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Abstract
Many real-world applications necessitate optimization in dynamic situations, where the difficulty is to locate and follow 
the optima of a time-dependent objective function. To solve dynamic optimization problems (DOPs), many evolutionary 
techniques have been created. However, more efficient solutions are still required. Recently, a new intriguing trend in deal-
ing with optimization in dynamic environments has developed, with new reinforcement learning (RL) algorithms predicted 
to breathe fresh life into the DOPs community. In this paper, a new Q-learning RL-based optimization algorithm (ROA) for 
CNN hyperparameter optimization is proposed. Two datasets were used to test the proposed RL model (MNIST dataset, and 
CIFAR-10 dataset). Due to the use of RL for hyperparameter optimization, very competitive results and good performance 
were produced. From the experimental results, it is observed that the CNN optimized by ROA has higher accuracy than CNN 
without optimization. When using the MNIST dataset, it is shown that the accuracy of the CNN optimized by ROA when 
learning 5 epoch is 98.97%, which is greater than the 97.62% of the CNN without optimization. When using the CIFAR-
10 dataset, it is shown that the accuracy of the CNN optimized by ROA when learning 10 epoch is 73.40 percent, which is 
greater than 71.73% of the CNN without optimization.
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1 Introduction

People can recognize items in their environment and objects 
in less than a second. Humans have been taught to recog-
nize things since they were children. Similarly, if computers 
can detect or categorize objects and environments by scan-
ning for low-level characteristics like edges and curves, they 
may use a sequence of convolutional layers to develop more 
abstract conceptions of what they see. Convolutional Neural 
Networks are used in neural networks to recognize and clas-
sify images (CNN). Image recognition is used in a variety of 
applications (Sehgal et al. 2019). Deep Neural Networks are 
responsible for most of the success in this area. While deep 

networks have enabled numerous intriguing and valuable 
applications, there are still several challenges to solve (Tian 
et al. 2020; Calabrese et al. (2020). One impediment is the 
lack of an analytical method for determining the appropri-
ate design for a deep network for tackling various issues. 
For many articles, writers design multiple distinct network 
topologies before deciding on the optimal one to utilize. This 
causes a knowledge and effort load in determining the appro-
priate architecture. Manually selecting and executing these 
architectures might be time intensive (Duong et al. 2022).

The implementation of CNN necessitates a set of settings 
that are independent of the data and that the machine learn-
ing researcher must manually modify. Hyperparameters are 
variables that affect the network structure and CNN's trained 
network (Tian et al. 2020). The hyperparameter optimiza-
tion challenge also includes finding a collection of hyperpa-
rameters that produces an accurate model in an acceptable 
amount of time. The task of identifying a suitable model of 
hyperparameter or the problem of optimizing a loss func-
tion across a graph-structured configuration space is known 
as hyperparameter optimization. It can be computationally 
costly to test every potential set of hyperparameter models. 
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As a result, the demand for an automated and organized 
search method is growing, and hyperparameter space, in 
general, is expanding.

Hyperparameter optimization is used to increase the 
accuracy of neural networks. which has a lot of real-world 
applications such as signature verification and handwrit-
ing analysis, healthcare, traveling salesman problem, 
image compression, stock exchange prediction, com-
puter vision, speech recognition, and natural language 
processing(Abiodun et al. 2018, Thanga et al. 2021).

The typical method of accomplishing hyperparameter 
optimization has been grid search (Chicco et al. 2017) or 
parameter sweep, which is an exhaustive search of a manu-
ally chosen subset of a learning algorithm's hyperparam-
eter space. A grid search algorithm must be directed by a 
performance metric, which is commonly assessed by cross-
validation on the training set or assessment on a held-out 
validation set. Figure 1 illustrates that Grid search using two 
hyperparameters with varying values. Each hyperparameter 
is assessed and compared with ten distinct values, for a total 
of 100 possible combinations. Blue outlines represent places 
with strong outcomes, while red contours represent regions 
with low results.

Random Search (Freitas et al. 2016) is also a hyperparam-
eter optimization approach, it is substituting the exhaustive 
enumeration of all combinations with a random selection of 
them. This applies to the discrete environment mentioned 
above, but it also applies to continuous and mixed areas. It 
can outperform Grid search, especially when just a limited 
number of hyperparameters impact the machine learning 
algorithm's ultimate performance. The optimization prob-
lem is said to have a low inherent dimensionality in this 
situation. Random Search is also embarrassingly parallel, 
and it allows past information to be included by selecting the 
distribution from which to sample. Figure 2 illustrates that 
For two hyperparameters, do a random search across pos-
sible combinations of values. In this example, 100 distinct 
random options are considered. When compared to a grid 

search, the green bars indicate that more individual values 
for each hyperparameter are examined.

On the other hand, Bayesian optimization (Thornton et al. 
2013) is a global optimization strategy for noisy black-box 
functions. Bayesian optimization, when used to hyperpa-
rameter optimization, creates a probabilistic model of the 
function mapping from hyperparameter values to the objec-
tive as assessed on a validation set. Bayesian optimization 
seeks to gather observations exposing as much information 
about this function and, in particular, the position of the 
optimum by repeatedly assessing a potential hyperparameter 
configuration based on the existing model and then updat-
ing it. Figure 3 illustrates that methods like Bayesian opti-
mization intelligently examine the universe of alternative 
hyperparameter options by determining which combination 
to investigate next based on past discoveries.

Rather than manually tuning these hyperparameters, a 
novel technique based on reinforcement learning (Minaee 
et al. 2021) is presented to tune hyperparameters for a convo-
lutional neural network. Instead of requiring a researcher to 
manually modify hyperparameter knobs in order to gradually 

Fig. 1  Grid search optimization

Fig. 2  Random search optimization

Fig. 3  Bayesian optimization
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converge to an ideal solution, this work automates the pro-
cess and allows an asynchronous reinforcement learning 
algorithm to automatically alter hyperparameters and dis-
cover an optimal configuration. When the algorithm has 
finished executing, the architecture is ready for usage. With 
so many presents and future image recognition applications, 
being able to quickly find appropriate network designs is 
crucial. In this paper, we will introduce a new Q-learning 
RL-based Optimization Algorithm (ROA) for CNN hyperpa-
rameters optimization. RL overcomes the limitations of the 
traditional evolutionary techniques. From the experimental 
results, it is observed that the CNN optimized by ROA has 
higher accuracy than CNN without optimization.

The following is how the rest of the paper is structured: 
the recent related works in CNN hyperparameter optimiza-
tion techniques are detailed in Sect. 2 in Sect. 2. The prob-
lem definition is described in Sect. 3. The findings and dis-
cussion are presented in Sect. 4 of the report. In Sect. 5, we 
talk about our conclusion.

2  Background

This section discusses the background knowledge of deep 
learning, advantages of deep learning, Convolutional Neural 
Networks, and Reinforcement Learning.

2.1  Deep learning

Deep learning is a type of machine learning technique that 
employs numerous layers to extract higher-level charac-
teristics from raw input In image processing, for example, 
lower layers may recognize boundaries, while higher layers 
may identify concepts meaningful to humans, such as digits, 
characters, or faces (Tahir et al. 2021, Yuan et al. 2020). 
The majority of modern deep learning models are based 
on artificial neural networks, especially convolutional neu-
ral networks (CNNs), though they can contain probabilistic 
formulas or latent variables structured layer-wise in deep 
generative models like Bayesian networks and deep Boltz-
mann devices. Each level of deep learning learns to turn the 
data it receives into a little more complex and composite rep-
resentation; The second layer may create and encode edge 
configurations; the third layer may encode a nose and eyes, 
and the fourth layer may identify the presence of a face in 
the image. Furthermore, a deep learning process can figure 
out which traits belong at which level by itself. This does 
not eliminate the necessity for hand-tuning; for example, 
adjusting the number of levels and the size of the layers can 
yield variable degrees of abstraction (Minaee et al. 2021; 
Luo et al. 2017a, b).

2.2  Advantages of deep learning (DL)

Because of its powerful automatic representation capabili-
ties, deep learning has achieved significant discoveries in 
a variety of domains (Ren et al. 2021). The importance of 
neural architecture design in data feature representation and 
final performance has been demonstrated. The neuronal 
architecture, on the other hand, is strongly reliant on the 
researchers' existing knowledge and experience. People find 
it challenging to break out from their original thinking para-
digm and develop an optimal model due to the constraints of 
human intrinsic knowledge. As a result, it seems logical to 
limit human interaction as much as possible and let the algo-
rithm develop the neural architecture on its own. The Neural 
Architecture Search (NAS) algorithm is a game-changing 
technique, and the research surrounding it is complex and 
extensive. As a result, a thorough and systematic survey of 
the NAS is required. Like in (Yan et al. 2021), authors turn 
to neural architecture search (NAS) and aim to integrate 
NAS approaches into the ZSL world for the first time.

2.3  Convolutional neural networks (CNN)

The term "convolutional neural network" refers to the net-
work's use of a mathematical procedure known as convo-
lution. Convolutional networks are a subset of neural net-
works that employ convolution instead of generic matrix 
multiplication in at least one layer (Goodfellow et al. 2016; 
Luo et al. 2017a, b). As illustrated in Fig. 4, the convolu-
tional neural networks consist of three layers. An input layer, 
hidden layers, and an output layer make up a convolutional 
neural network. Any intermediary layers in a feed-forward 
neural network are referred to be hidden since the activation 
function and final convolution hide their inputs and outputs. 
The convolution layer computes neurons' output related to 
particular regions in the input volume, with each comput-
ing a dot product between their weights and a tiny region in 
the input volume to which they are connected (Chang et al. 
2015). By executing a down-sampling process along the spa-
tial dimensions, pooling reduces the number of retrieved 
features. The dense layers are responsible for calculating 
either the hidden convolutions or the class scores.

2.4  Reinforcement learning (RL)

Reinforcement learning tries to educate an agent on how to 
complete a task by allowing the agent to explore and experi-
ence the environment while maximizing a reward signal. It 
differs from supervised machine learning in that the algo-
rithm learns from a set of samples labeled with the right 
responses. One advantage of reinforcement learning over 
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supervised machine learning is that the reward signal may 
be generated without prior knowledge of the proper path 
of action, which is especially beneficial if such a dataset 
does not exist or is impractical to gather. While reinforce-
ment learning may appear to be comparable to unsupervised 
machine learning at first look, they are not. Unsupervised 
machine learning seeks to discover some (hidden) organiza-
tion inside a dataset, whereas reinforcement learning does 
not seek to discover structure in data (Yamauchi et al. 2020). 
Reinforcement learning, on the other hand, seeks to educate 
an agent on how to accomplish a task through incentives and 
experiments. There are two types of algorithms in reinforce-
ment learning: value-based algorithms and policy-based 
algorithms. Value-based algorithms attempt to approximate 
or uncover the value function that provides a reward value 
to state-action pairings. These reward values can then be 
included in a policy. The raw input in an image recognition 
application could be a matrix of pixels; the first layer may 
extract the pixels and detect edges (Zhu et al. 2021).

3  Related work

The most current works for CNN hyperparameter optimiza-
tion, such as grid search, Bayesian optimization, Genetic 
Algorithm (GA), and random search, are discussed in this 
section.

For each hyperparameter setting on a defined range of 
values, the grid search method is a trial-and-error method. 
The use of a grid search has the advantage of being eas-
ily parallelized (Bergstra et al. 2012). The boundaries and 
steps between values of hyperparameters will be specified 
by researchers and practitioners, resulting in a grid of con-
figurations (Li et al. 2020). However, if one task fails, the 
others will follow suit. In most circumstances, a machine 
learner will start with a small grid and subsequently expand 
it, making it more efficient to set the best grid while search-
ing for a new one (Li et al. 2020). Due to dimensionality 
constraints, four hyperparameters will become unworkable 

as the number of functions to assess grows with each addi-
tional parameter.

The random search method “randomly” samples the 
hyperparameter space. According to Bergstra et al. (2012) 
random search provides greater advantages than grid search 
in terms of applications that can continue to run even if the 
computer cluster fails. It allows practitioners to adjust the 
"resolution" on the fly, as well as add additional trials to the 
set or even skip the fail test entirely. Simultaneously, the 
random search process can be stopped at any time, forming 
a complete experiment that can be run in parallel (Bergstra 
et al. 2011). Furthermore, if more computers become avail-
able, a new trial can be added to the experiment without 
endangering the results (Bergstra et al. 2013).

Bayesian optimization is another recent advancement in 
hyperparameter tuning. It employs the Gaussian Process, 
which is a distribution over functions. To train with the 
Gaussian Process, it is necessary to fit it to the given data, 
as it will generate a function that closely resembles the data. 
The Gaussian process will optimize the predicted improve-
ment and surrogate the model which is the likelihood of the 
new trial and will enhance the current best observation in 
Bayesian optimization. The next step will be to determine 
the largest expected improvement, which can be done at any 
point in the search space. Spearmint, which uses the Gauss-
ian process, is a widely used example of Bayesian optimiza-
tion (Snoek et al. 2015). Bergstra et al. (2012) contend that 
the Bayesian optimization method is constrained because 
it works with high-dimensional hyperparameters and is 
computationally expensive. As a result, it performs poorly. 
Bayesian optimization (BO) works by fitting a probabilistic 
model to the data and then utilizing that model as a cheap 
proxy to select the next most promising place to assess. 
The Gaussian Process Regressor, Bayesian Neural Network 
(Springenberg et al. 2016), and Random Forest Regressor 
are some of the proxy models that have been proposed.

Genetic algorithms use a binary representation of indi-
viduals (each individual is a string of bits), making mutation 
and crossover easier to implement. Such processes generate 

Fig. 4  Conventional neural network
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candidate values that fall outside of the searchable area. 
On the other hand, evolutionary algorithms rely on specific 
data structures and require carefully crafted mutation and 
crossover, which is strongly reliant on the situation at hand 
(Chiong et al. 2007). When there is no knowledge of the 
gradient function at assessed sites, genetic algorithms can 
be applied according to the author (Rojas et al. 1996). When 
there are multiple local minima or maxima, it can produce 
good results. Unlike any other search method, the function 
is determined in multiple places concurrently rather than 
in a single location. They can be done on many processors 
because the function calculations on all points of a popu-
lation are independent of one another (Muhlenbein et al. 
1991). They can also be easily parallelized, allowing numer-
ous approaches to the optimal to be processed in parallel.

(Xiao et al. 2020) employed a variable-length genetic 
algorithm in 2020 to systematically tweak the hyperparam-
eters of CNN to increase performance. This work includes a 
detailed comparison of several optimization methods such as 
random search, large-scale evolution, and traditional genetic 
algorithms. (Liashchynskyi et al. 2019) conducted a rigorous 
evaluation of optimization strategies such as random search, 
grid search, and genetic algorithm. These algorithms were 
utilized to create the Conventional Neural Network by the 
authors. The dataset for their research is the CIFAR-10 data-
set with augmentation and pre-processing procedures. Grid 
search, according to the authors' experience, is not ideal for 
huge search spaces. When there is a huge search space and 
too many parameters to optimize, the authors recommend 
using the genetic algorithm. Adrian Catalin et al. suggested 
a new form of a random search for hyperparameter optimiza-
tion for machine learning algorithms in 2020 (Andonie et al. 
2020). This improved random search version creates new 
values with a likelihood of change for each hyperparameter. 
The proposed variant of random search outperforms the tra-
ditional random search approach. The authors used this for 
optimizing the CNN hyperparameters. This can be used for 
any optimization problem in the discrete domain.

Authors in (Li et al. 2018a, b) present a flexible embed-
ding approach for a rank-constrained SC. To recover the 
block-diagonal affinity matrix of an ideal graph, an adap-
tive probabilistic neighborhood learning approach is used. 
The suggested algorithm's performance is demonstrated 
by experimental findings on both synthetic and real-world 
data sets. In Sebe et al. (2018), the authors suggested a new 
method for assigning affinity weights to data points on a 
per-data-pair basis. The proposed method is effective in 
learning the affinity network while also fusing characteris-
tics, resulting in better clustering results. A unique Event-
Adaptive Concept Integration algorithm is developed, which 
uses different weights to measure the efficiency of semanti-
cally related concepts (Xu et al. 2019). Authors in Yu et al. 
(2018) employ semantic regression to increase the nearby 

link between data with similar semantics. To address the 
data ambiguity problem, the authors of Zhang et al. (2019) 
loosen the usual ranking loss and propose a unique deep 
multi-modal network with a top-k ranking loss.

3.1  Problem definition

This section discusses the selected hyperparameters and the 
used methodology. The proposed algorithm relies on using 
the Reinforcement Learning (RL) algorithm to optimize the 
CNN hyperparameters. Firstly, we explain the used CNN 
hyperparameters in Sect. 4.1. Secondly, we explain the pro-
posed Q-learning RL-based Optimization Algorithm (ROA) 
in Sect. 4.2 in detail.

3.2  Selected CNN hyperparameters

It can be difficult to define model architectures because there 
are so many design options. The author does not know what 
the best model architecture for a given model is right now. 
As a result, the purpose of this article is to investigate a 
variety of options. An actual machine learner will instruct 
the machine to conduct this investigation and automatically 
create the best model architecture. The hyperparameters are 
variables in the configuration that are external to the model 
and whose value cannot be predicted from the data. There 
are two different types of hyperparameters: (i) Hyperparam-
eter that determines the network structure such as (a) Kernel 
Size—the size of the filter. (b) Kernel Type-values of the 
actual filter (e.g., edge detection, sharpen). (c) Stride-the 
rate at which the kernel passes over the input image. (d) 
Padding-add layers of 0 s to make sure the kernel passes over 
the edge of the image. (e) Hidden layer layers between input 
and output layers. (f) Activation functions-allow the model 
to learn nonlinear prediction boundaries. (ii) Hyperparam-
eter that determines the network trained such as (a) Learning 
rate-regulates on the update of the weight at the end of each 
batch. (b) Momentum–regulates the value to let the previ-
ous update influence the current weight update. (c) Some 
epochs–the iterations of the entire training dataset to the 
network during training. (d) Batch size–the number of pat-
terns shown to the network before the weights are updated. 
The hyperparameters investigated in this study are listed in 
Table 1. Each hyperparameter is given a more concise and 
understandable name (abbreviation). In addition, ranges are 
denoted using square brackets. The network-trained hyper-
parameters are listed in Table 2.

Many real-world applications necessitate optimization in 
dynamic situations, where the difficulty is to locate and fol-
low the optima of a time-dependent objective function. To 
solve Dynamic Optimization Problems (DOPs), many evo-
lutionary techniques have been created. However, more effi-
cient solutions are still required. Recently, a new intriguing 
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trend in dealing with optimization in dynamic environments 
has developed, with new Reinforcement Learning (RL) 
algorithms predicted to breathe fresh life into the DOPs 

community. In this paper, a new Q-learning RL-based Opti-
mization Algorithm (ROA) for CNN hyperparameter opti-
mization is proposed.

3.3  RL based optimization algorithm (ROA)

RL is an AI technique in which an agent performs a task in 
order to be rewarded. The agent receives the current sta-
tus of the environment and takes an appropriate response. 
The action made causes a change in the environment, and 
the agent is notified of the change through a reward. The 
ROA learns to select the optimal values for the selected 
parameters. The ROA learns to select the optimal values 
for the selected parameters. ROA is used to optimize the 
hyperparameters for CNN. The overall steps of ROA are 
shown in Algorithm 1. The ROA contains an agent called 
Optimization agent (OA) as shown in Fig. 5.

Table1  Network structure hyperparameters (NSH)

Hyperparameter Abbreviation Range

Number of Filters Filters_1 [16, 32, 64, 96]
Kernel Size Ksize_1 [3, 4, 5]
Number of Filters Filters_2 [48, 64, 96, 128]
Kernel Size Ksize_2 [3, 4, 5]
Number of Filters Filter_3 [64, 96, 128]
Kernel Size Ksize_3 [3, 4, 5]
Hidden Layer full_hidden1 [60, 100, 125]
Hidden Layer full_hidden2 [60, 100, 125]
Activation activation [„relu‟, „lrelu‟, „elu‟]

Table 2  Network trained 
hyperparameters (NTH)

Hyperparameter Abbreviation Range

Learning rate Learning rate Learning rate
Learning_rates Learning_rates Learning_rates
[0.001, 0.003, 0.01,0.03] [0.001, 0.003, 0.01,0.03] [0.001, 0.003, 0.01,0.03]
Batch Size Batch Size Batch Size

Fig. 5  RL based Optimization 
framework

Symbol Meaning 
PT Parameters Table  
SV Select Optimal Value 

Reward

PTSV

Optimzation Agent 
(OA) 

Policy

Q-Learning

State Model

Action
New 
State

State, Action, Next state

PT 

Reward
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 RRLL  bbaasseedd  OOppttiimmiizzaattiioonn  AAllggoorriitthhmm  ((RROOAA))  

 Input:  
o The data in the PT 

 Output:  
o The optimized values for each hyperparamert in PT. 

Symbol Meaning 
PT Parameters Table  

CNN Convolutional Neural Network 

 Steps:  
1:  For each hyperparameter do 
2:   Create a Q-table containing two columns [State: data in PT, Action: Selecting the best value for 

each hyperparameter] initialized to zero.  

3:  //Taking Action 
4: The agent interacts with the environment (training and testing the CNN) and makes updates to 

the state-action pairs in the Q-table Q[state, action]. 

5: The agent uses the Q-table as a reference and views all possible actions (all possible available 

values for each hyperparameter) for a given state. Then it selects the best value for each 

hyperparameter with the best accuracy. 

8: // Updating the Q-table 

9: Update the values in the Q-table 

  10:  //Update the data in PT 
  11:  The OA updates the data in the PT (update the values for each hyperparamert in PT) 

  12:  Next 

.

.

.

As shown from Fig. 5, The ROA is used to update the 
values of the hyperparameters in the parameter Table (PT) 
which is a table used to save the values of all hyperparam-
eters (either Network Structure Hyperparameters (NSH) or 
Network Trained Hyperparameters (NTH)).

The overall steps of the RL-based Optimization Algo-
rithm (ROA) are as follows: (i) For each hyperparameter, 
create a Q-table containing two columns (state and action). 
The state is described as the overall data in the parameter 
table, and the action is described as the selection of the best 

Fig. 6  Example of some images; A MNIST dataset, B CIFAR-10 dataset Figs. 1, 5

value for each hyperparameter. (ii) The agent interacts with 
the environment (train and test the CNN using the param-
eters in the parameter table). (iii) Makes updates to the state-
action pairs in the Q-table Q[state, action]. (iv) The agent 
uses the Q-table as a reference and views all possible actions 
(all possible available values for each hyperparameter) for a 
given state. (v) Then it selects the best value for each hyper-
parameter with the best accuracy. (vi) Update the values in 
the Q-table. (vii) The OA updates the data in the PT (update 
the values for each hyperparameter in the parameter table).
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4  Experiment and results

4.1  Used datasets

We experiment with two datasets in this study. The 
MNIST dataset is used in the first experiment, and the 
CIFAR-10 dataset is used in the second. We also cal-
culate the training time and testing time in case of using 
each dataset. Firstly, in case of using MINIST dataset, 
the training time = 21.315921783447266 s and the testing 
time = 0.5247492790222168 s. Secondly, in case of using 
CIFAR-10 dataset, the training time = 803.1955409049988 s 
and the testing time = 4.01332426071167 s. A sample of 
each dataset is shown in Fig. 6.

4.2  Experiment using MNIST dataset

MNIST is a handwritten number image dataset that con-
tains 60,000 images for learning and 10,000 for testing. 
From 0 to 9 proper labels are assigned to each image. In the 
experiment, optimization was carried out with ROA every 
5 epochs, and learning was carried out using the parameters 
gained. Each experiment is repeated 30 times to obtain an 
average value (Table 3).

Figure 7 illustrates the accuracy of the CNN without opti-
mization vs. the accuracy of the CNN optimized by ROA 
using MNIST dataset. Figure 8 illustrates the loss of the 
CNN without optimization vs. the loss of the CNN opti-
mized by ROA using MNIST dataset.

From Table 3 and Fig. 7, it is shown that the accuracy 
of the CNN optimized by ROA when learning 5 epoch is 
98.97 percent, which is greater than the 97.62 percent of the 
CNN without optimization. When examining any epoch, it 
is discovered that the CNN optimized by ROA has higher 
accuracy than the CNN without optimization.

4.3  Experiment using CIFAR‑10 dataset

The CIFAR-10 dataset consists of 50,000 learning images 
and 10,000 testing images. It has a 10-class label and is 
frequently used as a standard for object recognition. In 
the experiment, optimization is done with ROA every 10 
epochs, and learning is done with the parameters that are 
enhanced. Each experiment is repeated 30 times to obtain 
an average value. Table 4 illustrate the accuracy and Loss.

Table3  Accuracy and Loss of CNN without optimization and CNN 
optimized by ROA using MNIST dataset

Epoch CNN without optimization CNN optimized by 
ROA

Accuracy Loss Accuracy Loss

1 91.36 30.22 92.96 29.70
2 95.74 14.79 97.48 14.43
3 96.72 10.8 98.07 10.79
4 97.23 9.01 98.52 9.00
5 97.62 7.65 98.97 7.05

Fig. 7  Accuracy without 
optimization vs. Accurracy with 
ROA using MNIST dataset
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Figure 9 illustrates the accuracy of the CNN without opti-
mization vs. the accuracy of the CNN optimized by ROA 
using CIFAR-10 dataset. Figure 10 illustrates the loss of 
the CNN without optimization vs. the loss of the CNN opti-
mized by ROA using CIFAR-10 dataset.

From Table 4 and Fig. 9, it is shown that the accu-
racy of the CNN optimized by ROA when learning 
10 epoch is 73.40 percent, which is greater than the 
71.73 percent of the CNN without optimization. When 
examining any epoch, it is discovered that the CNN 

optimized by ROA has higher accuracy than the CNN 
without optimization.

5  Conclusions

In this paper, a new Q-learning RL-based Optimization 
Algorithm (ROA) for CNN hyperparameter optimization 
was proposed. Two datasets were used to test the pro-
posed RL model (MNIST dataset, and CIFAR-10 dataset). 
Due to the use of RL for hyperparameter optimization, 
very competitive results and good performance were pro-
duced. RL overcomes the limitations of the traditional 
evolutionary techniques. RL algorithms are predicted to 
breathe fresh life into the DOPs community. From the 
experimental results, it is observed that the CNN opti-
mized by ROA has higher accuracy than CNN without 
optimization. When using MNIST dataset, it is shown 
that the accuracy of the CNN optimized by ROA when 
learning 5 epoch is 98.97 percent, which is greater than 
the 97.62 percent of the CNN without optimization. When 
using CIFAR-10 dataset, it is shown that the accuracy of 
the CNN optimized by ROA when learning 10 epoch is 
73.40 percent, which is greater than the 71.73 percent of 
the CNN without optimization.

Fig. 8  Loss without optimiza-
tion vs. Loss with ROA using 
MNIST dataset

Table 4  Accuracy and Loss of CNN without optimization and CNN 
optimized by ROA using CIFAR-10 dataset

Epoch CNN without optimization CNN optimized by ROA

Accuracy Loss Accuracy Loss

1 52.62 1.594 63.96 1.3115
2 63.19 1.074 64.54 1.0522
3 65.14 1.009 66.50 0.9927
4 68.39 0.9319 69.76 0.9136
5 68.75 0.9154 70.13 0.8974
6 70.59 0.8682 71.98 0.8515
7 70.59 0.8839 72.02 0.8664
8 70.89 0.8798 72.33 0.8623
9 71.05 0.8729 72.51 0.8554
10 71.73 0.8888 73.40 0.8686
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