A�,� is 
defined as the crisp set of elements x which belongs to A at 
least to the degree � and which does belong to A at most to 
the degree�.

2.3  Definition‑3

Let A and B be two Atanassov’s IFS in the finite universal 
set X. The intersection of A and B is defined as follows: 
A ∩ B =

{
xi,min

(
�A

(
xi

)
,�B

(
xi

))
,max

(
�A
(
xi

)
, �B

(
xi

))}
,∀xi ∈ X, i ∈ N

2.4  Definition‑4

Let X = {… x−2, x−1, x0, x1, x2,…} be the universe of dis-
course where X ⊆ ℝ . Let �(x) and �(x) be two fuzzy sets 
corresponding to the membership and non-membership 
function on X , then the following conditions may hold: (i) 
𝜇(x)

∼

⊆ 𝜈(x)  (ii)  �(x)
∼
= �(x)   (iii) 𝜇(x)

∼

⊇ 𝜈(x)

Thus, for decision making aspects, if Π(x) is the degree 
of hesitancy then we write.

a) If (i) is true then score value is S(x) ≥ �(x) − �(x) + Π(x)

b) If (ii) is true then score value is S(x) = Π(x)

c) If (iii) is true then score value is S(x) ≤ �(x) − �(x) + Π(x)

S u c h  t h a t  ( i )  A t t a n a s s o v  i n e q u a l i t y 
0 ≤ �(x) + �(x) + Π(x) ≤ 1 , �(x) ≥ �(x) for �(x) ∈ [0.5, 1] ; 
�(x),Π(x) ∈ [0, 0.5] are satisfied otherwise (ii) Non-
Attanassov’s inequality 0 ≤ �(x) + �(x) + Π(x) ≤ 2 , 
�(x), �(x),Π(x) ∈ (0, 1)  w i t h  a c c u r a c y  v a l u e 
�(x) + �(x) − �(x)�(x)  are satisfied.

2.5  Definition‑5

Let X be the universe of discourse and A be the fuzzy set 
on X . Then there are two excluded middle axioms which 
are not valid for the fuzzy set unlike classical crisp set, we 
have Axiom of Excluded middle: A ∪ A ≠ X  and Axiom of 
contradiction: A ∩ A ≠ �

2.6  Basic interval arithmetic

Let  A =
[
a1,a2

]
andB =

[
b1,b2

]
 then the usual operations 

{+,−,×,÷} , namely addition, subtraction, multiplication 
are given below:

A + B =
[
a1 + b1,a2 + b2

]
,A − B =

[
a1 − b2,a2 − b1

]
 , 

A.B =
[
min(a1b1, a1b2, a2b1, a2b2),max(a1b1, a1b2, a2b1, a2b2)

]
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A∕B =
[
min(a1∕b1, a1∕b2, a2∕b1, a2∕b2),max(a1∕b1, a1

∕b2, a2∕b1, a2∕b2)
]
, 

𝛿𝐴 =
[
𝛿a1,𝛿a2

]
ifδ ≥ 0andδA =

[
𝛿a2, 𝛿a1

]
ifδ < 0.

2.7  Optimization for interval environment

We have the problem for interval valued coefficients of the 
variables of non-linear objective function as Minimize  
Z(X) =

∑n

i=1

�
aLi, aRi

�∏k

j=1
x
rj

j
   s u b j e c t  t o 

xj > 0, j = 1, 2,… nandx ∈ S ∈ R+ where S is a feasible 
region of x. Now we can split Z(X) in the form 
Z(X) =

[
ZL(X), ZR(X)

]
 where  ZL(X) =

∑n

i=1
aLi

∏k

j=1
x
rj

j
 and 

ZR(X) =
∑n

i=1
aRi

∏k

j=1
x
rj

j
 and the centre of the objective 

function is ZC(X) =
1

2

[
ZL(X) + ZR(X)

]
.

2.8  Conversion of a fuzzy number to its nearest 
interval number

Let Ã= (a1, a2, a3 ) be an arbitrary triangular fuzzy  
n u m b e r  w i t h  l i n e a r  m e m b e r s h i p  f u n c t i o n 

𝜇A(x) =

⎧
⎪⎨⎪⎩

x−a1

a2−a1
fora1 < x < a2

a3−x

a3−a2
fora2 < x ≤ a3

0for elsewhere

⎫⎪⎬⎪⎭
The α-cut of the membership function of A can be written  

as 
[
AL(�),AR(�)

]
 . Now as per Grzegorzewski (2002), the  

nearest interval can be obtained as  
[
CL,CR

]
 where 

CL = ∫ 1

0
AL(�)d� =

a1+a2

2
 and CR = ∫ 1

0
AR(�)d� =

a2+a3

2

2.9  Triangular norm [t‑Norm]

The intersection of two fuzzy sets A and B is a binary 
operation on the unit interval; that is a function 
� ∶ [0, 1] × [0, 1] → [0, 1] for eachx ∈ X  . The function 
� is called t-norm if the following axioms are satisfied 
∀a, b, d ∈ [0, 1]

a) Boundary condition: �(a, 1) = a.
b) Monotonicity: b ≤ d ⇒ �(a, b) ≤ �(a, d)

c) Commutativity: �(a, b) = �(b, a).
d) Associativity: �(a,�(b, d)) = �(�(a, b), d)

e) Continuity:� is a continuous function.
f) Sub idempotency: 𝜑(a, a) < a.

g) S t r i c t  M o n o t o n i c -
ity:a1 < a2andb1 < b2 ⇒ 𝜑

(
a1, b1

)
< 𝜑

(
a2, b2

)
.

i. Archimedean t-norm: A continuous t-norm that sat-
isfies sub idempotency is called an Archimedean 
t-norm. If it also satisfies strict monotonicity, it is 

called a strict Archimedean t-norm. Here we write 
�(a, b) = Min(a, b),∀a, b ∈ [0, 1].

ii. Lukasiewicz t-norm [bounded difference/nil- 
poten t  a rch imedean] The formula is given  
b y   �(a, b) = Max(0, a + b − 1),∀a, b ∈ [0, 1] 

=

⎧
⎪⎨⎪⎩

0for a + b = 1

2 − a − bfor 1 < a + b < 2

1for a + b = 2

iii. Hamacher t-norm [Hamacher product] Archimedean 
t-norm: 

�(a, b) =

{
0, if a = b = 0

ab

a+b−ab
, for a ≠ b ≠ 0.

iv. N i l p o t e n t  M i n i m u m 

𝜑(a, b) =

{
Min(a, b),∀a, b ∈ [0, 1] and a + b > 1.

0, Otherwise

v. Schwe ize r  and  Sk la r  C la s s  o f  t -no r ms 

�(a, b) = (Max(0, ap + bp − 1))
1

p , p ≠ 0.

vi. Y a g e r  C l a s s  o f  t - n o r m s 
𝜑(a, b) = 1 −Min

(
1, ((1 − a)w + (1 − b)w)

1

w

)
,w > 0.

vii. Drastic t-norm �(a, b) = Min

⎧
⎪⎨⎪⎩

a if b = 1

b if a = 1

0 Otherwise

viii. Sugeno Class of involutive fuzzy complement 

b =
1−a

1+�a
∀� ∈ (−1,∞)

ix. Yager Class of involutive fuzzy Complement 
b = (1 − aw)1∕w∀w ∈ (0,∞)

x. Equilibrium t-norms: If the values of a and b are same 
for any kinds of t-norms then such t-norms are called 
equilibrium t-norms, Here, a = b ∈ [0, 1].

2.10  Atannasov’s domain of (non) membership 
grade

Let, � ∈ [0, 1]and� ∈ [0, 1] be the membership grade and 
non-membership grade of a fuzzy parameter respectively. 
Then from arithmetic operation on intervals we write, 
� + � ∈ [0, 2] ⇒ 0 ≤ � + � ≤ 2 . However, as per Atannasov 
(1998, 1999) we write, 0 ≤ � + � ≤ 1 . So, from the omitted 
part of the above set we get  1 < 𝛼 + 𝛽 ≤ 2 which is a case 
of t-norms and our focus of attraction orients over here. The 
possible feasible regions are stated below:

� + � ≤ 1, � ≤ �, � ≤ 1, � ≤ 1

� + � ≤ 2, � ≤ �, � + � ≥ 1, � ≤ 1

� + � ≤ 1, � ≥ �, � ≤ 1

� + � ≤ 2, � ≥ �, � + � ≥ 1, � ≤ 1
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3  Model assumptions, notations and case 
study

In this section we consider some assumptions and notations 
followed by a case study for developing the proposed model.

Assumptions 

 (i) Replenishments are instantaneous.
 (ii) The time horizon is infinite (weeks).
 (iii) Shortages are not allowed. iv) The demand rate 

D = de�tLog(1 + n) (batches per week) where n is 
the variation of customers per time. 0 < 𝜌 < 1 , d is a 
scale parameter. The notion is that, as n → 0,D → 0.

Notations 

(i) Q: the order quantity per cycle (batches)
(ii) h : holding cost per batch per cycle ($)
(iii) b: setup cost per cycle ($)
(iv) T: cycle time in weeks
(v) Z: average cost of the inventory ($)

3.1  Case study

During COVID-19 pandemic situation, our research team 
visited one of the most magnificent hill resorts, Darjeeling, 
a city in West Bengal, India on November 2020. Darjeeling 
is well known for mainly their large selection of world’s 
most expensive and exotically flavoured tea. It also helps 
Indian economy because of its international reputation and 
consumer recognition. For tourists and travellers, normally 
the best time to visit Darjeeling is from September to June 
every year. The variation of tourists is higher in autumn and 
spring than winter season. We talked with the manager of a 
famous tea shop “Nutmull” and came to know that generally 
the variation in number of tourists (n) was 1850 per week 
(approximately) for that shop before COVID-19 periods. 
But, due to COVID restrictions the manager experienced 
with some unfavourable situations where no demand was 
found in several weeks because of nonavailability of new 

customers (tourists) or found very poor demand due to very 
small number of variation of tourists in that place. However, 
our team noted the following data for research modelling. 
Normal threshold demand rate d = 250 batches per week, 
setup cost b = $300 per cycle, holding cost per cycle per 
batch h = $ 1.5 and the time exponent coefficient � = 0.05 . 
After careful investigation, we may adopt the following 
research questions.

(a) What will be the optimum replenishment and cycle 
time so that the total average inventory cost becomes 
minimum?

(b) In which region (Attanassov or non-Attanassov) the 
optimum decision will arise whenever some of the 
system parameters assume fuzzy flexibility and follow 
various triangular norms?

4  Crisp mathematical model

As per knowledge gained from real case study, we may 
formulate an EOQ model. Let the inventory starts with Q 
replenished quantity. The inventory depletes due to demand 
D where the demand is sensitive with the number of vari-
ations of tourist coming to the tourist spot. The inventory 
becomes zero at the end of the cycle time T  . The governing 
differential equation is

Solving (1), we get

The holding cost is given by

Maximum order quantity,

Thus, the total average cost is given by

Therefore, the final problem becomes

(1)
dI

dt
= −D = −de�tLog(1 + n), I(T) = 0,

(2)I(t) =
d

�

{
e�T − e�t

}
Log(1 + n),

(3)(HC) = h
T∫
0

I(t)dt =
hd

�

{
Te�T −

e�T − 1

�

}
Log(1 + n),

(4)Q = I(0) =
d

�

{
e�T − 1

}
Log(1 + n),

(5)Z =
1

T
(SC + HC) =

1

T

[
b +

hd

�

{
Te�T −

e�T − 1

�

}
Log(1 + n)

]
=

[
b

T
+

hd

�T

{
Te�T −

e�T − 1

�

}
Log(1 + n)

]
,

(6)
{
MinimizeZ =

[
b

T
+

hd

�T

{
Te�T −

e�T−1

�

}
Log(1 + n)

]
, SubjecttoQ =

d

�

{
e�T − 1

}
Log(1 + n) .
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5  Fuzzy mathematical model

In the classical EOQ model, the demand rate is assumed 
as constant which contradicts the practical situations in 
general. In practice, the demand rate might be flexible in 
nature. Here, we consider the demand rate as intuitionis-
tic fuzzy number. Assuming 

∼
�= ⟨�1� , �1, �2, �3, �3�⟩ and  

d̃ = ⟨d1� , d1, d2, d3, d3�⟩ we get

Thus, utilizing (6) the fuzzy total average cost becomes

and hence the problem under fuzzy environment is 
defined as

6  Solution algorithm

Step 1: We find the nearest interval for d as dl
�

=
d1

�
+d2

2
 , 

dl =
d1+d2

2
 , dr =

d3+d3

2
 and dr

�

=
d2+d3

�

2
 . Similarly, for � we find 

�l
�

=
�1

�
+�2

2
 , �l =

�1+�2

2
 , �r =

�2+�3

2
 and �r

�

=
�2+�3

�

2
 . Then we 

calculate Zl
′

, Zl, Zr and Zr
′ with Ql

′

,Ql,Qr  and Qr

′ as 

Zl
�

=

[
b

T
+

hdl
�

�r
�
T

{
Te�l

�
T −

e�l
�
T−1

�l
�

}
Log(1 + n)

]
, 

Ql

�

=
dl

�

�r
�

{
e�T − 1

}
Log(1 + n)

Zl =
[
b

T
+

hdl

�rT

{
Te�lT −

e�lT−1

�l

}
Log(1 + n)

]
, 

Ql =
dl

�r

{
e�lT − 1

}
Log(1 + n), 

Zr =
[
b

T
+

hdr

�lT

{
Te�rT −

e�rT−1

�r

}
Log(1 + n)

]
, 

Qr =
dr

�l

{
e�rT − 1

}
Log(1 + n)  

(7)D̃ = ⟨d1�e𝜌1
�
tLog(1 + n), d1e

𝜌1tLog(1 + n), d2e
𝜌2tLog(1 + n), d3e

𝜌3tLog(1 + n), d3
�

e𝜌3
�
tLog(1 + n)⟩,

(8)Z̃ =

[
b

T
+

hd̃
∼
𝜌 T

{
Te

∼
𝜌T −

e
∼
𝜌T − 1

∼
𝜌

}
Log(1 + n)

]
,

(9)
{

MinimizeZ̃ =

[
b

T
+

hd̃
∼
𝜌T

{
Te

∼
𝜌T −

e
∼
𝜌T−1
∼
𝜌

}
Log(1 + n)

]
, SubjecttoQ̃ =

d̃
∼
𝜌

{
e
∼
𝜌T − 1

}
Log(1 + n) ,

Table 1  Solution of crisp model

Parameters T

Weeks
Q

Batches
Z($)

Z
l
′ 0.65 603.59 915.73

Z
l

0.56 696.82 1058.51
Z
∗ 0.45 864.15 1311.00

Z
r

0.37 1058.92 1607.57
Z
r
′ 0.32 1233.55 1869.86

a n d Zr
�

=

[
b

T
+

hdr
�

�l
�
T

{
Te�r

�
T −

e�r
�
T−1

�r
�

}
Log(1 + n)

]
, 

Qr

�

=
dr

�

�l
�

{
e�r

�
T − 1

}
Log(1 + n) respectively.

Step 2: We define the membership and non-membership 
function for d̃ , 

∼
� , Q̃ and Z̃  respectively as

(10)

𝜇d̃(x) =
x − dl

dr − dl
, dl ≤ x ≤ drand𝛾d̃(x) =

dr
�

− x

dr
�

− dl
�
, dl

� ≤ x ≤ dr
�

,

(11)

�∼
�
(x) =

x − �l

�r − �l
, �l ≤ x ≤ �rand�∼�(x) =

�r
�

− x

�r
�
− �l

�
, �l

� ≤ x ≤ �r
�

,

(12)

𝜇Q̃(x) =

� x−Ql

Q2−Ql

,Ql ≤ x ≤ Q2

Qr−x

Qr−Q2

,Q2 ≤ x ≤ Qr

and𝛾Q̃(x) =

⎧⎪⎨⎪⎩

Q2−x

Q2−Ql

� ,Ql ≤ x ≤ Q2

x−Q2

Qr

�
−Q2

,Q2 ≤ x ≤ Qr

,

(13)𝜇
Z̃(x) =

(
Z
l
− x

Z
r
− Z

l

) 1

2

, Z
l
≤ x ≤ Z

r
and𝛾

Z̃(x) =

(
x − Z

l

�

Z
r

�

− Z
l

�

) 1

2

, Z
l

� ≤ x ≤ Z
r

�

,

Step 3: We find �-cut and �-cut for Q̃ and Z̃  as {
Q

l
+ �

(
Q2 − Q

l

)
,Q

r
− �

(
Q

r
− Q2

)
,Q2 − �

(
Q2 − Q

l

�)
,

Q2 + �
(
Q

r

�

− Q2

)}
 and {Z

l
− �2

(
Z
r
− Z

l

)
, Z

l

�

+ �2(Z
r

�

− Z
l

�

)
}

We determine the compromise solution of  d̃ and 
∼
�  a s   1

2

{
dl + �

(
dr − dl

)
+ dr

�

− �(dr
�

− dl
�

)
}

 a n d 
1

2

{
�l + �

(
�r − �l

)
+ �r

�

− �(�r
�

− �l
�

)
}
 respectively.
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Step 4: Utilizing (10), (11), (12) and (13), the final intui-
tionistic fuzzy problem can be represented as

(14)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Max∕Mint − norm

SubjecttoZ ≤ Zl − �2
�
Zr − Zl

�
, Z ≤ Zl

�

+ �2
�
Zr

�

− Zl
��

Q ≥ Ql + �
�
Q2 − Ql

�
,Q ≤ Qr − �

�
Qr − Q2

�
,Q ≥ Q2 − �

�
Q2 − Ql

��
,Q ≤ Q2 + �

�
Qr

�

− Q2

�
Z =

�
b

T
+

hd

�T

�
Te�T −

e�T−1

�

�
Log(1 + n)

�
, d =

1

2

�
dl + �

�
dr − dl

�
+ dr

�

− �
�
dr

�

− dl
���

,

� =
1

2

�
�l + �

�
�r − �l

�
+ �r

�

− �
�
�r

�

− �l
���

,Regioni, i = I, II, III, IV

,

Step 5: We solve the problem (14) for four different 
regions in each of the t-norms. The Archimedean t-norm 

for the region I is shown in equation (15) as example:

(15)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Max
��

�+�−��

SubjecttoZ ≤ Zl − �2
�
Zr − Zl

�
, Z ≤ Zl

�

+ �2
�
Zr

�

− Zl
��

Q ≥ Ql + �
�
Q2 − Ql

�
,Q ≤ Qr − �

�
Qr − Q2

�
,Q ≥ Q2 − �

�
Q2 − Ql

��
,Q ≤ Q2 + �

�
Qr

�

− Q2

�
Z =

�
b

T
+

hd

�T

�
Te�T −

e�T−1

�

�
Log(1 + n)

�
, d =

1

2

�
dl + �

�
dr − dl

�
+ dr

�

− �
�
dr

�

− dl
���

,

� =
1

2

�
�l + �

�
�r − �l

�
+ �r

�

− �
�
�r

�

− �l
���

, � + � ≤ 1, � ≤ �, � ≤ 1, � ≤ 1

,

Table 2  IFS solution for Max = �

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.76 1 0.46 910.46 1289.56
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.74 0.74 0.46 913.7 1303.25

Table 3  IFS solution for Max =
��

�+�−��

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.76 1 0.46 910.48 1289.56
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.74 0.74 0.46 913.7 1303.25

Table 4  IFS solution for Min = (1 − �)�

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.74 0.74 0.46 913.7 1303.25
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.74 0.64 0.45 914.98 1308.63

Table 5  IFS solution for Max = � − �

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.68 0.68 0.6 926.36 1354.23
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.74 0.64 0.45 914.98 1308.63

Table 6  IFS solution for Min� = [(1 − �)p]
1

p , p = 2

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.37 0.63 0.46 986.66 1296.36
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.64 0.64 0.46 933.9 1305.4

Table 7  IFS solution for Max = ��

Solution space � � T

Weeks
Q

Batches
Z($)

Region I 0.37 0.63 0.46 986.66 1296.36
Region II 0.76 1 0.46 910.48 1289.56
Region III 0.5 0.5 0.51 961.00 1153.5
Region IV 0.74 0.74 0.46 913.7 1303.25



13550 S. Karmakar, S. K. De 

1 3

Table 8  Sensitivity of IFS 
solution for Max =

��

�+�−��
 over 

the region I

Parameters % Change � � T

Weeks
Q

Batches
Z

($)
Z−Z∗

Z∗
× 100%

b − 30 0.5 0.5 0.46 780.00 1153.55 − 12.01
− 10 0.42 0.58 0.43 976.18 1233.98 − 5.87
 + 10 0.32 0.68 0.48 995.84 1355.62  + 3.40
 + 30 0.24 0.76 0.53 1011.47 1466.23  + 11.84

h − 30 0.5 0.5 0.46 961.00 1153.55 − 12.01
− 10 0.42 0.58 0.48 976.34 1234.91 − 5.80
 + 10 0.32 0.68 0.44 749.94 1354.73  + 3.34
 + 30 0.24 0.76 0.41 1011.13 1463.72  + 11.65

n − 30 0.39 0.61 0.47 761.86 1267.63 − 3.31
− 10 0.37 0.62 0.46 985.3 1287.96 − 1.76
 + 10 0.36 0.64 0.46 987.87 1303.91 − 0.54
 + 30 0.35 0.65 0.45 989.94 1317.04  + 0.46

Table 9  Sensitivity of IFS 
solution for  Max =

��

�+�−��
 over 

the region II

Parameter % Change � � T

Weeks
Q

Batches
Z

($)
Z−Z∗

Z∗
× 100%

b − 30 0.98 1 0.38 868.63 1083.88 − 17.32
− 10 0.83 1 0.44 896.25 1225.35 − 6.53
 + 10 0.68 1 0.48 810.91 1350.16  + 2.99
 + 30 0.51 1 0.53 958.26 1461.88  + 11.51

h − 30 0.97 1 0.55 869.15 1086.75 − 17.10
− 10 0.83 1 0.48 896.44 1226.27 − 6.46
 + 10 0.68 1 0.44 811.11 1349.28  + 2.92
 + 30 0.52 1 0.41 783.12 1459.38  + 11.32

n − 30 0.79 1 0.47 903.78 1260.05 − 3.89
− 10 0.77 1 0.46 908.49 1280.92 − 2.29
 + 10 0.75 1 0.46 912.29 1297.31 − 1.04
 + 30 0.73 1 0.45 915.49 1310.76 − 0.02

Table 10  Sensitivity of IFS 
solution for  Max =

��

�+�−��
 over 

the region III

Parameter % Change � � T

Weeks
Q

Batches
Z

($)
Z−Z∗

Z∗
× 100%

b − 30 0.5 0.5 0.49 961.00 1153.55 − 12.01
− 10 0.5 0.5 0.46 961.00 1153.55 − 12.01
 + 10 0.5 0.5 0.56 961.00 1153.55 − 12.01
 + 30 0.5 0.5 0.67 961.00 1153.55 − 12.01

h − 30 0.5 0.5 0.7 961.00 1153.55 − 12.01
− 10 0.5 0.5 0.51 961.00 1153.55 − 12.01
 + 10 0.5 0.5 0.51 752.52 1153.55 − 12.01
 + 30 0.5 0.5 0.51 961.00 1153.55 − 12.01

n − 30 0.5 0.5 0.51 812.76 1153.55 − 12.01
− 10 0.5 0.5 0.51 961.00 1153.55 − 12.01
 + 10 0.5 0.5 0.51 961.00 1153.55 − 12.01
 + 30 0.5 0.5 0.51 961.00 1153.55 − 12.01
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Step 6: Optimize the problem (14) for each case defined 
in subsections as 2.7 we get the optimal solution of the deci-
sion variables �∗ , �∗ , T∗ , Q∗ and Z∗ respectively.

7  Numerical example

We consider the data set obtained from the case study stud-
ied at Subsect. 3.1 for numerical illustrations. For numeri-
cal computations we take the help of solution algorithm 
developed at Sect. 6. Utilizing appropriate computer pro-
gramming we have obtained all the optimum results that are 
recorded in Tables 1, 2, 3, 4, 5, 6, 7 respectively.

7.1  Discussion on numerical example

To illustrate the model, we have used six different t-norms. 
Applying the procedure of the solution algorithm, we 

summarize the computational results of the proposed crisp 
model in Table 1. The total average cost of the model is 
$1311.00 with 0.45 week cycle time and an order quantity 
of 864.15 batches. Also, we have given a comparative study 
among all the models using six different t-norms each for 
four different regions given in Tables 2–7. The t-norm in 
Table 5 is widely used popular t-norm namely the Attan-
assov’s t-norm. From the above results, we see that in region 
I, every t-norms give the same value. So, in region I the 
model is independent of t-norms but every t-norm gives bet-
ter result than the crisp result. For the region II, the total 
average cost varies for different t-norms over the regions. 
The t-norms in Tables 2, 3 and 7 for region II, the total aver-
age cost value is $1289.56 which is less than the average 
cost obtained in region I. The cost function in this region for 
Attanassov’s t-norm (in Table 5) is maximum overall cost 
values. So, the Attanassov’s t-norm is not suitable in region 
II. In Attanassov’s region (region III), every t-norm gives 

Table 11  Sensitivity of IFS 
solution for  Max =

��

�+�−��
 over 

the region IV

Parameter % Change � � T

Weeks
Q

Batches
Z($) Z−Z∗

Z∗
× 100%

b − 30 0.97 0.97 0.38 868.83 1085.00 − 17.24
− 10 0.82 0.82 0.43 898.16 1234.30 − 5.85
 + 10 0.68 0.68 0.48 926.37 1354.23  + 3.30
 + 30 0.68 0.68 0.57 926.37 1354.23  + 3.30

h − 30 0.97 0.97 0.55 869.38 1088.02 − 17.01
− 10 0.82 0.82 0.48 898.38 1235.33 − 5.77
 + 10 0.68 0.68 0.44 926.36 1354.23  + 3.30
 + 30 0.68 0.68 0.44 926.36 1354.23  + 3.30

n − 30 0.78 0.78 0.47 906.34 1271.47 − 3.01
− 10 0.75 0.75 0.46 911.50 1293.93 − 1.30
 + 10 0.73 0.73 0.45 915.70 1311.62  + 0.05
 + 30 0.71 0.71 0.45 919.25 1326.19  + 1.16

Table 12  Sensitivity of IFS 
solution for  Max = α − β over 
the region I

Parameter % change � � T

Weeks
Q

Batches
Z($) Z−Z∗

Z∗
× 100%

b − 30 0.5 0.5 0.53 780.00 1153.55 − 12.01
− 10 0.42 0.58 0.43 976.18 1233.98 − 5.87
 + 10 0.32 0.68 0.48 995.84 1355.62  + 3.40
 + 30 0.24 0.76 0.53 1011.47 1466.27  + 11.84

h − 30 0.5 0.5 0.74 961.00 1153.55 − 12.01
− 10 0.42 0.58 0.48 976.34 1234.91 − 5.80
 + 10 0.32 0.68 0.44 749.94 1354.73  + 3.34
 + 30 0.24 0.76 0.41 1011.13 1463.72  + 11.65

n − 30 0.39 0.61 0.47 761.86 1267.63 − 3.31
− 10 0.37 0.62 0.46 985.3 1287.96 − 1.76
 + 10 0.36 0.64 0.46 987.87 1303.91 − 0.54
 + 30 0.35 0.65 0.45 989.94 1317.04  + 0.46
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Table 13  Sensitivity of IFS 
solution for  Max = α − β over 
the region II

Parameter % change � � T

Weeks
Q

Batches
Z($) Z−Z∗

Z∗
× 100%

b − 30 0.68 0.68 0.73 926.37 1354.23  + 3.30
− 10 0.68 0.68 0.66 926.37 1354.23  + 3.30
 + 10 0.66 0.69 0.48 806.95 1367.54  + 4.31
 + 30 0.49 0.77 0.52 963.19 1475.87  + 12.57

h − 30 0.58 0.58 0.89 945.57 1235.39 − 5.77
− 10 0.68 0.68 0.73 926.37 1354.23  + 3.30
 + 10 0.66 0.69 0.44 807.17 1366.68  + 4.25
 + 30 0.49 0.76 0.40 778.91 1473.30  + 12.38

n − 30 0.61 0.61 0.47 938.84 1274.94 − 2.75
− 10 0.68 0.68 0.62 926.37 1354.23  + 3.30
 + 10 0.68 0.68 0.55 926.37 1354.23  + 3.30
 + 30 0.68 0.68 0.55 926.37 1354.23  + 3.30

Table 14  Sensitivity of IFS 
solution for  Max = α − β over 
the region III

Parameter % change � � T

Weeks
Q

Batches
Z($) Z−Z∗

Z∗
× 100%

b − 30 0.56 0.44 0.40 948.92 1097.80 − 16.26
− 10 0.5 0.5 0.46 961.00 1153.50 − 12.01
 + 10 0.5 0.5 0.57 961.00 1153.50 − 12.01
 + 30 0.5 0.5 0.67 961.00 1153.50 − 12.01

h − 30 0.56 0.44 0.54 949.60 1100.74 − 16.04
− 10 0.5 0.5 0.51 961.00 1153.50 − 12.01
 + 10 0.5 0.5 0.51 792.52 1153.50 − 12.01
 + 30 0.5 0.5 0.51 961.00 1153.50 − 12.01

n − 30 0.5 0.5 0.51 812.76 1153.50 − 12.01
− 10 0.5 0.5 0.51 961.00 1153.50 − 12.01
 + 10 0.5 0.5 0.51 961.00 1153.50 − 12.01
 + 30 0.5 0.5 0.51 961.00 1153.50 − 12.01

Table 15  Sensitivity of IFS 
solution for  Max = α − β over 
the region IV

Parameter % change � � T

Weeks
Q

Batches
Z($) Z−Z∗

Z∗
× 100%

b − 30 0.95 0.45 0.38 873.11 1108.34 − 15.46
− 10 0.81 0.59 0.43 900.72 1246.14 − 4.95
 + 10 0.68 0.68 0.48 926.37 1354.23  + 3.30
 + 30 0.68 0.68 0.57 926.37 1354.23  + 3.30

h − 30 0.95 0.45 0.53 873.70 1111.52 − 15.22
− 10 0.81 0.59 0.48 900.93 1247.13 − 4.87
 + 10 0.68 0.68 0.44 926.37 1354.23  + 3.30
 + 30 0.68 0.68 0.44 926.37 1354.23  + 3.30

n − 30 0.77 0.62 0.46 908.27 1279.96 − 2.37
− 10 0.75 0.63 0.46 912.58 1300.24 − 0.82
 + 10 0.73 0.65 0.45 916.80 1316.16  + 0.39
 + 30 0.71 0.66 0.45 920.00 1329.22  + 1.39
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the minimum objective value than that of crisp value as well 
as the average cost value obtained from some other regions. 
The cost function and decision variables assume exactly 
same value for any t-norm here. The region IV gives lesser 
cost value than crisp value but the cost value is maximum 
than any other regions. The cost value changes in this region 
due to different t-norms but the order quantity attains its 
minimum value for this region only for most of the t-norms. 
From the numerical example, we observe that the minimum 
cost value $1153.5 with optimum cycle length 0.51 week. 
Also, the nature of the t-norms in Tables 2,3 and 7 are quite 
similar as observed in numerical example. The behaviours 
of the t-norms in Tables 4,5 and 6 are different.

8  Sensitivity analysis

Here we compute sensitivity of two different t-norms for 
four different regions making a change of the parameters 
{b, h, n} from − 30% to + 30% and this can be shown in the 
following Tables 8, 9, 10, 11, 12, 13, 14, 15. The rest of the 
t-norm values coincide one of these two for four different 
regions. Let Hamachert − norm,X ∶ Max =

��

�+�−��
 and 

Attanassovt − norm,Y ∶ Max = α − β

8.1  Discussion on sensitivity analysis

Table 8, 9, 10, 11 shows the sensitivity analysis of the param-
eters for the Hamacher t-norm for four regions. In region I, the 
− 30% change in the parameters, the cost value is much sensi-
tive and it decreases up to − 12.01%. For a change of − 30% 
to + 30% in the parameters {b, h, n} , the nature of the cost func-
tion is increasing. The minimum value of the cost function 
reaches $1153.5 which coincides with the cost value obtained 
at Attanassov’s region (region III). Also, for + 30% change 
in the parameter h , the cost function attains its maximum 
$1463.72. In region II, the cost function is more sensitive than 
in region I. For − 30% change in the parameter b , the cost func-
tion attains its minimum value $1083.88 with minimum cycle 
time 0.38 week. In Attanassov’s region, the changes from − 30 
to + 30% make no effect on the cost function. The cost function 
remains constant at $1153.55 for any change. For region IV, the 
cost function is sensitive for the change -30% to + 30% in the 
parameters. In this case, the maximum and minimum relative 
changes in the cost value are + 3.30% and -17.24% respectively.

Tables 12–15 shows in region I, the cost function is 
sensitive and increasing in nature for a change from − 30 
to + 30%. The minimum value it attains is $1153.5 which 
is the cost value for Attanassov’s region for all the t-norms. 
For region II, the cost function is less sensitive whenever 
a change from − 30 to + 30% is made. In region III, the 
cost function converges to $1153.5 for a change from − 30 
to + 30% in the parameters. For region IV, the cost function 

is moderately sensitive and the minimum cost value is 
$1108.34.

Throughout the whole Tables 8, 9, 10, 11, 12, 13, 14, 15, 
we observe that the minimum cost value is $1083.88 for 
-30% change in the parameter b for the Hamacher t-norm 
for region II which is a non-Attanassov’s region and the 
maximum cost value is $1475.87 for max t-norm for region 
II. From this we can conclude that the region II is much 
sensitive for the parameters and a minimum objective value 
can be obtained from a non-Attanassov’s zone. The mini-
mum order quantity is 749.94 batches obtained in region 
I for Hamacher t-norm with + 10% change in h and maxi-
mum order quantity (1011.47 batches) is obtained for + 30% 
change in b for Hamacher and max t-norm in region I.

Figure 1 corresponds the total average cost function 
which is convex in T  and Q . Figure 2 shows the variations 
in the cost function for crisp environment and for both 
Hamacher t-norm and Attanassov’s t-norm in different 
regions. In region I and III, the cost value remains exactly 
same but in region II and IV, the Hamacher t-norm gives 
better cost value than the Attanassov t-norm though in all 
cases the crisp cost is higher.

Figure 3 and Fig. 4 give a comparative study of the cost 
value for Hamacher t-norm and Attanassov t-norm whenever 
a % change is made in the parameter b . There is a similarity 
in the curve of the cost value for both the t-norms in regions 
I and IV but for region II the curve is completely different.

Here also for Fig. 5 and Fig. 6 the cost values for regions 
I and IV are same but for region II, the Hamacher t-norm 
gives the minimum cost value for -30% change in h.

Figure 7 and Fig. 8 reveal the graph of the sensitivity 
analysis of the parameter n for t-norm X & Y. From these two 
figures for regions, I and III, the graph of the cost function 
is equal but in region II for t-norm X the curve is strictly 
increasing whereas for t-norm Y the curve is increasing and 
then being fixed. The opposite behaviour has been observed 
for region IV.

Figure 9 explores the nature of the order quantity for 
three different environments. In crisp environment, the order 
quantity is fixed. In fuzzy environment, region I requires 
maximum order quantity for both t-norms X and Y but in 
region II, least replenishment is needed; though the crisp 
environment assumes the minimum replenishment quantity 
than that of the intuitionistic fuzzy environment.

9  Conclusion

This study expresses an EOQ model over varying number 
of tourist dependent demand rate. There is a vast literature 
on tourism demand modelling and forecasting in economics 
and other areas but in inventory management this is the first 
attempt in the global scenario. Through this model, we have 
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studied six different sets of triangular norms on IFS theory 
for four different regions/domains and obtained the optimal 
solution. Our main contribution lies in the practical appli-
cation of fuzzy t-norms based on their flexibility and vari-
ability on IFS theory in inventory management problems. 
Our findings suggest that in Attanassov’s zone where the 
sum of membership degree and non-membership degree is 
less than or equals one, all t-norms give the optimum value 
of the cost function (In region III, optimum cycle time is 
0.51-week, optimum order quantity gets 961 batches and 
the corresponding system cost assumes $1153.5 respectively 
with �∗ = �∗ = 0.5 ). But some cases may arise whenever 
a percentage change is made for model parameter, in non-
Attanassov zone over Hamacher t-norm works best and 
assumes minimum value (In region II, optimum average 

system cost assumes $1083.88 with respect to the optimum 
cycle time 0.38 week and the optimum order quantity 868.63 
batches with �∗ = 0.98�∗ = 1 ; In region IV, the system cost 
becomes $1085 with respect to the optimum order quantity 
868.83 batches and cycle time 0.38 week with �∗ = 0.97 = 
�∗ ). However, we found some other optimal regions where 
the superiority of Attanassov’s concepts have been ignored 
intelligently. Thus, from a decision makers’ point of view the 
following observations should be taken care of:

 (i) Fuzzy t-norm approach is profitable as it gives the 
minimum cost for all the cases.

 (ii) Hamacher t-norm is more suitable whenever the sum 
of membership and non- membership degree exceeds 
one.

 (iii) Every t-norm works best in Attanassov region where 
the membership degree is greater than the non-mem-
bership degree.

 (iv) In any fuzzy optimization problem having greater 
non-membership degree relative to membership 
degree of the fuzzy variables, the techniques of 
selecting various t-norms might give new research.

10  Scope of future work

This model can be extended to n-layer supply chain model 
as well. Besides that, the concept of triangular norms can 
be applied to multiple-decision making problems and other 
fuzzy optimization models.

Fig. 1  Optimum total average cost vs. cycle time and order quantity 
(colour figure online)

Fig. 2  The total average cost 
under different regions (colour 
figure online)
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Fig. 3  Cost value for different 
regions for % change in b for 
Hamacher t-norm (colour figure 
online)

Fig. 4  Cost value for differ-
ent regions for % change in b 
for Attanassov t-norm (colour 
figure online)

Fig. 5  Cost value for different 
regions for % change in h for 
Hamacher t-norm (colour figure 
online)
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Fig. 6  Cost value for differ-
ent regions for % change in h 
for Attanassov t-norm (colour 
figure online)

Fig. 7  Cost value for different 
regions for % change in n for 
Hamacher t-norm (colour figure 
online)

Fig. 8  Cost value for differ-
ent regions for % change in n 
for Attanassov t-norm (colour 
figure online)
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