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Abstract
Chikungunya is one of the Aedes aegypti diseases that mosquito transmits to humans and that are common in tropical coun-
tries like Yemen. In this work, we formulated a novel dynamic mathematical model framework, which integrates COVID-19 
and Chikungunya outbreaks. The proposed model is governed by a system of dynamic ordinary differential equations (ODEs). 
Particle swarm optimization was employed to solve the parameters estimation problem of the outbreaks of COVID-19 and 
Chikungunya in Yemen (March 1, 2020, to May 30, 2020). Besides, a bi-objective optimal control model was formulated, 
which minimizes the number of affected individuals and minimizes the total cost associated with the intervention strategies. 
The bi-objective optimal control was also solved using PSO. Five preventive measures were considered to curb the envi-
ronmental and social factors that trigger the emergence of these viruses. Several strategies were simulated to evaluate the 
best possible strategy under the conditions and available resources in Yemen. The results obtained confirm that the strategy, 
which provides resources to prevent the transmission of Chikungunya and provides sufficient resources for testing, applying 
average social distancing, and quarrying the affected individuals, has a significant effect on flattening the epidemic curves 
and is the most suitable strategy in Yemen.
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1 Introduction

Yemen is a country located in the southwest of Asia on 
2000 km coastline, and it is considered one of the tropi-
cal countries. Therefore, infectious and seasonal diseases 
are highly prevalent there, such as Aedes aegypti, Aedes 
albopictus, dengue, Chikungunya, malaria, cholera, and 
other infectious diseases. Recently, the Chikungunya virus 
(CHIKV) has spread in some areas, especially in Al-Hadi-
dah, Lahj and Aden. Spread of the Chikungunya virus coin-
cided with the COVID-19 pandemic, causing many deaths. It 
is well known in epidemiology that Chikungunya is an infec-
tious disease caused by a virus of the Togaviridae family and 
transmitted to humans by either the genus Aedes aegypti or 
Aedes albopictus mosquitoes. COVID-19 is an infectious 
disease caused by the virus SARS-CoV-2 of the Coronaviri-
dae family and transmitted to humans by infectious droplets 

of another human. Hence, most of the studies that addressed 
epidemiological optimal control models focused on break of 
the vector-borne using some intervention strategies.

Lately, several studies have been proposed to explore 
optimal control models for infectious diseases including 
Chikungunya diseases. Ruiz-Moreno et al. (2012) com-
bined stochastic model, which is related to season-based 
mosquito vector dynamics with an epidemiological model, 
to investigate the potential risk of Chikungunya entering 
the US. Moulay et al. (2012) formulated an optimal control 
problem for the Chikungunya model, which is controlled 
by three time-dynamic variables: prevention and treatment 
and vector breeding sites destruction. Yakob and Clements 
(2013) addressed the Chikungunya outbreak in Réunion 
2006, and Monte Carlo simulation is used in the sensitiv-
ity analysis study. Liu and Stechlinski (2015) discussed 
the spread of CHIKV outbreak in Réunion with respect to 
some time-varying parameters that are related to the rate 
of breeding of mosquitoes in the rainy and dry climate and 
the rate of dynamic contact between the mosquitoes and 
the human. Agusto et al. (2016) developed a transmission 
model with focusing on the influence of age on Chikungunya 
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transmission. The population is classified into three age-
structured: Juveniles, adults and senior subcategories. Zhu 
et al. (2018) employed the input–output polynomials with 
QR decomposition to estimate the parameters of a CHIKV 
transmission model. Liu et al. (2020) investigated the impact 
of temperature and rainfall on the CHIKV model. Dodero-
Rojas et al. (2020) formulated a compartmental mathemati-
cal model, which was implemented in the city of Rio de 
Janeiro in the period 2017–2019 on the Chikungunya epi-
demic. The basic reproduction number was estimated, and a 
potential outbreak of Mayaro virus was predicted. Moreover, 
a number of different intervention strategies were simulated 
with the aim of reducing the number of infected individu-
als. The optimal control model was proposed for the Chi-
kungunya epidemic model in Gonzalez-Parra et al. (2020) 
when Pontryagin’s maximum principle was utilized to solve 
the optimal controls and to find the optimal final time. This 
study was also carried out on real data in Colombia 2015. 
The optimal control policies of the Chikungunya epidemic 
model were presented through three time-varying variables 
to control the spread of the CHIKV between humans and 
vectors. The first time-varying variable related to educa-
tional awareness and personal protection through bed nets, 
wearing full body clothing, and avoiding water stagnation. 
The second time-varying variable relied on the impact of 
the treatment of infected individuals. The third time-varying 
variable related to spraying insecticides in order to reduce 
mosquito population to reduce the proportion of the infected 
individuals. (Ali et al. 2020) presented a clinical study on the 
Chikungunya outbreak in Yemen (March 2020–May 2020).

On the other hand, this year, coinciding with the outbreak 
of the COVID-19, many studies have emerged that addressed 
the epidemiological model of COVID-19. (Abbasi et al. 
2020) proposed a dynamic of SQEIAR Susceptible, Quar-
antined, Exposed, Infected, Asymptomatic, and Recovered 
individuals model considering two time-varying variables 
to control the outbreak: quarantine and treatment. Besides, 
they used Pontryagin’s maximum principle to solve the opti-
mal controls model. Kouidere et al. (2020) considered three 
actions to control the COVID-19 outbreak, i.e. prevention, 
quarantine, and treatment. Also, Pontryagin’s maximum 
principle utilized and analyzed the model. The Susceptible-
Exposed-Asymptomatic-Infected-Removed (SEAIR) model 
was expanded to include the perished class due to infection 
with COVID-19 in Tsay et al. (2020). Social distancing, 
quarantining, and availability of testing kits were used as 
time-dynamic variables for dynamic optimal control. The 
aim of the optimization problem was to minimize social 
and economic costs provided that the size of the epidemic 
remains under a given epidemic peak value. The optimal 
control model was solved directly by Python by considering 
the discretization of time domain into one finite element per 
day. Morato et al. (2020a, b) proposed epidemic models of 

COVID-19 with respect to the real data from Brazil. Social 
distancing was investigated as the time-varying parameter 
for controlling the optimization model. Ullah and Altaf 
(2020) formulated a mathematical model to explore COVID-
19 in Pakistan, presenting a mathematical analytic study. 
The parameters were estimated using a least square fitting 
method. Moreover, two actions were investigated for control-
ling the epidemic, namely, quarantine, and hospitalization. 
Also, some articles addressed the optimal distribution of 
vaccines, such as Narayanamoorthy et al. (2021), Hezam 
et al. (2021b) or discussed the humanitarian response plan 
for high-priority countries as an optimal distribution model 
(Hezam 2021a).

There are a number of epidemiological models in the lit-
erature that try to describe the co-infection models. Samat 
and Ma’Arof (2014) presented a stochastic susceptible–infec-
tive–recovered (human); susceptible–infective (vector) SIR-
SI model to estimate the relative risk of Chikungunya and 
dengue infection in Malaysia. They determined the high-risk 
and low-risk area of Dengue and Chikungunya, which can be 
employed for the prevention and control of both outbreaks. 
Kumar et al. (2019) studied the Chikungunya, dengue and 
zika outbreaks in Mexico 2015–2016. They estimated the 
parameters for each virus. Besides, they presented some 
strategies based on isolation and self-protection factors to 
control the outbreaks. Aldila and Agustin (2018) proposed a 
transmission model of dengue-Chikungunya coinfection and 
presented the mathematical analysis and numerical simula-
tion. In Isea and Lonngren (2016), transmission dynamics 
models were developed of Dengue, Chikungunya and Zika, 
including the possibility of a dual-infection of any two infec-
tious diseases in the same population. Musa et al. (2020) 
proposed a co-infection transmission dynamics model for 
Chikungunya and dengue. The model was implemented on 
real data from India and a study of sensitivity analysis for 
model parameters was presented. An interesting study was 
presented in Jindal (2020), in which the authors investigated 
the effect of the lockdowns due to COVID-19 on outbreaks 
of mosquito-borne diseases, including dengue, Chikun-
gunya and malaria. They found that the risk and severity 
of the outbreak increased with lockdowns. Hezam et al. 
(2021a) addressed the COVID-19 and Cholera coinfection in 
Yemen 2020. Four time-dynamic variables were investigated 
to show its impact on epidemics curbing: social distanc-
ing, quarantine, test kits availability, rate of the population 
able to access to pure water. Also, some studies discussed 
the interactive COVID-19 with other outbreaks like den-
gue (Lam et al. 2020), HIV (Doungmo Goufo et al. 2020), 
Ebola (Zhang and Jain 2020), or the impact of COVID-19 
pandemic on TP patients (Marimuthu et al. 2020), or on 
unemployment problem (Hezam 2021b).

Limited studies have been carried out with respect to 
solving the epidemiological models using metaheuristic 
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algorithms. Yan and Zou (2008) used genetic algorithm to 
find sub-optimal solution of the optimal control in SARS 
epidemics. Florentino et al. (2014) employed genetic algo-
rithm to solve multi-objective optimal control models 
derived from a dynamical model of dengue virus epidemic. 
Florentino et al. (2018) also used genetic algorithm to solve 
the optimal control model that aims to reduce Aedes mos-
quitoes through preventing breeding or spreading insecti-
cides. Chaikham and Sawangtong (2018) used differential 
evolution to solve the optimal control model applied to curb 
the Zika virus outbreak. Rahmalia and Herlambang (2018) 
applied artificial bee colony algorithm to find the optimal 
weights of objective function in optimal control derived from 
Influenza epidemic models. In Akman et al. (2018), particle 
swarm optimization was employed to solve the parameter 
estimation problem in ordinary differential equations. Putra 
and Mu (2019) used particle swarm optimization to esti-
mate the parameters, then Euler method was used to solve 
Susceptible, Infected and Resistant (SIR) models. Kmet and 
Kmetova (2019) introduced two approaches for solving the 
optimal control model, i.e. the direct method and the indirect 
method. The direct methods were based on collaborating 
Bernstein–Bézier parametrization for control variables, in 
addition to invasive weed optimization algorithm and par-
ticle swarm optimization for solving the optimal control 
model, while Pontryagin’s maximum principle and the nec-
essary conditions of optimal control model are the indirect 
methods. Windarto et al. (2020) employed particle swarm 
optimization to estimate the parameters of dengue transmis-
sion model. Lobato et al. (2020) applied stochastic fractal 
search algorithm to solve both parameters estimation prob-
lem and multi-objective optimal control model of COVID-
19 outbreak in China. Mahmoodabadi (2020) used PSO to 
find the unknown variables in the epidemic model, compar-
ing it to other classical methods. Yousefpour et al. (2020) 
used a genetic algorithm to solve the multi-objective opti-
mal control model of COVID-19 outbreak. Besides, some 
control strategies were discussed and analyzed, which can 
contribute to curbing the COVID-19 epidemic. Similarly, 
in Okuonghae and Omame (2020), social distancing, use 
of face mask and case detection of COVID-19 outbreak in 
Nigeria were the investigated actions. Salgotra et al. (2020) 
used Genetic Evolutionary Programming (GEP) to predict 
confirmed cases and death cases of COVID-19 in 15 worst 
affected countries in the world for the period (February 1st, 
2020, to last of May 2020. He et al. (2020) employed PSO 
to estimate the parameters of the SEIR model based on real 
data from Hubei province. A similar study, Abdallah and 
Nafea (2021), used PSO to estimate the parameters of the 
SEIQRD model and predict the COVID-19 outbreak in Italy.

However, up to the time of writing this paper, no study has 
formulated a mathematical model of the coinfection COVID-
19 and Chikungunya. The contributions of this work are as 

follows. Firstly, the present study formulates a new dynamic 
transmission model of the coinfection COVID-19 and Chi-
kungunya. Secondly, PSO will be used to estimate the param-
eters based on historical data for both infections in Yemen 
from March 1, 2020, to May 30, 2020, and also to predict the 
trajectories of both outbreaks for one year. Thirdly, we present 
an optimal control model that includes two objective func-
tions: minimizing the expected cumulative number of infected 
people for COVID-19 and Chikungunya, and minimizing the 
total cost associated with the intervention strategies. The opti-
mal solutions of the optimal control model will be found also 
by PSO. Fourthly, we investigate the sensitivity of the time-
dynamic inputs of the optimal control by evaluating a novel 
set of control strategies. The focus is on time-dynamic inputs 
related to lockdown, social distancing, test kits numbers, per-
sonal protection and insecticides and larvicides to fight mos-
quitoes. These five actions are used to identify the optimal 
strategies that contribute to infection mitigation. Lastly, all 
the strategies are carried out for COVID-19 and Chikungunya 
outbreaks in Yemen to determine the suitable optimal strategy 
in Yemen under the conditions and available resources.

The remainder of this work is organized as follows. In 
Sect. 2, we discuss the co-infection model formulation. PSO 
is presented in Sect. 3, while the estimated parameters are 
discussed in Sect. 4. In Sect. 5, we provide the optimal control 
model and its analysis. In Sect. 6, we discuss several strate-
gies. Finally, in Sect. 7, we summarize and conclude the work.

2  Model formulation

To describe the co-infection dynamics of COVID-19 and 
Chikungunya, the dynamical compartment model includes 
both human and mosquito population. The human popula-
tion will be divided into sixteen different epidemiological 
classes, while mosquito vector will include three classes. 
Descriptions of the present classes with associate parameters 
are defined in Tables 1 and 2, respectively.

T h e  c l a s s e s  o f  h u m a n  p o p u l a t i o n  a r e 
S(t),E1(t),A1(t), I1(t),R1(t),P1(t),  IR2(t),E2(t),A2(t), 
I2(t),R2(t),P2(t), I1R(t), I12(t),R12(t) and P12(t) correspond 
to the number of individuals in the sixteen epidemiologi-
cal classes at time t . The total human population at time t, 
denoted by NH(t) , is given by:

Moreover, the classes of mosquito vector population are 
X(t), Y(t), and Z(t) where the total mosquitoes’ population 
at time t is given by:

NH(t) =S(t) + E1(t) + A1(t) + I1(t)

+ R1(t) + P1(t) + IR2(t) + E2(t)

+ A2(t) + I2(t) + R2(t) + P2(t)

+ I1R(t) + I12(t) + R12(t) + P12(t)
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The structure schematic diagram of the compartmental 
COVID-19- Chikungunya co-infection model is illustrated 
in Fig. 1.

The proposed co-infection model is described by the fol-
lowing dynamic differential equations system.

Nm(t) = X(t) + Y(t) + Z(t)

(1)

dS(t)

dt
= −

⎛⎜⎜⎜⎜⎝

�
1 − u1(t)

�
NH

E1(t) +

�
1 − u2(t)

�
NH

I1(t)

+�c

�
1 − u4(t)

�
NH

E2(t)
�
1 − u5(t)

�
Z(t) + �12

⎞⎟⎟⎟⎟⎠
S(t)

+ �1R1(t) + �2R2(t) + �12R12(t) + �NH

(2)

dE1(t)

dt
=

((
1 − u1(t)

)
NH

E1(t) +

(
1 − u2(t)

)
NH

I1(t)

)
S(t)

−
(
1 − �1

)
�1E1(t) − �1�1E1(t)

(3)

dA1(t)

dt
=
(
1 − �1

)
�1E1(t) −

(
�1 + u3(t) + �1 + �1

)
A1(t)

(4)
dI1(t)

dt
= u3(t)A1(t) + �1�1E1(t) −

(
�1 + �1 + �1

)
I1(t)

(5)
dR1(t)

dt
= �1

(
A1(t) + I1(t)

)
−
(
�1 + �1

)
R1(t)

(6)
dP1(t)

dt
= �1

(
A1(t) + I1(t)

)

(7)
dIR2(t)

dt
= �1R1(t) − �1IR2(t)

(8)
dI12(t)

dt
=�12S(t) + �1

(
A1(t) + I1(t)

)

+ �2
(
A2(t) + I2(t)

)
−
(
�12 + �12

)
I12(t)

(9)
dR12(t)

dt
= �1IR2(t) + �2I1R(t) + �12I12(t) − �12R12(t)

(10)
dP12(t)

dt
= �12I12(t)

(11)
dE2(t)

dt
=�c

(
1 − u4(t)

)
NH

E2(t)
(
1 − u5(t)

)
Z(t)S(t)

−
(
1 − �2

)
�2E2(t) − �2�2E2(t)

Table 1  Description and initial values of model variables

Variables Description Initial conditions Source

NH Total population size of humans 29, 825, 964 (Worldometers 2020)
SH Number of susceptible humans to both COVID-19 and CHIKV NH Assumed
E1 Number of humans exposed to COVID-19 [

0,NH × 10
−6
] (Tsay et al. 2020)

A1 Number of asymptomatic COVID-19 individuals 0 Assumed
I1 Number of COVID-19- infected individuals 0 Assumed
R1 Number of recovered from COVID-19 individuals 0 Assumed
P1 Number of perished with COVID-19 individuals 0 Assumed
IR2 Number of infected to CHIKV after recovery from COVID-19 0 Assumed
E2 Number of humans exposed to CHIKV 0 Assumed
A2 Number of asymptomatic CHIKV individuals 0 Assumed
I2 Number of CHIKV infected individuals 0 Assumed
R2 Number of recovered from CHIKV individuals 0 Assumed
P2 Number of perished with CHIKV individuals 0 Assumed
I1R Number of infected to COVID-19 after recovery from CHIKV 0 Assumed
I12 Number of dually infected with both COVID-19 and CHIKV 0 Assumed
R12 Number of recovered from both COVID-19 and CHIKV 0 Assumed
P12 Number of perished by both COVID-19 and CHIKV 0 Assumed
Nm The total population of mosquitoes [

10
3
, 5 × 10

4
] (Sanchez et al. 2018)

X Number of susceptible mosquitoes to CHIKV [
10

3
, 5 × 10

4
] (Sanchez et al. 2018)

Y Number of mosquitoes exposed to CHIKV 0 (Sanchez et al. 2018)
Z Number of CHIKV-infected mosquitoes 1 (Sanchez et al. 2018)
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(12)
dA2(t)

dt
=
(
1 − �2

)
�2E2(t) −

(
�2 + �2 + �2

)
A2(t)

(13)
dI2(t)

dt
= �2�2E2(t) −

(
�2 + �2 + �2

)
I2(t)

(14)
dR2(t)

dt
= �2

(
A2(t) + I2(t)

)
−
(
�2 + �2

)
R2(t)

(15)
dP2(t)

dt
= �2

(
A2(t) + I2(t)

)

(16)
dI1R(t)

dt
= �2R2(t) − �2I1R(t)

(17)

dX(t)

dt
= �3 − X(t)

(
�3
(
1 − u4(t)

)(
A2(t) + I2(t)

)
+ �3 + u5(t)

)

Equation (1) defines all susceptible humans’ populations 
for both COVID-19 and Chikungunya infections. We will 
consider that the total population in Yemen, including those 
individuals recovered from any infectious, are susceptible 
to infection with COVID-19 or Chikungunya infections, or 
both, in varying proportions. Four times-variant variables 
are suggested to reduce the susceptible individuals: social 
distancing, quarantining, personal protection and rate of pes-
ticides that are used to kill mosquitoes. u1(t) and u2(t) which 
correspond to the social measures taken during the course 
of the COVID-19 pandemic. u1(t) refers to the control rate 
of social distancing of the exposed individuals. u2(t) refers to 

(18)
dY(t)

dt
=X(t)

(
�3
(
1 − u4(t)

)(
A2(t) + I2(t)

))

− Y(t)
(
�3 + �3 + u5(t)

)

(19)
dZ(t)

dt
= �3Y(t) −

(
�3 + u5(t)

)
Z(t)

Table 2  Parameters description and their values

Parameters Description Value (range) Reference

I
peak

1
The peak limit of the infected individuals with COVID-19 [

10
4
, 28 × 10

6
] Assumed

I
peak

2
The peak limit of the infected individuals with CHIKV [

10
4
, 28 × 10

6
] Assumed

Zpeak The peak limit of the infected mosquitoes [
10

4
, 10

5
] Assumed

u1(t) Time-dynamic function to measure the social distancing rate [0.05, 0.5] (Tsay et al. 2020)
u2(t) Time-dynamic function to measure the quarantining rate [0.01, 0.3] (Tsay et al. 2020)
u3(t) Time-dynamic function to measure the testing rate [0.1, 0.3] (Tsay et al. 2020)
u4(t) Time-dynamic function to measure the personal protection rate [0.2, 1] Assumed
u5(t) Time-dynamic function to measure the ratio of used the insecticides and 

larvicides for reducing the mosquitoes population
[0.2, 1] Assumed

�c Rate of exposed to CHIKV 0.0209 Estimated
�1 Transmission rate of COVID-19 0.09 Estimated
�2 Transmission rate of CHIKV 0.0780 Estimated
�12 Rate of dually infected with both COVID-19 and CHIKV 0 Assumed
�3 Rate of mosquitoes exposed to CHIKV 0.3574 Estimated
�1 Rate of infected to COVID-19 Asymptomatically-Symptomatically 0.55 Estimated
�2 Rate of infected to CHIKV Asymptomatically-Symptomatically 0.5 Estimated
�1 Rate of infected to CHIKV of COVID-19 patient 0 Assumed
�2 Rate of infected to COVID-19 of CHIKV patient 0 Assumed
�1, �2 Recovery rate from COVID-19 and CHIKV respectively 0.0964, 0.98 Estimated
�1,�2,�12 Death rate from COVID-19, CHIKV and both respectively 0.0974, 0.0127, 0.0889 Estimated
�1,�2,�12 Susceptible for COVID-19, CHIKV and both again 0.0889,0.09,0.07 Estimated
�1 Infected rate by CHIKV after recovered from COVID-19 0 Assumed
�2 Infected rate by COVID-19 after recovered from CHIKV 0 Assumed
�3 Rate of mosquitoes infected to CHIKV 0.5 Estimated
�1 Recovery rate of COVID-19 and CHIKV sequentially 0 Assumed
�2 Recovery rate of CHIKV and COVID-19 sequentially 0 Assumed
�12 Recovery rate of both COVID-19 and CHIKV simultaneously 0 Assumed
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the control rate of the quarantine of the infected individuals. 
On the other hand, u4(t), and u5(t) correspond to the meas-
ures taken during the course of the Chikungunya pandemic. 
The time-dependent input u4(t) measures the personal pro-
tection from CHIKV through education and awareness from 
the risk of CHIKV and how to protect yourself and your 
family using mosquitoes’ nets, wearing long clothes and not 
exposing the body to mosquitoes’ bites. u5(t) refers to the 
control rate of using the insecticides and larvicides to fight 
mosquitoes. Equation (2) describes the individuals exposed 
to COVID-19. This epidemiological class includes a fraction 
of susceptible individuals minus infected individuals with 
COVID-19, irrespective of the fact that they have symptoms 
or not. Equation (3) describes the individuals infected with 
COVID-19 that are asymptomatic or unconfirmed. The indi-
viduals for this epidemiological class come from the exposed 
class at a rate of 

(
1 − �1

)
�1 . This class will be left, either by 

confirmation of COVID-19 infection through a screening 
test, by direct recovery, by direct perished due to COVID-19 
infection, or by co-infection at a rate of �1 . This epidemio-
logical class contributes to spreading infection in a latent 
way, so our aim in this work is to reduce the number of the 
individuals of this class by increasing the level of test kits 
for the largest possible rate of the exposed individuals. The 
screening level is measured by a time-dependent parameter 
u3(t) . Equation (4) describes the confirmed infected indi-
viduals who have been tested. The individuals of this class 
come directly from the exposed class at a rate of �1�1 or by 

confirming the asymptomatic individuals at a rate of u3(t) . 
This epidemiological class will be left either for recovery at 
a rate of �1 , for death at a rate of �1 , or for co-infection at a 
rate of �1 . Equation (5) describes the individuals who have 
recovered from COVID-19 with or without symptoms. This 
class is increased by the recovery of the individuals affected 
with COVID-19 of both classes at a rate of �1 . Also, this 
class is decreased by infection with Chikungunya at a rate 
�1 or again infection by COVID-19 at a rate �1 . Equation (6) 
describes the individuals perished due to COVID-19 at a 
rate of �1 . Equation (7) represents the individuals who have 
recovered from COVID-19 but are still susceptible to Chi-
kungunya. This class is increased by recovering the individu-
als infected with COVID-19 and still susceptible to CHIKV 
at a rate of �1 . It is decreased by recovery from both diseases 
at a rate of �1 . Equation (8) characterizes the individuals 
infected with both COVID-19 and Chikungunya diseases, 
either consecutively or simultaneously. The inputs of this 
class come from either the infection of susceptible individu-
als or if a patient with one infection becomes infected of 
the other infection at rates �12, �1, and �2, respectively. It is 
decreased by the individuals’ recovered at a rate of �12 or 
individuals’ death at a rate of �12. Equation (9) describes 
the individuals recovered from both COVID-19 and Chi-
kungunya diseases, either consecutively or simultaneously. 
It is increased when infected individuals recover from Chi-
kungunya, COVID-19, or both at rates of �1, �2, and �12 , 
respectively. It is decreased by natural death or by being 
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Fig. 1  Schematic diagram of the compartmental Chikungunya and COVID-19 co-infection model
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susceptible to both infections at a rate of �12. Equation (10) 
describes the individuals perished due to both COVID-19 
and Chikungunya diseases at a rate of �12.

Equation (11) defines the individuals exposed to Chi-
kungunya. This epidemiological class includes a fraction 
of susceptible individuals minus infected individuals with 
Chikungunya, with or without symptoms. The time-dynamic 
variables u4(t) and u5(t) are being entered to control the 
number of the exposed individuals to Chikungunya. Equa-
tion (12) describes the individuals infected with Chikungu-
nya who are asymptomatic or unconfirmed. The individu-
als for this epidemiological class come from the exposed 
class at a rate of 

(
1 − �2

)
�2 . Leaving this class is carried out 

with four possibilities, either by confirming the individuals 
infected with CHIKV by testing, by direct recovery, by direct 
death due to Chikungunya, or by co-infection. Equation (13) 
describes the individuals infected with Chikungunya. The 
individuals of this class come directly from the exposed class 
at a rate of �2�2 . Leaving this class also carried out three 
possibilities, either by recovery at a rate of �2 , or death at a 
rate of �2 , or for co-infection at a rate of �2 . Equation (14) 
defines the individuals recovered from Chikungunya at a rate 
of �2 . This epidemiological class is decreased by returning 
to being susceptible to coinfection or COVID-19 at rates of 
�2 and �2 , respectively. Equation (15) describes individuals’ 
deaths due to Chikungunya at a rate of �2 . Equation (16) 
describes the individuals recovered from Chikungunya but 
are still susceptible to COVID-19 at a rate of �2.

On the other hand, the last three equations describe mos-
quito vectors. Equation (17) determines all the susceptible 
mosquito populations. Equation (18) describes the exposed 
mosquito. This epidemiological class increases when the 
mosquito bites a person infected with Chikungunya at a 
rate of �3 . Equation (19) describes all the infected mosquito 
populations. This class is the most dangerous class in the 
spread of the virus among humans. However, time-dynamic 
variables u4(t) and u5(t) are used to control of the number 
of the mosquitoes in these classes. u4(t) controls the num-
ber of the individuals infected with Chikungunya and thus 
reduces the number of the infected mosquitoes. u5(t) is used 
to eliminate mosquito colonies or larvae and eggs as a whole 
by using pesticides as well as not to create a fertile environ-
ment for mosquitoes to breed. Overall, the parameters in this 
work are divided into three categories. The first category of 

parameters includes time-varying inputs that reflect levels 
of measures taken during the course of the COVID-19 and 
Chikungunya pandemics. Social distancing, quarantining, 
COVID-19 test kits, personal protection from Chikungunya 
using mosquito nets, and wearing long-sleeved shirts and 
pants as well as insecticides and larvicides to fight mos-
quitoes are the five parameters in this category. The second 
category of parameters includes values that need to be esti-
mated from real data collected from Yemen such as trans-
mission rate, recovered rate, and death rate. The third cate-
gory of parameters includes values taken from the literature.

3  Particle swarm optimization

Particle swarm optimization is a metaheuristic algorithm 
based on the principles of behavior of flocks of birds, fish 
schooling, or insect swarms for finding food positions. This 
algorithm was developed by Kennedy and Eberhart (1995). 
The optimal solution of the given function is the swarm posi-
tion that can be calculated using the following equation:

where x is the particle position, and v is the velocity of the 
particle that are given in the following equation:

where � is the inertia weight, c1, c2 are coefficients that indi-
cate the swarm’s ability level to the cognitive of personal 
and social successes,�1, �2 ∈ rand(0, 1) , xi

(Pbest)k
 is the per-

sonal best solution of swarm position, and xi
(Gbest)

 is the 
global best solution for all swarms and for all iterations as 
well. Table 3 report the parameters of PSO that are used in 
this work. Besides, the PSO pseudo-code is expressed in 
detail by the following algorithm:

(20)xi
k+1

= xi
k
+ vi

k+1

(21)
v
i

k+1
=�vi

k
+ c1 ⋅ �1

(
x
i

(Pbest)k
− x

i

k

)

+ c2 ⋅ �2

(
x
i

(Gbest)
− x

i

k

)

Table 3  PSO configuration parameters

Parameter NP Max_iter � c1 c2

Value 1000 200 0.75 1.5 2
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Algorithm 1  PSO 
Start 
Input: set the parameters (population size , dimensional , , , , 

. 
Initialize uniformly randomly the particles positions and velocities. 
While  do 

For  do 
Generate 
Update velocity using the equation (21)
Update the position using the equation (20)
Calculate the fitness of each particle position from the given problem 
Find the  solution  
End for 

       Find the  solution 

End while  
Return the best solution  
 End

4  Parameter estimation

In this section, the parameters estimation problem is solved 
by using PSO. The real data on COVID-19 and Chikungunya 
outbreaks in Yemen during the period March 1, 2020 to May 
30, 2020 are used to solve the parameters estimation prob-
lem. The COVID-19 data were taken from the Center for 
Systems Science and Engineering (CSSE) at Johns Hopkins 
University (https:// github. com/ CSSEG ISand Data/ COVID- 
19). The Chikungunya data were obtained from health 
officials in Yemen. Since the Chikungunya data in Yemen 
were recorded weekly, we considered the data for both 
diseases weekly, not daily.

The mean squared error (MSE) between the historical 
data and the predicted data is minimized using the PSO, 
where the Eq. (22) is used as the fitness function in PSO.

where wl represents normalization weights and xlandx̂l rep-
resent the number of each epidemiological class and its pre-
dictions, respectively. Table 1 reports the mean and standard 
deviation (Std.) of the estimated parameters for Yemen dur-
ing the period (March 2020–May 2020).

For brevity, only one of the experiments, which were car-
ried out during solving the parameters estimation problem, 
is discussed and shown in Fig. 2. The first panel displays 
simulations for all human classes of historical data and the 
data calculated using the system of Eqs. (1)–(19). The sec-
ond panel shows the estimated trajectories of time-dynamic 
functions, and the rest of the panels illustrate the infected, 

(22)minE0 =

N∑
l=0

wlxl − x̂l(t)
2

death, and recovered for both the COVID-19 and CHIKV, 
while the last panel shows the trajectory of the mosquito 
vector obtained from simulating the system (1)–(19). It’s 
clear from the panel of infected with COVID-19 that the 
end of the epidemic is not coming soon, while the CHIKV 
epidemic curve will come back down faster as shown in the 
panel of infected with CHIKV. Also, from the same panel, 
the curve fitting does not exactly match the historical data, 
but the predicted data are still logical. We can see from 
the panels of the death and recovered individuals for both 
infections the cumulative numbers continue to increase over 
time. Besides, the panel of the mosquito populations con-
tinues to decrease by the passage of time, which explains 
the effectiveness of pesticides and the different seasons as 
well. On the other hand, we can clearly see in panels 3 to 
9 that the curves obtained using PSO are more fitness than 
those obtained using Pyomo optimization modelling. This 
confirms that the proposed algorithm is effective.

5  Optimal control problem

The basic principle of the proposed optimal control model 
is to curb epidemic outbreaks by breaking the link between 
the epidemic vector with individuals through time-dynamic 
interventions, so that the number of infected individuals is 
reduced as well as the detection of infected individuals with-
out symptoms by increasing test kits and then isolating and 
treating affected individuals. Moreover, minimizing the cost 
associated with optimal control is another goal for decision 
makers. Five control functions, i.e. u1(t), u2(t), u3(t) , u4(t) and 
u5(t) , are considered in this work. The first control function 

https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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u1(t) represents the control rate of the social distancing. 
This variable can be applied to the whole society by rais-
ing awareness and obliging individuals to wear masks, per-
sonal protection, hygiene and spacing between individuals 
at least a meter distance, and this, in turn, contributes greatly 
to breaking the chain of transmission between humans for 
COVID-19 directly and also indirectly contributes to limit-
ing the transmission of the Chikungunya. By increasing the 
control rate of this variable, the number of people who are at 
risk of infection decreases. The second control function u2(t) 
indicates quarantine and insolation rates. It is easy to apply 
isolation of individuals who are confirmed to be infected, but 
it is difficult to implement quarantine on a large scale, espe-
cially in Yemen, where most of the population live on daily 
wages. Hence, comes the importance of the third variable 
u3(t) , which is to increase the number of tests. It is possible 
to discover infected individuals without symptoms and work 
to isolate and treat them, which contributes to curbing the 
spread of COVID-19. The fourth variable u4(t) refers to the 

rate of personal protection through protective clothing and 
the rate of awareness and education of the risks of infectious 
diseases by mosquitoes including CHIKV. Increasing the 
rate contributes to reducing the infected individuals with 
CHIKV. The fifth variable u5(t) indicates the importance 
of purity of the surrounding environment, the seriousness 
of the swamps, and the fertile places for mosquito breed-
ing. Increasing the use of pesticides contributes to killing 
mosquitoes and reduces the transmission rate of CHIKV 
to humans.

Two objectives are proposed in this work. The first one 
is to minimize the infected individuals with each infection 
or both. The second one is to minimize the cost associated 
with optimal control strategies.

(23)f1 = min
I1(t),I2(t),I12(t)

tf

∫
t0

z1I1(t) + z2I2(t) + z3I12(t)

Fig. 2  The result of simulation for all human classes, the estimated 
trajectories of the time-dynamic functions, and analysis and week-
wise prediction using the proposed system. The real data represented 
by the black dotted, the red dotted lines represent the fitting line from 

the proposed system, the predicted data using PSO represented by 
the red solid lines, and the predicted data using Pyomo optimization 
modelling represented by the blue solid lines (color figure online)
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(1–19)

The objective function in Eq. (23) minimizes the number 
of the individuals infected with COVID-19, CHIKV, and 
both. The objective function in Eq. (24) represents the cost 
associated with the optimal control strategies. The dynamic 
differential Eqs. (1)–(19) are also included as constraints 
of the optimal control model. Constraint (25) defines the 
maximum limit of the infected individuals for each infection 
and the peak value of the infected mosquitoes as well. The 
constraint bounds (26)–(30) define the ranges of the time-
dynamic parameters, where z1, z2, z3,A,B,C,D, and E are 
weight coefficients. The optimal control model is assumed 
during the full-time horizon 

[
t0, tf

]
 , where tf  is 52 weeks.

The summarized steps of the present work are given as 
the following:

(24)
f2 = min

u1(t),u2(t),u3(t),u4(t),u5(t)

tf

∫
t0

A
(
u1(t)

)2
+ B

(
u2(t)

)2

+ C
(
u3(t)

)2
+ D

(
u4(t)

)2
+ E

(
u5(t)

)2

(25)max
t

L(t) ≤ Lpeak, L = I1, I2, Z

(26)u1(t) ∈ [0.05, 0.5]

(27)u2(t) ∈ [0.01, 0.3]

(28)u3(t) ∈ [0.1, 0.3]

(29)u4(t) ∈ [0, 1]

(30)u5(t) ∈ [0, 1]

There are two approaches to solve the above optimal con-
trol model, namely, indirect methods such as mathematical 
analysis and direct methods such as PSO. In this work, we 
use the PSO to solve the optimal control model. Before we 
solve it using PSO, we briefly illustrate the mathematical 
analysis to prove the theorem of the solution.

In mathematical (indirect) methods, Pontryagin’s maxi-
mum principle is used to solve the optimal control model, 
through driving the Hamiltonian function and defining the 
necessary conditions for the optimal control. The optimal 
solution of the control model is 

(
u∗
1
(t), u∗

2
(t), u∗

3
(t), u∗

4
(t), u∗

5
(t)
)
 

in which

w h e r e  Ψ =
(
u1(t), u2(t), u3(t), u4(t), u5(t)

)
 a n d 

0 ≤ u1(t) ≤ 0.5  ,  0 ≤ u2(t) ≤ 0.3  ,  0 ≤ u3(t) ≤ 0.3  , 
0 ≤ u4(t) ≤ 1 , and 0 ≤ u5(t) ≤ 1

The Hamiltonian H is defined as:

where Ml is an adjoint variables, which corresponds to each 
gl that represents the right-hand side of the system Eqs. 
(1)–(19).

(31)

J
(
u∗
1
(t), u∗

2
(t), u∗

3
(t), u∗

4
(t), u∗

5
(t)
)

= min

{
J
(
u1(t), u2(t), u3(t), u4(t), u5(t)

)
||u1(t), u2(t), u3(t), u4(t), u5(t) ∈ Ψ

}
,

H =z1I1(t) + z2I2(t) + z3I12(t)

+ A
(
u1(t)

)2
+ B

(
u2(t)

)2

+ C
(
u3(t)

)2
+ D

(
u4(t)

)2

+ E
(
u5(t)

)2
+

19∑
l=1

Mlgl

Algorithm 2: Procedure steps to solve optimal control model using PSO
Start 
Input data of both epidemics. 
Input the parameters values of PSO.  
Select the strategy.  
Justified the range of the time-dynamic variables based on the selected strategy. 
Call PSO to solve the parameters estimation problem (22)  
Report the obtained parameters values to use for solving the optimal control model. 
Call PSO to solve the optimal control model in (23)-(30).  
Keep the best solution.  
End
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(32)

H =z1I1(t) + z2I2(t) + z3I12(t) + A
�
u1(t)

�2

+ B
�
u2(t)

�2
+ C

�
u3(t)

�2
+ D

�
u4(t)

�2
+ E

�
u5(t)

�2

+M
S

⎛
⎜⎜⎜⎜⎜⎜⎝

�1R1(t) + �2R2(t) + �12R12(t) + �N
H

−

⎛
⎜⎜⎜⎜⎝

�
1 − u1(t)

�
N
H

E1(t) +

�
1 − u2(t)

�
N
H

I1(t)

+�
c

�
1 − u4(t)

�
N
H

E2(t)
�
1 − u5(t)

�
Z(t) + �12

⎞
⎟⎟⎟⎟⎠
S(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

+M
E1

⎛⎜⎜⎜⎝

��
1 − u1(t)

�
N
H

E1(t) +

�
1 − u2(t)

�
N
H

I1(t)

�
S(t)

−
�
1 − �1

�
�1E1(t) − �1�1E1(t)

⎞⎟⎟⎟⎠
+M

A1

��
1 − �1

�
�1E1(t) −

�
�1 + u3(t) + �1 + �1

�
A1(t)

�

+M
I1

�
u3(t)A1(t) + �1�1E1(t) −

�
�1 + �1 + �1

�
I1(t)

�

+M
R1

�
�1
�
A1(t) + I1(t)

�
−
�
�1 + �1

�
R1(t)

�

+M
P1

�
�1

�
A1(t) + I1(t)

��
+M

IR2

�
�1R1(t) − �1IR2(t)

�

+M
I12

�
�12S(t) + �1

�
A1(t) + I1(t)

�
+�2

�
A2(t) + I2(t)

�
−
�
�12 + �12

�
I12(t)

�

+M
R12

�
�1IR2(t) + �2I1R(t) + �12I12(t) − �12R12(t)

�

+M
P12

�
�12I12(t)

�
+M

E2

⎛⎜⎜⎜⎝

�
c

�
1 − u4(t)

�
N
H

E2(t)
�
1 − u5(t)

�
Z(t)S(t)

−
�
1 − �2

�
�2E2(t) − �2�2E2(t)

⎞⎟⎟⎟⎠
+M

A2

��
1 − �2

�
�2E2(t) −

�
�2 + �2 + �2

�
A2(t)

�

+M
I2

�
�2�2E2(t) −

�
�2 + �2 + �2

�
I2(t)

�

+M
R2

�
�2
�
A2(t) + I2(t)

�
−
�
�2 + �2

�
R2(t)

�

+M
P2

�
�2

�
A2(t) + I2(t)

��
+M

I1R

�
�2R2(t) − �2I1R(t)

�

+M
X

�
�3 − X(t)

�
�3
�
1 − u4(t)

��
A2(t) + I2(t)

�
+ �3 + u5(t)

��
+M

Y

�
X(t)

�
�3
�
1 − u4(t)

��
A2(t) + I2(t)

��
− Y(t)

�
�3 + �3 + u5(t)

��
+M

Z

�
�3Y(t) −

�
�3 + u5(t)

�
Z(t)

�

Table 4  The estimated parameter values using PSO

Parameters �
c

�1 �2 �3 �1 �2 �3

Mean 0.0209 0.0900 0.0780 0.3574 0.55 0.5000 0.5000
Std 0.0630 0.1449 0.1839 0.0701 0.2415 0.0000 0.0000

Parameters �1 �2 �1 �2 �3 �1 �2

Mean 0.0974 0.0127 0.0889 0.0900 0.0700 0.0964 0.9800
Std 0.0275 0.0013 0.1432 0.1449 0.0483 0.0038 0.0000
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where M
S
,M

E1
,M

A1
,M

I1
,M

R1
,M

P1
,M

I
R2
,M

I12
,M

R12
,M

P12
,M

E2
,

M
A2
,M

I2
,M

R2
,M

P2
,MI1R

, MX MY , and MZ are adjoint variables 
or co-state variables.

T h e o r e m  G i v e n  t h e  o p t i m a l  c o n t r o l 
u∗
1
(t), u∗

2
(t), u∗

3
(t), u∗

4
(t), u∗

5
(t)  a n d  s o l u t i o n s 

S,E1,A1, I1,R1,P1, IR2, I12,R12,P12,E2,A2, I2,R2,P2

,I1R,X, Y  and Z  of the corresponding state system (1)–
(19 )  t ha t  m in imi ze  J

(
u1(t), u2(t), u3(t), u4(t), u5(t)

)
 

o v e r  Ψ.  T h e r e  e x i s t  a d j o i n t  v a r i a b l e s 
M

S
,M

E1
,M

A1
,M

I1
,M

R1
,M

P1
,M

I
R2
,M

I12
,M

R12
,M

P12
,M

E2
,

M
A2
,M

I2
,M

R2
,M

P2
,MI1R

, MX MY , and MZ such that

where l = S,E1,A1, I1,R1,P1, IR2, I12,R12,P12,E2,A2, I2,R2,P2

,I1R,X, Y  and Z with transversality conditions

(33)
−dMl

dt
=

�H

�l

and

where

MS

(
tf
)
= ME1

(
tf
)
= MA1

(
tf
)
= MI1

(
tf
)

= MR1

(
tf
)
= MP1

(
tf
)
= MIR2

(
tf
)
= MI12

(
tf
)

= MR12

(
tf
)
= MP12

(
tf
)
= ME2

(
tf
)
= MA2

(
tf
)

= MI2

(
tf
)
= MR2

(
tf
)
= MP2

(
tf
)
= MI1R

(
tf
)

= MX

(
tf
)
= MY

(
tf
)
= MZ

(
tf
)
= 0

u∗
1
(t) = min

{
1,max

(
0,Ω1

)}
u∗
2
(t) = min

{
1,max

(
0,Ω2

)}
u∗
3
(t) = min

{
1,max

(
0,Ω3

)}
u∗
4
(t) = min

{
1,max

(
0,Ω4

)}
u∗
5
(t) = min

{
1,max

(
0,Ω5

)}

Ω1 =

(
ME1

−MS

)
E1(t)S(t)

2ANH

Fig. 3  Comparison of the simulation results of the control levels of strategy 1
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Proof. See Appendix A.

Ω2 =

(
ME1

−MS

)
I1(t)S(t)

2BNH

Ω3 =

(
MA1

−MI1

)
A1(t)

2C

Ω4 =
1

2D

⎡
⎢⎢⎢⎣

�
ME2

−MS

���cE2(t)
�
1 − u5(t)

�
Z(t)S(t)

NH

�

+
�
MY −MX

��
�3X(t)

�
A2(t) + I2(t)

��

⎤
⎥⎥⎥⎦

(34)

Ω5 =
1

2E

⎡
⎢⎢⎢⎣

�
ME2

−MS

���cE2(t)
�
1 − u4(t)

�
Z(t)S(t)

NH

�

+MXX(t) +MYY(t) +MZZ(t)

⎤
⎥⎥⎥⎦

6  Numerical simulations

In this section, we investigated and analyzed the impact of 
the five dynamic control measures, the peak limits, and the 
coefficient weights of control measures in the objective func-
tion, which will determine the best strategy to curb the rapid 
spread of both Chikungunya and COVID-19 in Yemen in 
2020. The initial conditions that are used in all the strategies 
of the present model are mentioned in Table 1. Besides, the 
parameters that are needed for estimation are reported in 
Table 4, and the other parameters are reported in Table 2. We 
assume the weights A, B, C, D, and E are equal one all simu-
lations except when discussing the impact of their changes. 
We also used the same limit peaks for all simulations except 
when discussing the impact of limit peaks constraints. The 
weighted method was employed to convert the bi-objective 
optimization model into a single-objective optimization 
model. In addition, the dynamic differential equations sys-
tem (1–19) was discretized using the orthogonal collocation 
method with considering the time domain which consists of 
weekly finite elements. Also, we used the penalty function to 

Fig. 4  Comparison of the simulation results of two cases of strategy 2
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deal with the constraints. Then, the new optimization model 
was be solved using PSO. It is worth mentioning here that 
the proposed algorithm was implemented in Python 3.7. 
Plus, the figures were omitted for each case, and only the 
figures that are related to the comparisons were shown, for 

the sake of brevity. The strategies are discussed in this work 
as the following.

Strategy 1: In this strategy, we discussed three levels of 
controls, which are max control, partial control and no con-
trol (baseline). In the max control level, the range of time-
dynamic variables were 0.4 ≤ u1(t) ≤ 0.5 , 0.2 ≤ u2(t) ≤ 0.3 , 
0.2 ≤ u3(t) ≤ 0.3 , 0.4 ≤ u4(t) ≤ 0.6 , 0.3 ≤ u5(t) ≤ 0.5 , while 
were 0.2 ≤ u1(t) ≤ 0.4 , 0.1 ≤ u2(t) ≤ 0.2 , 0.1 ≤ u3(t) ≤ 0.2 , 
0.3 ≤ u4(t) ≤ 0.4 , 0.2 ≤ u5(t) ≤ 0.3 in the partial control 
level. Here, the range of the inequalities for the u1(t), u2(t) 
and u4(t) means that a fraction of the population who imple-
ment these rules lies between the values of the left and right 
sides of the inequalities. For u3(t) , the rate of the availability 
of screening tests for the individuals exposed with COVID-
19 is located between the boundaries of u3(t) inequality. 
Also, the rate of using the insecticide lies between the values 
of the left and right sides of the u5(t) inequality. We also set 
the coefficients of the time-dynamic variables equals zeros in 
the objective function in the baseline (without control) level. 
Figure 3 illustrates the compression of the max control, 
partial control, and baseline levels for both infected, death, 
the individuals recovered from COVID-19, infected, death, 

Fig. 5  Comparison of the simulation results of two cases of strategy 3

Fig. 6  Trade-off curve of both functions for all cases
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individuals recovered from CHIKV and infected mosques 
vector throughout the simulated time. We can see that max 
control comes in the first rank. It is more effective to reduce 
the number of infected individuals and to decrease the time-
span of both epidemics, then partial control comes in the 
second rank, and no-control (without control) level comes 
in the last rank. It is normal to expect this ranking due to the 
impacts of interventions through applying social distancing, 
quarantine, detection of latent cases by providing test kits, 
personal protection and use of insecticides, which in turn 
reduces the number of individuals with both diseases. On the 
other hand, the cost associated with max optimal control was 
higher than the cost associated with other optimal controls.

Strategy 2: we concentrated on the effect of the limit 
of the peaks in the constraint (25). Two cases were investi-
gated, i.e. small and large limit peaks. For infected humans, 
the small limit of peaks was 105 while the large limit of 
the peaks equals the total of population in Yemen 29 × 10

6 . 
The small and large limit peaks for the infected mosquitos 
were 104 and 105 respectively. We also used the same range 
of time-dynamic variables in all cases. As it is shown in 
Fig. 4, the right-hand side values of limit constraints affect 
all epidemiological classes. The number of individuals was 
less when the limit constraints were small. We conclude that 
the number of individuals can be reduced by decreasing the 
right-hand side values of limit constraints and vice versa, 
i.e., we can increase the number of individuals for all classes 
by neglecting limit constraints. However, the cost associated 
with small limit peaks was higher than the cost associated 
with large limit peaks.

Strategy 3: In this strategy, we focused on the effect of 
the combination of the coefficients of intervention vari-
ables in the second objective function, and whether or 
not they will be reflected in the number of individuals in 
the epidemiological classes. We investigated that in two 
cases. In the first case, all the coefficients were equal one 
A = B = C = D = E = 1 , and in the another case, A = 0.3 , 
B = 0.1 , C = 0.4 , D = 0.6 , and E = 0.5. Figure 5 shows the 
simulation of the two cases throughout the time horizon. It 
is clear that the first case is superior to the other case in all 
epidemiological classes. It is also known that the coefficients 
of the intervention variables are the relative cost associated 
with these interventions. Therefore, the more coefficient 
values are, the higher the cost value is. Thus, as expected, 
the cost of the first case (with coefficients are one) is higher 
than the cost of the other case (with coefficients are less 
than one).

Figure 6 shows the trade-off curve of both functions that 
can be obtained when using different weights, w1f1 + w2f2.

It can be concluded that we need some interventions to 
curb the spread of the epidemics. These interventions depend 
on the awareness of the community as well as its economic 

capacity and response to implement them. It should be borne 
in mind that some interventions cannot be applied such as 
imposing quarantine and total closure, especially in poor 
societies that depend on daily income. Hence, we recom-
mend that partial control is the closest and most appropriate 
solution that can be applicable in the Yemen case, as it will 
be more harmonious and compatible with other economic, 
social, cultural factors outside the framework of this study.

7  Conclusions

In this study, an optimal control model with strategies of 
COVID-19 and CHIKV co-infection was investigated. First, 
the state-space model was formulated, and then the parame-
ters were estimated for the outbreaks in Yemen for the period 
(March 2020–May 2020). Critical epidemiological interven-
tions were identified, and their impact on the optimal control 
model was investigated. The bi-objective optimal control 
model aims to minimize the infected individuals and the 
cost associated with the corresponding control. PSO algo-
rithm was used to solve the parameter estimation problem 
and the optimal control model as well. Numerical simula-
tions clearly show the importance of the present optimal 
control model for controlling epidemics, which may give the 
government highlights to select the suitable strategies that 
curb epidemics while simultaneously preventing economic 
collapse. As a future suggestion, the introduction of uncer-
tainty to some parameters of the model can be considered.

Appendix A

In this appendix, we prove the theorem in Sect. 5.

Proof. By applying Pontryagin’s maximum principle to the 
Hamiltonian H, we get the following adjoint systems.
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Hence, we obtain

By standard control arguments involving the bounds on 
the controls, we conclude
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