
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:13349–13359
https://doi.org/10.1007/s12652-022-03788-y

ORIGINAL RESEARCH

RL based hyper‑parameters optimization algorithm (ROA)
for convolutional neural network

Fatma M. Talaat1 · Samah A. Gamel2

Received: 12 November 2021 / Accepted: 25 February 2022 / Published online: 18 March 2022
© The Author(s) 2022

Abstract
Many real-world applications necessitate optimization in dynamic situations, where the difficulty is to locate and follow
the optima of a time-dependent objective function. To solve dynamic optimization problems (DOPs), many evolutionary
techniques have been created. However, more efficient solutions are still required. Recently, a new intriguing trend in deal-
ing with optimization in dynamic environments has developed, with new reinforcement learning (RL) algorithms predicted
to breathe fresh life into the DOPs community. In this paper, a new Q-learning RL-based optimization algorithm (ROA) for
CNN hyperparameter optimization is proposed. Two datasets were used to test the proposed RL model (MNIST dataset, and
CIFAR-10 dataset). Due to the use of RL for hyperparameter optimization, very competitive results and good performance
were produced. From the experimental results, it is observed that the CNN optimized by ROA has higher accuracy than CNN
without optimization. When using the MNIST dataset, it is shown that the accuracy of the CNN optimized by ROA when
learning 5 epoch is 98.97%, which is greater than the 97.62% of the CNN without optimization. When using the CIFAR-
10 dataset, it is shown that the accuracy of the CNN optimized by ROA when learning 10 epoch is 73.40 percent, which is
greater than 71.73% of the CNN without optimization.

Keywords Optimization algorithm · Deep learning · Deep convolutional neural networks · Reinforcement learning

1 Introduction

People can recognize items in their environment and objects
in less than a second. Humans have been taught to recog-
nize things since they were children. Similarly, if computers
can detect or categorize objects and environments by scan-
ning for low-level characteristics like edges and curves, they
may use a sequence of convolutional layers to develop more
abstract conceptions of what they see. Convolutional Neural
Networks are used in neural networks to recognize and clas-
sify images (CNN). Image recognition is used in a variety of
applications (Sehgal et al. 2019). Deep Neural Networks are
responsible for most of the success in this area. While deep

networks have enabled numerous intriguing and valuable
applications, there are still several challenges to solve (Tian
et al. 2020; Calabrese et al. (2020). One impediment is the
lack of an analytical method for determining the appropri-
ate design for a deep network for tackling various issues.
For many articles, writers design multiple distinct network
topologies before deciding on the optimal one to utilize. This
causes a knowledge and effort load in determining the appro-
priate architecture. Manually selecting and executing these
architectures might be time intensive (Duong et al. 2022).

The implementation of CNN necessitates a set of settings
that are independent of the data and that the machine learn-
ing researcher must manually modify. Hyperparameters are
variables that affect the network structure and CNN's trained
network (Tian et al. 2020). The hyperparameter optimiza-
tion challenge also includes finding a collection of hyperpa-
rameters that produces an accurate model in an acceptable
amount of time. The task of identifying a suitable model of
hyperparameter or the problem of optimizing a loss func-
tion across a graph-structured configuration space is known
as hyperparameter optimization. It can be computationally
costly to test every potential set of hyperparameter models.

 * Fatma M. Talaat
 fatma.nada@ai.kfs.edu.eg

 * Samah A. Gamel
 s.adel.gamel@gmail.com

1 Faculty of Artificial Intelligence, Kafrelsheikh University,
Kafrelsheikh, Egypt

2 Department of Computer Engineering and Systems, Faculty
of Engineering, Mansoura University, Mansoura, Egypt

http://orcid.org/0000-0003-1753-030X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-03788-y&domain=pdf

13350 F. M. Talaat, S. A. Gamel

1 3

As a result, the demand for an automated and organized
search method is growing, and hyperparameter space, in
general, is expanding.

Hyperparameter optimization is used to increase the
accuracy of neural networks. which has a lot of real-world
applications such as signature verification and handwrit-
ing analysis, healthcare, traveling salesman problem,
image compression, stock exchange prediction, com-
puter vision, speech recognition, and natural language
processing(Abiodun et al. 2018, Thanga et al. 2021).

The typical method of accomplishing hyperparameter
optimization has been grid search (Chicco et al. 2017) or
parameter sweep, which is an exhaustive search of a manu-
ally chosen subset of a learning algorithm's hyperparam-
eter space. A grid search algorithm must be directed by a
performance metric, which is commonly assessed by cross-
validation on the training set or assessment on a held-out
validation set. Figure 1 illustrates that Grid search using two
hyperparameters with varying values. Each hyperparameter
is assessed and compared with ten distinct values, for a total
of 100 possible combinations. Blue outlines represent places
with strong outcomes, while red contours represent regions
with low results.

Random Search (Freitas et al. 2016) is also a hyperparam-
eter optimization approach, it is substituting the exhaustive
enumeration of all combinations with a random selection of
them. This applies to the discrete environment mentioned
above, but it also applies to continuous and mixed areas. It
can outperform Grid search, especially when just a limited
number of hyperparameters impact the machine learning
algorithm's ultimate performance. The optimization prob-
lem is said to have a low inherent dimensionality in this
situation. Random Search is also embarrassingly parallel,
and it allows past information to be included by selecting the
distribution from which to sample. Figure 2 illustrates that
For two hyperparameters, do a random search across pos-
sible combinations of values. In this example, 100 distinct
random options are considered. When compared to a grid

search, the green bars indicate that more individual values
for each hyperparameter are examined.

On the other hand, Bayesian optimization (Thornton et al.
2013) is a global optimization strategy for noisy black-box
functions. Bayesian optimization, when used to hyperpa-
rameter optimization, creates a probabilistic model of the
function mapping from hyperparameter values to the objec-
tive as assessed on a validation set. Bayesian optimization
seeks to gather observations exposing as much information
about this function and, in particular, the position of the
optimum by repeatedly assessing a potential hyperparameter
configuration based on the existing model and then updat-
ing it. Figure 3 illustrates that methods like Bayesian opti-
mization intelligently examine the universe of alternative
hyperparameter options by determining which combination
to investigate next based on past discoveries.

Rather than manually tuning these hyperparameters, a
novel technique based on reinforcement learning (Minaee
et al. 2021) is presented to tune hyperparameters for a convo-
lutional neural network. Instead of requiring a researcher to
manually modify hyperparameter knobs in order to gradually

Fig. 1 Grid search optimization

Fig. 2 Random search optimization

Fig. 3 Bayesian optimization

13351RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network

1 3

converge to an ideal solution, this work automates the pro-
cess and allows an asynchronous reinforcement learning
algorithm to automatically alter hyperparameters and dis-
cover an optimal configuration. When the algorithm has
finished executing, the architecture is ready for usage. With
so many presents and future image recognition applications,
being able to quickly find appropriate network designs is
crucial. In this paper, we will introduce a new Q-learning
RL-based Optimization Algorithm (ROA) for CNN hyperpa-
rameters optimization. RL overcomes the limitations of the
traditional evolutionary techniques. From the experimental
results, it is observed that the CNN optimized by ROA has
higher accuracy than CNN without optimization.

The following is how the rest of the paper is structured:
the recent related works in CNN hyperparameter optimiza-
tion techniques are detailed in Sect. 2 in Sect. 2. The prob-
lem definition is described in Sect. 3. The findings and dis-
cussion are presented in Sect. 4 of the report. In Sect. 5, we
talk about our conclusion.

2 Background

This section discusses the background knowledge of deep
learning, advantages of deep learning, Convolutional Neural
Networks, and Reinforcement Learning.

2.1 Deep learning

Deep learning is a type of machine learning technique that
employs numerous layers to extract higher-level charac-
teristics from raw input In image processing, for example,
lower layers may recognize boundaries, while higher layers
may identify concepts meaningful to humans, such as digits,
characters, or faces (Tahir et al. 2021, Yuan et al. 2020).
The majority of modern deep learning models are based
on artificial neural networks, especially convolutional neu-
ral networks (CNNs), though they can contain probabilistic
formulas or latent variables structured layer-wise in deep
generative models like Bayesian networks and deep Boltz-
mann devices. Each level of deep learning learns to turn the
data it receives into a little more complex and composite rep-
resentation; The second layer may create and encode edge
configurations; the third layer may encode a nose and eyes,
and the fourth layer may identify the presence of a face in
the image. Furthermore, a deep learning process can figure
out which traits belong at which level by itself. This does
not eliminate the necessity for hand-tuning; for example,
adjusting the number of levels and the size of the layers can
yield variable degrees of abstraction (Minaee et al. 2021;
Luo et al. 2017a, b).

2.2 Advantages of deep learning (DL)

Because of its powerful automatic representation capabili-
ties, deep learning has achieved significant discoveries in
a variety of domains (Ren et al. 2021). The importance of
neural architecture design in data feature representation and
final performance has been demonstrated. The neuronal
architecture, on the other hand, is strongly reliant on the
researchers' existing knowledge and experience. People find
it challenging to break out from their original thinking para-
digm and develop an optimal model due to the constraints of
human intrinsic knowledge. As a result, it seems logical to
limit human interaction as much as possible and let the algo-
rithm develop the neural architecture on its own. The Neural
Architecture Search (NAS) algorithm is a game-changing
technique, and the research surrounding it is complex and
extensive. As a result, a thorough and systematic survey of
the NAS is required. Like in (Yan et al. 2021), authors turn
to neural architecture search (NAS) and aim to integrate
NAS approaches into the ZSL world for the first time.

2.3 Convolutional neural networks (CNN)

The term "convolutional neural network" refers to the net-
work's use of a mathematical procedure known as convo-
lution. Convolutional networks are a subset of neural net-
works that employ convolution instead of generic matrix
multiplication in at least one layer (Goodfellow et al. 2016;
Luo et al. 2017a, b). As illustrated in Fig. 4, the convolu-
tional neural networks consist of three layers. An input layer,
hidden layers, and an output layer make up a convolutional
neural network. Any intermediary layers in a feed-forward
neural network are referred to be hidden since the activation
function and final convolution hide their inputs and outputs.
The convolution layer computes neurons' output related to
particular regions in the input volume, with each comput-
ing a dot product between their weights and a tiny region in
the input volume to which they are connected (Chang et al.
2015). By executing a down-sampling process along the spa-
tial dimensions, pooling reduces the number of retrieved
features. The dense layers are responsible for calculating
either the hidden convolutions or the class scores.

2.4 Reinforcement learning (RL)

Reinforcement learning tries to educate an agent on how to
complete a task by allowing the agent to explore and experi-
ence the environment while maximizing a reward signal. It
differs from supervised machine learning in that the algo-
rithm learns from a set of samples labeled with the right
responses. One advantage of reinforcement learning over

13352 F. M. Talaat, S. A. Gamel

1 3

supervised machine learning is that the reward signal may
be generated without prior knowledge of the proper path
of action, which is especially beneficial if such a dataset
does not exist or is impractical to gather. While reinforce-
ment learning may appear to be comparable to unsupervised
machine learning at first look, they are not. Unsupervised
machine learning seeks to discover some (hidden) organiza-
tion inside a dataset, whereas reinforcement learning does
not seek to discover structure in data (Yamauchi et al. 2020).
Reinforcement learning, on the other hand, seeks to educate
an agent on how to accomplish a task through incentives and
experiments. There are two types of algorithms in reinforce-
ment learning: value-based algorithms and policy-based
algorithms. Value-based algorithms attempt to approximate
or uncover the value function that provides a reward value
to state-action pairings. These reward values can then be
included in a policy. The raw input in an image recognition
application could be a matrix of pixels; the first layer may
extract the pixels and detect edges (Zhu et al. 2021).

3 Related work

The most current works for CNN hyperparameter optimiza-
tion, such as grid search, Bayesian optimization, Genetic
Algorithm (GA), and random search, are discussed in this
section.

For each hyperparameter setting on a defined range of
values, the grid search method is a trial-and-error method.
The use of a grid search has the advantage of being eas-
ily parallelized (Bergstra et al. 2012). The boundaries and
steps between values of hyperparameters will be specified
by researchers and practitioners, resulting in a grid of con-
figurations (Li et al. 2020). However, if one task fails, the
others will follow suit. In most circumstances, a machine
learner will start with a small grid and subsequently expand
it, making it more efficient to set the best grid while search-
ing for a new one (Li et al. 2020). Due to dimensionality
constraints, four hyperparameters will become unworkable

as the number of functions to assess grows with each addi-
tional parameter.

The random search method “randomly” samples the
hyperparameter space. According to Bergstra et al. (2012)
random search provides greater advantages than grid search
in terms of applications that can continue to run even if the
computer cluster fails. It allows practitioners to adjust the
"resolution" on the fly, as well as add additional trials to the
set or even skip the fail test entirely. Simultaneously, the
random search process can be stopped at any time, forming
a complete experiment that can be run in parallel (Bergstra
et al. 2011). Furthermore, if more computers become avail-
able, a new trial can be added to the experiment without
endangering the results (Bergstra et al. 2013).

Bayesian optimization is another recent advancement in
hyperparameter tuning. It employs the Gaussian Process,
which is a distribution over functions. To train with the
Gaussian Process, it is necessary to fit it to the given data,
as it will generate a function that closely resembles the data.
The Gaussian process will optimize the predicted improve-
ment and surrogate the model which is the likelihood of the
new trial and will enhance the current best observation in
Bayesian optimization. The next step will be to determine
the largest expected improvement, which can be done at any
point in the search space. Spearmint, which uses the Gauss-
ian process, is a widely used example of Bayesian optimiza-
tion (Snoek et al. 2015). Bergstra et al. (2012) contend that
the Bayesian optimization method is constrained because
it works with high-dimensional hyperparameters and is
computationally expensive. As a result, it performs poorly.
Bayesian optimization (BO) works by fitting a probabilistic
model to the data and then utilizing that model as a cheap
proxy to select the next most promising place to assess.
The Gaussian Process Regressor, Bayesian Neural Network
(Springenberg et al. 2016), and Random Forest Regressor
are some of the proxy models that have been proposed.

Genetic algorithms use a binary representation of indi-
viduals (each individual is a string of bits), making mutation
and crossover easier to implement. Such processes generate

Fig. 4 Conventional neural network

13353RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network

1 3

candidate values that fall outside of the searchable area.
On the other hand, evolutionary algorithms rely on specific
data structures and require carefully crafted mutation and
crossover, which is strongly reliant on the situation at hand
(Chiong et al. 2007). When there is no knowledge of the
gradient function at assessed sites, genetic algorithms can
be applied according to the author (Rojas et al. 1996). When
there are multiple local minima or maxima, it can produce
good results. Unlike any other search method, the function
is determined in multiple places concurrently rather than
in a single location. They can be done on many processors
because the function calculations on all points of a popu-
lation are independent of one another (Muhlenbein et al.
1991). They can also be easily parallelized, allowing numer-
ous approaches to the optimal to be processed in parallel.

(Xiao et al. 2020) employed a variable-length genetic
algorithm in 2020 to systematically tweak the hyperparam-
eters of CNN to increase performance. This work includes a
detailed comparison of several optimization methods such as
random search, large-scale evolution, and traditional genetic
algorithms. (Liashchynskyi et al. 2019) conducted a rigorous
evaluation of optimization strategies such as random search,
grid search, and genetic algorithm. These algorithms were
utilized to create the Conventional Neural Network by the
authors. The dataset for their research is the CIFAR-10 data-
set with augmentation and pre-processing procedures. Grid
search, according to the authors' experience, is not ideal for
huge search spaces. When there is a huge search space and
too many parameters to optimize, the authors recommend
using the genetic algorithm. Adrian Catalin et al. suggested
a new form of a random search for hyperparameter optimiza-
tion for machine learning algorithms in 2020 (Andonie et al.
2020). This improved random search version creates new
values with a likelihood of change for each hyperparameter.
The proposed variant of random search outperforms the tra-
ditional random search approach. The authors used this for
optimizing the CNN hyperparameters. This can be used for
any optimization problem in the discrete domain.

Authors in (Li et al. 2018a, b) present a flexible embed-
ding approach for a rank-constrained SC. To recover the
block-diagonal affinity matrix of an ideal graph, an adap-
tive probabilistic neighborhood learning approach is used.
The suggested algorithm's performance is demonstrated
by experimental findings on both synthetic and real-world
data sets. In Sebe et al. (2018), the authors suggested a new
method for assigning affinity weights to data points on a
per-data-pair basis. The proposed method is effective in
learning the affinity network while also fusing characteris-
tics, resulting in better clustering results. A unique Event-
Adaptive Concept Integration algorithm is developed, which
uses different weights to measure the efficiency of semanti-
cally related concepts (Xu et al. 2019). Authors in Yu et al.
(2018) employ semantic regression to increase the nearby

link between data with similar semantics. To address the
data ambiguity problem, the authors of Zhang et al. (2019)
loosen the usual ranking loss and propose a unique deep
multi-modal network with a top-k ranking loss.

3.1 Problem definition

This section discusses the selected hyperparameters and the
used methodology. The proposed algorithm relies on using
the Reinforcement Learning (RL) algorithm to optimize the
CNN hyperparameters. Firstly, we explain the used CNN
hyperparameters in Sect. 4.1. Secondly, we explain the pro-
posed Q-learning RL-based Optimization Algorithm (ROA)
in Sect. 4.2 in detail.

3.2 Selected CNN hyperparameters

It can be difficult to define model architectures because there
are so many design options. The author does not know what
the best model architecture for a given model is right now.
As a result, the purpose of this article is to investigate a
variety of options. An actual machine learner will instruct
the machine to conduct this investigation and automatically
create the best model architecture. The hyperparameters are
variables in the configuration that are external to the model
and whose value cannot be predicted from the data. There
are two different types of hyperparameters: (i) Hyperparam-
eter that determines the network structure such as (a) Kernel
Size—the size of the filter. (b) Kernel Type-values of the
actual filter (e.g., edge detection, sharpen). (c) Stride-the
rate at which the kernel passes over the input image. (d)
Padding-add layers of 0 s to make sure the kernel passes over
the edge of the image. (e) Hidden layer layers between input
and output layers. (f) Activation functions-allow the model
to learn nonlinear prediction boundaries. (ii) Hyperparam-
eter that determines the network trained such as (a) Learning
rate-regulates on the update of the weight at the end of each
batch. (b) Momentum–regulates the value to let the previ-
ous update influence the current weight update. (c) Some
epochs–the iterations of the entire training dataset to the
network during training. (d) Batch size–the number of pat-
terns shown to the network before the weights are updated.
The hyperparameters investigated in this study are listed in
Table 1. Each hyperparameter is given a more concise and
understandable name (abbreviation). In addition, ranges are
denoted using square brackets. The network-trained hyper-
parameters are listed in Table 2.

Many real-world applications necessitate optimization in
dynamic situations, where the difficulty is to locate and fol-
low the optima of a time-dependent objective function. To
solve Dynamic Optimization Problems (DOPs), many evo-
lutionary techniques have been created. However, more effi-
cient solutions are still required. Recently, a new intriguing

13354 F. M. Talaat, S. A. Gamel

1 3

trend in dealing with optimization in dynamic environments
has developed, with new Reinforcement Learning (RL)
algorithms predicted to breathe fresh life into the DOPs

community. In this paper, a new Q-learning RL-based Opti-
mization Algorithm (ROA) for CNN hyperparameter opti-
mization is proposed.

3.3 RL based optimization algorithm (ROA)

RL is an AI technique in which an agent performs a task in
order to be rewarded. The agent receives the current sta-
tus of the environment and takes an appropriate response.
The action made causes a change in the environment, and
the agent is notified of the change through a reward. The
ROA learns to select the optimal values for the selected
parameters. The ROA learns to select the optimal values
for the selected parameters. ROA is used to optimize the
hyperparameters for CNN. The overall steps of ROA are
shown in Algorithm 1. The ROA contains an agent called
Optimization agent (OA) as shown in Fig. 5.

Table1 Network structure hyperparameters (NSH)

Hyperparameter Abbreviation Range

Number of Filters Filters_1 [16, 32, 64, 96]
Kernel Size Ksize_1 [3, 4, 5]
Number of Filters Filters_2 [48, 64, 96, 128]
Kernel Size Ksize_2 [3, 4, 5]
Number of Filters Filter_3 [64, 96, 128]
Kernel Size Ksize_3 [3, 4, 5]
Hidden Layer full_hidden1 [60, 100, 125]
Hidden Layer full_hidden2 [60, 100, 125]
Activation activation [„relu‟, „lrelu‟, „elu‟]

Table 2 Network trained
hyperparameters (NTH)

Hyperparameter Abbreviation Range

Learning rate Learning rate Learning rate
Learning_rates Learning_rates Learning_rates
[0.001, 0.003, 0.01,0.03] [0.001, 0.003, 0.01,0.03] [0.001, 0.003, 0.01,0.03]
Batch Size Batch Size Batch Size

Fig. 5 RL based Optimization
framework

Symbol Meaning
PT Parameters Table
SV Select Optimal Value

Reward

PTSV

Optimzation Agent
(OA)

Policy

Q-Learning

State Model

Action
New
State

State, Action, Next state

PT

Reward

13355RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network

1 3

 RRLL bbaasseedd OOppttiimmiizzaattiioonn AAllggoorriitthhmm ((RROOAA))

 Input:
o The data in the PT

 Output:
o The optimized values for each hyperparamert in PT.

Symbol Meaning
PT Parameters Table

CNN Convolutional Neural Network

 Steps:
1: For each hyperparameter do
2: Create a Q-table containing two columns [State: data in PT, Action: Selecting the best value for

each hyperparameter] initialized to zero.

3: //Taking Action
4: The agent interacts with the environment (training and testing the CNN) and makes updates to

the state-action pairs in the Q-table Q[state, action].

5: The agent uses the Q-table as a reference and views all possible actions (all possible available

values for each hyperparameter) for a given state. Then it selects the best value for each

hyperparameter with the best accuracy.

8: // Updating the Q-table

9: Update the values in the Q-table

 10: //Update the data in PT
 11: The OA updates the data in the PT (update the values for each hyperparamert in PT)

 12: Next

.

.

.

As shown from Fig. 5, The ROA is used to update the
values of the hyperparameters in the parameter Table (PT)
which is a table used to save the values of all hyperparam-
eters (either Network Structure Hyperparameters (NSH) or
Network Trained Hyperparameters (NTH)).

The overall steps of the RL-based Optimization Algo-
rithm (ROA) are as follows: (i) For each hyperparameter,
create a Q-table containing two columns (state and action).
The state is described as the overall data in the parameter
table, and the action is described as the selection of the best

Fig. 6 Example of some images; A MNIST dataset, B CIFAR-10 dataset Figs. 1, 5

value for each hyperparameter. (ii) The agent interacts with
the environment (train and test the CNN using the param-
eters in the parameter table). (iii) Makes updates to the state-
action pairs in the Q-table Q[state, action]. (iv) The agent
uses the Q-table as a reference and views all possible actions
(all possible available values for each hyperparameter) for a
given state. (v) Then it selects the best value for each hyper-
parameter with the best accuracy. (vi) Update the values in
the Q-table. (vii) The OA updates the data in the PT (update
the values for each hyperparameter in the parameter table).

13356 F. M. Talaat, S. A. Gamel

1 3

4 Experiment and results

4.1 Used datasets

We experiment with two datasets in this study. The
MNIST dataset is used in the first experiment, and the
CIFAR-10 dataset is used in the second. We also cal-
culate the training time and testing time in case of using
each dataset. Firstly, in case of using MINIST dataset,
the training time = 21.315921783447266 s and the testing
time = 0.5247492790222168 s. Secondly, in case of using
CIFAR-10 dataset, the training time = 803.1955409049988 s
and the testing time = 4.01332426071167 s. A sample of
each dataset is shown in Fig. 6.

4.2 Experiment using MNIST dataset

MNIST is a handwritten number image dataset that con-
tains 60,000 images for learning and 10,000 for testing.
From 0 to 9 proper labels are assigned to each image. In the
experiment, optimization was carried out with ROA every
5 epochs, and learning was carried out using the parameters
gained. Each experiment is repeated 30 times to obtain an
average value (Table 3).

Figure 7 illustrates the accuracy of the CNN without opti-
mization vs. the accuracy of the CNN optimized by ROA
using MNIST dataset. Figure 8 illustrates the loss of the
CNN without optimization vs. the loss of the CNN opti-
mized by ROA using MNIST dataset.

From Table 3 and Fig. 7, it is shown that the accuracy
of the CNN optimized by ROA when learning 5 epoch is
98.97 percent, which is greater than the 97.62 percent of the
CNN without optimization. When examining any epoch, it
is discovered that the CNN optimized by ROA has higher
accuracy than the CNN without optimization.

4.3 Experiment using CIFAR‑10 dataset

The CIFAR-10 dataset consists of 50,000 learning images
and 10,000 testing images. It has a 10-class label and is
frequently used as a standard for object recognition. In
the experiment, optimization is done with ROA every 10
epochs, and learning is done with the parameters that are
enhanced. Each experiment is repeated 30 times to obtain
an average value. Table 4 illustrate the accuracy and Loss.

Table3 Accuracy and Loss of CNN without optimization and CNN
optimized by ROA using MNIST dataset

Epoch CNN without optimization CNN optimized by
ROA

Accuracy Loss Accuracy Loss

1 91.36 30.22 92.96 29.70
2 95.74 14.79 97.48 14.43
3 96.72 10.8 98.07 10.79
4 97.23 9.01 98.52 9.00
5 97.62 7.65 98.97 7.05

Fig. 7 Accuracy without
optimization vs. Accurracy with
ROA using MNIST dataset

13357RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network

1 3

Figure 9 illustrates the accuracy of the CNN without opti-
mization vs. the accuracy of the CNN optimized by ROA
using CIFAR-10 dataset. Figure 10 illustrates the loss of
the CNN without optimization vs. the loss of the CNN opti-
mized by ROA using CIFAR-10 dataset.

From Table 4 and Fig. 9, it is shown that the accu-
racy of the CNN optimized by ROA when learning
10 epoch is 73.40 percent, which is greater than the
71.73 percent of the CNN without optimization. When
examining any epoch, it is discovered that the CNN

optimized by ROA has higher accuracy than the CNN
without optimization.

5 Conclusions

In this paper, a new Q-learning RL-based Optimization
Algorithm (ROA) for CNN hyperparameter optimization
was proposed. Two datasets were used to test the pro-
posed RL model (MNIST dataset, and CIFAR-10 dataset).
Due to the use of RL for hyperparameter optimization,
very competitive results and good performance were pro-
duced. RL overcomes the limitations of the traditional
evolutionary techniques. RL algorithms are predicted to
breathe fresh life into the DOPs community. From the
experimental results, it is observed that the CNN opti-
mized by ROA has higher accuracy than CNN without
optimization. When using MNIST dataset, it is shown
that the accuracy of the CNN optimized by ROA when
learning 5 epoch is 98.97 percent, which is greater than
the 97.62 percent of the CNN without optimization. When
using CIFAR-10 dataset, it is shown that the accuracy of
the CNN optimized by ROA when learning 10 epoch is
73.40 percent, which is greater than the 71.73 percent of
the CNN without optimization.

Fig. 8 Loss without optimiza-
tion vs. Loss with ROA using
MNIST dataset

Table 4 Accuracy and Loss of CNN without optimization and CNN
optimized by ROA using CIFAR-10 dataset

Epoch CNN without optimization CNN optimized by ROA

Accuracy Loss Accuracy Loss

1 52.62 1.594 63.96 1.3115
2 63.19 1.074 64.54 1.0522
3 65.14 1.009 66.50 0.9927
4 68.39 0.9319 69.76 0.9136
5 68.75 0.9154 70.13 0.8974
6 70.59 0.8682 71.98 0.8515
7 70.59 0.8839 72.02 0.8664
8 70.89 0.8798 72.33 0.8623
9 71.05 0.8729 72.51 0.8554
10 71.73 0.8888 73.40 0.8686

13358 F. M. Talaat, S. A. Gamel

1 3

Funding Open access funding provided by The Science, Technology &
Innovation Funding Authority (STDF) in cooperation with The Egyp-
tian Knowledge Bank (EKB).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

Fig. 9 Accuracy without
optimization vs. accurracy with
ROA using CIFAR-10 dataset

Fig. 10 Loss without optimiza-
tion vs. loss with ROA using
CIFAR-10 datasett

13359RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network

1 3

included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad
H (2018) State-of-the-art in artificial neural network applications:
a survey. Heliyon 4(11):e00938

Andonie R, Florea AC (2020) Weighted random search for CNN hyper-
parameter optimization. arXiv preprint arXiv:2003.13300.

Bergstra J, Bengio Y (2012) Random search for hyper-parameter opti-
mization. J Mach Learn Research 13(2).

Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-
parameter optimization. Adv Neural Inform Process Syst 24.

Bergstra J, Yamins D, Cox D (2013) Making a science of model
search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In: International conference on machine
learning (pp. 115–123). PMLR.

Calabrese S, Donati E, Chousidis C (2020) Prediction of hearing loss
through application of Deep Neural Network. In: Audio Engineer-
ing Society Convention 148. Audio Engineering Society.

Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2015) Compound
rank-$ k $ projections for bilinear analysis. IEEE Trans Neural
Netw Learn Syst 27(7):1502–1513

Chicco D (2017) Ten quick tips for machine learning in computational
biology. BioData Mining 10(1):1–17

Chiong R, Beng OK (2007) A comparison between genetic algorithms
and evolutionary programming based on cutting stock problem.
Eng Lett 14(1):72–77

de Freitas N (2016) Bayesian optimization in a billion dimensions via
random embeddings.

Duong D, Waikel RL, Hu P, Tekendo-Ngongang C, Solomon BD
(2022) Neural network classifiers for images of genetic condi-
tions with cutaneous manifestations. Hum Gen Genom Adv
3(1):100053

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press.
Li L, Talwalkar A (2020) Random search and reproducibility for neural

architecture search. In: Uncertainty in artificial intelligence (pp.
367–377). PMLR.

Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y (2018a) Rank-con-
strained spectral clustering with flexible embedding. IEEE Trans
Neural Netw Learn Syst 29(12):6073–6082

Li Z, Nie F, Chang X, Yang Y, Zhang C, Sebe N (2018b) Dynamic
affinity graph construction for spectral clustering using multiple
features. IEEE Trans Neural Netw Learn Syst 29(12):6323–6332

Liashchynskyi P, Liashchynskyi P (2019) Grid search, random search,
genetic algorithm: a big comparison for NAS. arXiv preprint
arXiv:1912.06059.

Luo M, Nie F, Chang X, Yang Y, Hauptmann AG, Zheng Q (2017a)
Adaptive unsupervised feature selection with structure regulariza-
tion. IEEE Trans Neural Netw Learn Syst 29(4):944–956

Luo M, Chang X, Nie L, Yang Y, Hauptmann AG, Zheng Q (2017b)
An adaptive semisupervised feature analysis for video semantic
recognition. IEEE Trans Cybern 48(2):648–660

Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopou-
los D (2021) Image segmentation using deep learning: a survey.
IEEE Trans Pattern Anal Mach Intell.

Muhlenbein H (1991) Asynchronous parallel search by the parallel
genetic algorithm. In: Proceedings of the third IEEE Symposium
on Parallel and Distributed Processing (pp. 526–533). IEEE.

Ren P, Xiao Y, Chang X, Huang PY, Li Z, Chen X, Wang X (2021) A
comprehensive survey of neural architecture search: challenges
and solutions. ACM Comput Surv (CSUR) 54(4):1–34

Rojas R (1996) Neural networks-a systematic introduction. Springer,
Berlin, New-York

Sehgal A, La H, Louis S, Nguyen H (2019) Deep reinforcement learn-
ing using genetic algorithm for parameter optimization. In: 2019
Third IEEE International Conference on Robotic Computing
(IRC) (pp. 596–601). IEEE.

Snoek J, Rippel O, Swersky K, Kiros R, Satish N, Sundaram N, Adams
R (2015) Scalable bayesian optimization using deep neural net-
works. In: International conference on machine learning (pp.
2171–2180). PMLR.

Springenberg JT, Klein A, Falkner S, Hutter F (2016) Bayesian optimi-
zation with robust Bayesian neural networks. Adv Neural Inform
Process Syst 29.

Tahir W (2021) Deep learning for large-scale holographic 3d particle
localization and two-photon angiography segmentation (Doctoral
dissertation, Boston University).

Thanga Selvi R, Muthulakshmi I (2021) An optimal artificial neural
network based big data application for heart disease diagnosis
and classification model. J Ambient Intell Humaniz Comput
12(6):6129–6139

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-
WEKA: combined selection and hyperparameter optimization
of classification algorithms. In: Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and
data mining (pp. 847–855).

Tian Y (2020) Artificial intelligence image recognition method
based on convolutional neural network algorithm. IEEE Access
8:125731–125744

Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW (2020) Deep learn-
ing on image denoising: an overview. Neural Netw 131:251–275

Xiao X, Yan M, Basodi S, Ji C, Pan Y (2020) Efficient hyperparam-
eter optimization in deep learning using a variable length genetic
algorithm. arXiv preprint arXiv:2006.12703.

Xu J, An W, Zhang L, Zhang D (2019) Sparse, collaborative, or non-
negative representation: which helps pattern classification? Pat-
tern Recogn 88:679–688

Yamauchi Y (2020) Effective data augmentation method with sequence
numbers from chaos phenomenon for convolution neural network
learning Yuji Yamauchi, Yuichi Miyata, Yoko Uwate and Yoshi-
fumi Nishio.

Yan C, Chang X, Li Z, Guan W, Ge Z, Zhu L, Zheng Q (2021) Zeronas:
differentiable generative adversarial networks search for zero-shot
learning. IEEE Trans Pattern Anal Mach Intell.

Yu E, Sun J, Li J, Chang X, Han XH, Hauptmann AG (2018) Adaptive
semi-supervised feature selection for cross-modal retrieval. IEEE
Trans Multimedia 21(5):1276–1288

Yuan Q, Shen H, Li T, Li Z, Li S, Jiang Y, Zhang L (2020) Deep
learning in environmental remote sensing: achievements and chal-
lenges. Remote Sens Environ 241:111716

Zhang L, Luo M, Liu J, Chang X, Yang Y, Hauptmann AG (2019) Deep
top-k ranking for image-sentence matching. IEEE Trans Multimed
22(3):775–785

Zhu Z, Zhao H (2021) A survey of deep rl and il for autonomous driv-
ing policy learning. IEEE Trans Intell Transp Syst.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	RL based hyper-parameters optimization algorithm (ROA) for convolutional neural network
	Abstract
	1 Introduction
	2 Background
	2.1 Deep learning
	2.2 Advantages of deep learning (DL)
	2.3 Convolutional neural networks (CNN)
	2.4 Reinforcement learning (RL)

	3 Related work
	3.1 Problem definition
	3.2 Selected CNN hyperparameters
	3.3 RL based optimization algorithm (ROA)

	4 Experiment and results
	4.1 Used datasets
	4.2 Experiment using MNIST dataset
	4.3 Experiment using CIFAR-10 dataset

	5 Conclusions
	References

