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Abstract
Human activity recognition (HAR), which aims at inferring the behavioral patterns of people, is a fundamental research 
problem in digital health and ambient intelligence. The application of machine learning methods in HAR has been investi-
gated vigorously in recent years. However, there are still a number of challenges confronting the task, where one significant 
barrier lies in the longstanding shortage of annotations. To address this issue, we establish a new paradigm for HAR, which 
integrates active learning and semi-supervised learning into one framework. The main idea is to reduce the annotation cost 
by actively selecting the most informative samples for annotation, as well as leveraging the unlabelled instances in a semi-
supervised way. In particular, we propose to utilize the massive unlabelled data via temporal ensembling of convolutional 
neural networks (CNN), which yields robust consensus predictions by aggregating the outputs of the training networks on 
different epochs. We conducted extensive experiments on three public benchmark datasets. The proposed method achieves 
Macro F1 values of 0.76, 0.45 and 0.91 in a low annotation scenario on PAMAP2, USCHAD and UCIHAR datasets respec-
tively, outperforming a multitude of state-of-the-art deep models. The ablation study proves the effectiveness of the two 
components of the framework, i.e., active learning-based sample selection and semi-supervised model training with temporal 
ensembling, in alleviating the issue of insufficient labels. Cross-validation and statistical significance experiments further 
demonstrate the robustness and generalization ability of the proposed method. The source codes are available at https://​
github.​com/​Haixi​aBi19​82/​ActSe​miCNN​Act.

Keywords  Active learning · Convolutional neural network · Human activity recognition · Semi-supervised learning · 
Temporal ensembling
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LSTM	� Long short-term memory
BvSB	� Best-versus-second-best
SGD	� Stochastic gradient descent
CV	� Cross-validation
LOSO-CV	� Leave-one-subject-out CV
ActCNN	� Active CNN
ActSemiCNN	� Active semi-supervised CNN
DeepConvLSTM	� Deep convolutional LSTM
CoTrCNN	� Co-training-based CNN
ConvAE	� Convolutional auto-encoder
MLP	� Multi-layer perceptron
MTSelfCNN	� Multi-task self-supervised CNN
SemiConvAttn	� Attention-based SSL Convolution
MeanTeacher	� Mean teacher
DAL	� Dynamic active learning

1  Introduction

Many countries are currently experiencing a rapidly age-
ing population, leading to an immense pressure for health-
care resources (Chen et al. 2011). An appealing solution 
to this issue is to expand the role of continuous healthcare 
monitoring to private homes, complementing and potentially 
reducing the need for hospital inpatient care and face-to-face 
interaction with health professionals (Noor et al. 2020). In 
this context, smart home technology emerged as a feasible 
approach to attain this goal (Amiribesheli et al. 2015). Espe-
cially, the ubiquity of wearable devices and smartphones 
makes monitoring data easily accessible (Bi et al. 2021). 
This creates an opportunity to leverage the massive sensor 
data to extract clinically relevant information. Automatic 
human activity recognition (HAR) is therefore an enabling 
step towards inferring the behavior of people, further facili-
tating decision making and necessary interventions from 
carers and health-care professionals (Diethe et al. 2017).

HAR has drawn extensive attention in recent years, and 
a corpus of machine learning approaches has been explored 
to address this problem, such as decision trees (Xu et al. 
2019), support vector machines  (Khan et al. 2014), and 
naive Bayesian networks (Gomes et al. 2012). In particular, 
the current state-of-the-art performance in HAR consists in 
using deep learning architectures like Convolutional neural 
networks (CNN)  (Wan et al. 2020; Gao et al. 2021) and long 
short-term memory (LSTM)  (Ullah et al. 2019; Singh et al. 
2021). The main benefit of these methods is that they can 
automatically extract discriminative and data-driven features 
from the raw input data.

Despite this remarkable progress, a significant chal-
lenge confronting this task lies in the lack of annota-
tions, which the aforementioned methods heavily rely 
on (Bi et al. 2021). In real-world activity recognition sys-
tems, annotating HAR data is not only labour-intensive 

and time-consuming, but also demands domain-specific 
knowledge and skills (Bi et al. 2021). Furthermore, the 
annotation of HAR data in real life (through unscripted 
experiments) has some privacy and ethical concerns that 
may limit the annotation process (Zeng et al. 2017). These 
factors result in a noticeable scarcity of labelled data. 
Under these circumstances, how to achieve a favourable 
performance with limited annotations becomes a challeng-
ing task.

Semi-supervised learning (SSL) and active learning are 
two compelling solutions to tackle this issue. Semi-super-
vised learning improves the model’s performance and gener-
alization ability by leveraging unlabelled data, while active 
learning enables to reduce the amount of annotations neces-
sary by strategically choosing samples with maximal infor-
mation and highest training utility (Bi et al. 2021). Owing 
to their lower dependence on annotations, the application 
of SSL and active learning on HAR has evoked increasing 
interests recently. Semi-supervision paradigms, such as self-
training  (Bota et al. 2019), co-training (Chen et al. 2020; 
Lv et al. 2018) and graph-based models (Han et al. 2019) 
have been successfully applied in HAR. Active learning 
effectively boosts the performance of HAR as well, where 
different active sample selection strategies are exploited dur-
ing the active learning process, including uncertainty (Bi 
et al. 2021), diversity (Saito et al. 2015) and representative-
ness (Lughofer 2012) based schemes.

Given that both paradigms are effective in overcoming 
the hurdle of label scarcity, yet solve this problem from dif-
ferent perspectives, we propose to explore the combination 
of active learning and SSL for HAR task, in the hope of 
enhancing the labelling efficiency with the former and taking 
advantage of unlabelled data with the latter. Active semi-
supervised learning has been studied in a few image related 
tasks (Rottmann et al. 2018; Zhang et al. 2019). However, 
to our knowledge, the integration of active learning in semi-
supervised learning has never been investigated in HAR.

With the booming development of deep learning, apply-
ing deep models in SSL has aroused growing attention and 
shown remarkable improvements in performance  (Zeng 
et al. 2017; Chen et al. 2020). Most of the current SSL 
methods work in an iterative manner. They usually employ 
the network of the last epoch in each iteration to predict the 
labels of unlabelled samples and use these predictions as 
training targets for the following iteration. However, if the 
predictions of the latest epoch are unreliable—which nor-
mally happens due to various degrees of randomness in deep 
neural networks—they will mislead the consequent model 
training, further worsening the final performance. Based on 
the findings that an ensemble of multiple neural networks 
generally generates more robust predictions than a single 
network (Srivastava et al. 2014a), we propose to incorpo-
rate a temporal ensemble (Laine and Aila 2016) to CNN via 
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aggregating the history outputs of the network with dropout 
regularization during training for HAR.

Overall, this paper proposes a deep active semi-super-
vised approach for human activity recognition, in order to 
promote the recognition performance with reduced annota-
tion cost. The main novelties and contributions of the pro-
posed approach are threefold. 

1.	 We design a novel deep HAR model incorporating active 
learning and semi-supervised learning into one frame-
work, which improves the model’s performance in a 
low annotation regime by selecting the most informa-
tive samples to be annotated and taking advantage of 
the information of massive unlabelled instances. To the 
best of our knowledge, this is the first work to combine 
these two techniques into one framework for HAR.

2.	 A novel unsupervised loss term is introduced for 
employing the temporal ensemble of the deep model 
subject to consistency regularization, effectively ena-
bling semi-supervised learning in combination with the 
supervised loss component. This unsupervised loss term 
reduces the impact of prediction uncertainty, producing 
more accurate and stable predictions for activities.

3.	 We evaluate our proposed method, which we call Act-
SemiCNN, on three real benchmark datasets for activity 
recognition, i.e., PAMAP2, USCHAD and UCIHAR 
datasets. Extensive experiments were conducted to 
assess the proposed approach. The results demonstrate 
that ActSemiCNN achieves state-of-the-art recognition 
performance with significantly reduced annotation cost, 
and exhibits strong robustness and generalization ability.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly recalls related paradigms and methodologies. 
We detail the proposed deep active semi-supervised method 
in Sect. 3. Section 4 presents a comparative study applied to 
real benchmark datasets. We discuss the proposed method 
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 � Related work

In this section we review related works in human activity 
recognition, where the deep learning-based methods are 
described in Sect. 2.1, and the active learning and SSL-
based methods are introduced in Sect. 2.2.

2.1 � Deep learning‑based activity recognition

In the past decade, most wearable sensor-based HAR meth-
ods involve feature engineering based on domain exper-
tise (Bi et al. 2020). However, these methods are relatively 
limited as they rely on human creativity to come up with 

novel features and lack the power to capture underlying 
explanatory factors in low-level sensory inputs (Saeed et al. 
2019; Merritt et al. 2018).

Most recently, the explosion of deep learning techniques 
has paved a new way for a broad spectrum of problems 
as they can automatically extract representative features. 
Kumar et al. (2021) studied deep models, diverse embed-
ding representations and ensembling technique on co-mor-
bidity recognition from clinical records. The research of 
deep learning frameworks in HAR have been studied in a 
number of works (Chen and Xue 2015; Ordóñez and Roggen 
2016; Yao et al. 2017; Bianchi et al. 2019; Haresamudram 
et al. 2019; Wan et al. 2020). Chen and Xue (2015) firstly 
proposed a CNN-based HAR method to classify activities 
collected with acceleration sensors. A CNN was utilized to 
automatically learn discriminative features from the signal 
sequences of accelerometers and gyroscopes in Bianchi et al. 
(2019). Haresamudram et al. (2019) leveraged unsupervised 
convolutional auto-encoder to firstly extract feature represen-
tation and then used multi-layer perceptron (MLP) to tune 
the network. To reduce the cost of hardware facilities, Wan 
et al. (2020) designed a real-time CNN-based HAR method 
for local feature extraction from smartphone accelerometer 
data. In Gao et al. (2021), a new multi-branch CNN was 
introduced, which performs kernel selection among multiple 
branches by means of attention mechanism.

In addition, recurrent neural networks (RNN) show com-
petitive results when applied to HAR tasks. RNN and their 
extensions, such as gated recurrent unit and long short-term 
memory (LSTM), have been applied for HAR in several 
recent publications. Ordóñez and Roggen (2016) combined 
LSTM and CNN to explicitly model the temporal dynam-
ics of sequential data, achieving prominent performance in 
HAR from sensor data. Murad and Pyun (2017) proposed to 
use RNN for building recognition models that are capable of 
capturing long-range dependencies in variable-length input 
sequences. Convolutional and recurrent neural networks 
were integrated to exploit local interactions among similar 
mobile sensors and extract temporal relationships to model 
signal dynamics in Yao et al. (2017). Ullah et al. (2019) 
developed an end-to-end deep model which consists of a 
single layer neural network for data pre-processing and a 
stacked multi-layer LSTM network. Attention mechanism 
was further incorporated with LSTM in Singh et al. (2021), 
which not only captures the spatio-temporal features but also 
learns important time points.

The emerging formulation of self-supervised learning 
was applied in HAR in recent two years. Saeed et al. (2019) 
designed an auxiliary task of recognizing diverse trans-
formations performed on the raw input features, which is 
implemented by training a multi-task CNN, yielding features 
with high generalization ability. Haresamudram et al. (2020) 
introduced masked reconstruction to HAR task as a viable 
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self-supervised pre-training objective, and demonstrated 
improved performance over state-of-the-art semi-supervised 
learning methods. A contrastive predictive coding frame-
work was developed (Haresamudram et al. 2021) to capture 
the underlying temporal structure of HAR data, leading to 
significantly improved recognition performance.

2.2 � SSL and active learning‑based HAR methods

Semi-supervised learning has been extensively used for 
sensor-based activity recognition. Semi-supervision based 
HAR methods can be categorized from different perspec-
tives. Considering how the unlabelled samples are utilized, 
they can be classified into self-training, co-training and 
graph-based methods (Zhu et al. 2018). Lopes et al. (2012) 
is a self-training-based approach, which uses an ensemble of 
classifiers to alternatively select the unlabelled samples with 
the most confident predictions and assume their predicted 
labels are correct in order to assist further training of the 
classifiers. Co-training (Chen et al. 2020) selects confident 
samples from independent feature spaces for two classifiers 
first and then the selected samples with the estimated labels 
are added to the training set. Liu et al. (2021) developed 
an HAR approach based on graph convolutional networks, 
which encodes arbitrary graphs by automatically updating 
the structure information under manifold regularization.

According to how features are extracted and utilized, 
semi-supervised HAR methods can be classified into fea-
ture engineering based methods (Subramanya et al. 2012) 
and feature learning based methods. One typical feature 
engineering based method was designed in Subramanya 
et al. (2012), which introduces boosted decision stumps 
based discriminative method to select features. The advent 
of deep learning enables the boosting of deep SSL-based 
HAR methods. Zeng et al. (2017) utilized unlabelled data in 
both feature learning and model learning stages using CNN-
Ladder architecture. An adversarial network with an auto-
encoder and two discriminator networks represented by fully 
connected layers was developed in Balabka (2019), which 
relieves the heavy reliance on large labelled dataset. Chen 
et al. (2020) designed a co-training HAR framework inte-
grating attention mechanism with recurrent convolutional 
models. The state-of-the-art mean teacher semi-supervised 
model was introduced to HAR in Narasimman et al. (2021), 
which averages model weights over training steps to produce 
more robust results.

Active learning is another promising solution to address 
the annotation scarcity issue. It aims to reduce the labelling 
cost by selecting the most informative samples for annota-
tion. Uncertainty sampling is the most extensively used strat-
egy in active learning. Entropy (Hossain et al. 2017), mar-
ginal sampling (Bi et al. 2021) and least confident (Alemdar 
et al. 2011) measures have been adopted to measure the 

informativeness of the instances in HAR. In Shahmoham-
madi et al. (2017), Query-by-committee was employed to 
identify the samples that are worth annotating.

Table 1 tabulates the most representative works in deep 
learning, SSL and active learning-based human activity rec-
ognition. Analyzing the above methods, we can find that: 
(1) The application of active learning and SSL in HAR has 
been intensively investigated, and demonstrated effective 
in reducing labelling costs. However, none of the above 
methods focus on activity recognition by jointly combining 
active learning and SSL. (2) The above analyzed deep SSL 
models mostly employ the predictions of the network on the 
unlabelled samples in every iteration, however ignore the 
model’s uncertainty, which may mislead the model training 
with erroneous estimated labels if the current predictions are 
unreliable. For this application, our proposed method dif-
fers from the aforementioned HAR methods in two aspects. 
Firstly, rather than using active learning or SSL separately, 
our proposed method integrates the two components into a 
unified framework. Secondly, we combine temporal ensem-
bling with CNNs, incorporating the history information 
of networks during training, which is expected to generate 
more reliable predictions on unlabelled samples.

3 � Methodology

We first formulate the problem and overview the pipeline of 
the proposed method in Sect. 3.1. Next, we introduce the two 
components, i.e., active learning based sample selection in 
Sect. 3.2 and semi-supervised model training with temporal 
ensembling in Sect. 3.3.

3.1 � Problem formulation and overview

The HAR task is formulated as a classification problem 
where data samples are a set of sensor data sequences gath-
ered over a time interval and classes correspond to activities. 
We will first introduce the application scenario and process-
ing flow of the proposed method, and then give an overview 
of the active semi-supervised deep model.

The proposed method is designed for a common scenario 
where data from a number of participants is available, how-
ever labels are scarce due to a limited annotation budget. Fig-
ure 1 illustrates the processing pipeline. Given the sequential 
data from a number of participants as input, we firstly split 
the whole dataset into three independent subsets—training, 
validation and test set—in a subject-wise fashion (one sub-
ject is always in only one of the partitions). Next, we ran-
domly select a very small number of samples (less than the 
total annotation budget) from the training set and manually 
label them. Based on the labelled training set and valida-
tion set we then determine the optimal hyperparameters of 
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the backbone neural network. In the active semi-supervised 
model training process, we first select informative samples 
via active learning to request for annotations, and then train 
the semi-supervised model with both the labelled and unla-
belled instances. Finally, the model is applied on the test set, 
examining the models performance.

Next, we describe the framework of the proposed 
active semi-supervised deep model. For a given HAR 
training set with N instances, we use � to denote all the 
training instances, L indicates the number of labels of the 
annotation budget. The labelled sample set is denoted as 
Ss = {(xi, yi), i = 1,… , l} with yi ∈ {1,… ,C} , where C 
indicates the number of activity classes and l < L . Fig-
ure 2 illustrates the framework, which includes two steps, 
i.e., active learning based sample selection (Step 1) and 

semi-supervised model training with temporal ensembling 
(Step 2).

In Step 1, given the input raw data with labelled sam-
ple set Ss , we iteratively select samples to be annotated via 
active learning under the restriction of annotation budget 
L. In each iteration, we first train a supervised deep model 
with the existing labels and then make predictions on the 
unlabelled candidates, based on which the most informative 
samples are selected and annotated, yielding an updated set 
of labels for next iteration. It is noted that the initial labels 
Ss for the first active learning iteration are a small number of 
randomly selected and annotated samples. In Step 2, both the 
labelled and unlabelled data are fed into a temporal ensem-
bling-based 1-dimensional (1-D) CNN networks for train-
ing with dropout as a regularization method. We apply an 

……Participant 1
……Participant 2

……Participant n

…
…

…
…

……1
……nTr

… …

Training set

……1
……nV

… …

Validation set

……1
……nTs

… …

Testing set
nTr+nV+nTs=n

Input raw data

Data splitting

Unlabeled sample

……1
……nTr

… …

Training set

……1
……nV

… …

Validation set

Sample candidate 
selection and labelling

Randomly select samples in 
training set and label them

Label samples in 
validation set

Hyper-
parameter 

selection on 
backbone 
networks

Validation set

Labels
Backbone model 
hyper-parameter 

selection

Sample selection 
with active learning

Semi-supervised 
model training and application

Training set

Testing set

Active semi-supervised model training and application

Result

Fig. 1   Workflow of the proposed method. Given data from a num-
ber of participants, we firstly split the dataset into three independent 
subsets. Then samples from the validation set and randomly selected 
ones (a small number) from the training set are manually annotated. 
Next, hyperparameters of the backbone model are selected based on 

the labelled training and validation sets. In the active semi-supervised 
model training process, we first select informative samples via active 
learning for annotation, and then train the model with both labelled 
and unlabelled instances. Finally, the obtained model is applied on 
the test set

Network with dropout

Cross 
entropy loss 
(Supervised)

w(t)

+ Total
loss

Mean 
squared loss

(Unsupervised)

…
All samples

…

Labels Unlabeled data

0

Semisupervised model training with temporal ensembling

Model Training

Selection

Annotation

Active learning based sample selection

Updated 
labels

Fig. 2   Model framework. Step 1: Active learning based sample selec-
tion. This is an iterative process, where in each iteration, we first train 
a supervised deep CNN model with existing labels and then make 
predictions on the unlabelled candidates, based on which the most 
informative samples are actively selected to request new annotations, 
yielding an updated set of labels. Step 2: Semi-supervised model 
training with temporal ensembling. Both the labelled and unlabelled 

samples are fed into the network with dropout regularization. An 
integrated loss function which consists of a supervised and an unsu-
pervised loss term is then calculated based on the predictions of the 
current network. Next, we update network parameters Θ by optimiz-
ing the loss function via stochastic gradient descent (SGD) algorithm. 
The updated Θ and normalized ensemble prediction z̃ act as input for 
the network training for the next iteration



13055An active semi‑supervised deep learning model for human activity recognition﻿	

1 3

integrated semi-supervised loss function with two terms—
i.e., supervised loss term and unsupervised loss term—to 
learn the weights of the networks. The optimization of the 
loss function is an iterative process, where the updated net-
work parameters Θ and normalized ensemble prediction z̃ 
in current iteration act as input for the network training of 
the next iteration. The z̃ is set as 0 in the first iteration. We 
will describe the two steps with more details in Sects. 3.2 
and 3.3 respectively.

In this work, we exploit a backbone CNN structure as 
illustrated in Fig. 3, which consists of nine convolutional 
layers, two max-pooling layers, two dropout layers, one aver-
age pool layer, one fully connected layer and a softmax layer 
connected to the output (Laine and Aila 2016). Batch nor-
malization and Leaky rectified linear unit (LReLU) activa-
tion function (Maas et al. 2013) are sequentially applied fol-
lowing each of the convolutional layers. With regard to the 
network parameters, please refer to Fig. 3 for more details. 
This CNN structure is utilized in both the active learning 
based sample selection and semi-supervised model training 
processes. It should be pointed out that other network struc-
tures can be flexibly incorporated with the proposed frame-
work as well. Yet in this work, we only report the results 
with the CNN structure as shown in Fig. 3.

3.2 � Active learning based sample selection

Unlike supervised learning which trains classifiers with ran-
domly chosen and annotated samples, we use active learn-
ing to tactfully select the most beneficial set of samples to 
be annotated. By doing so, the unnecessary annotation of 
samples carrying little information is circumvented, which 
effectively improves the labelling efficacy, thus reducing the 
labelling cost. Therefore, it is essential to define an effective 

criterion to assess the informativeness of candidate samples 
and then select proper candidates to be annotated.

Uncertainty-based active sampling scheme, which tends 
to select samples with highest uncertainty, is the most 
recognized and extensively employed sampling criterion. 
Entropy is a typical indicator for measuring the uncertainty 
of a probabilistic distribution. Higher values of entropy 
imply more uncertainty in the distribution (Settles 2009). 
However, several works in diverse applications (Cao et al. 
2020; Bi et al. 2019, 2021) have experimentally shown that, 
although the performance of entropy-based active learning 
is generally superior to passive random selection, the per-
formance improvement of the strategy decreases when high 
entropies are caused by small class probabilities of nonsig-
nificant classes. This issue becomes more severe when a 
large label set is present for multi-class classification tasks. 
Previous results (Cao et al. 2020; Bi et al. 2021) show that 
best-versus-second-best (BvSB)-based active selection can 
effectively overcome the shortcoming of entropy-based sam-
pling scheme by measuring the difference in class probabili-
ties between the first and second most probable classes. For 
this reason, we apply BvSB as the sample selection scheme 
in this work. Let Θ represent the learnable parameters of 
the deep model, P(yB|xi,Θ) and P(ySB|xi,Θ) denote the two 
highest estimated class probabilities of sample xi output 
from the classifier, the sampling criterion can be described 
as:

With this sampling scheme, the instances close to the deci-
sion boundaries are preferred to be selected. In BvSB-based 
active learning, we first compute the class probabilities of 
samples in the candidate pool U . Samples meeting the BvSB 

(1)xBvSB
i

= argmin
xi,i∈U

(
P
(
yB|xi,Θ

)
− P

(
ySB|xi,Θ

))
.

Fig. 3   Backbone network architecture
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sampling criterion are then iteratively selected to be anno-
tated and incorporated to the training set for the consequent 
classifier retraining.

It is noteworthy that this work is more concerned about 
the combination of active learning and SSL, and the appli-
cation of the unified framework on HAR. BvSB is one 
promising solution for providing informative samples for 
the consequent model training. However, other active learn-
ing strategies can be applied as well provided that they are 
capable of selecting the most beneficial instances.

3.3 � Semi‑supervised CNN model with temporal 
ensembling

Given the updated labelled sample set Ss , we next introduce 
our proposed semi-supervised CNN model with temporal 
ensembling which aims to learn a deep model making use of 
both labelled and unlabelled samples. To this end, we define 
a loss function given by:

where Θ denotes the combination of the CNN parameters to 
be optimized. Losss(Θ) stands for the Supervised loss term, 
and Lossu(Θ) is the Unsupervised loss term. w(t) is the unsu-
pervised loss weighting function, which starts from zero, 
and ramps up along a Gaussian curve during the first 80 
training epochs (Laine and Aila 2016).

3.3.1 � Supervised loss term

The supervised loss term is designed to enforce the consist-
ency between the CNN prediction on the labelled samples 
and ground truth labels, which follows the cross entropy 
loss form as,

where P(yi = j|xi,Θ) indicates the probability of predicting 
xi to have class label j.

3.3.2 � Unsupervised loss term

Due to the fact that an ensemble of multiple neural net-
works generally yields better predictions than a single 
network (Srivastava et al. 2014a), we adopt a temporal 

(2)Loss
(
Θ|�, Ss

)
= Losss

(
Θ|�, Ss

)
+ w(t) × Lossu(Θ|�),

(3)

Losss(Θ|�, Ss)

= −
1

L

L∑

i=1

C∑

j=1

1{yi = j} logP(yi = j|xi,Θ),

ensembling strategy (Laine and Aila 2016) to promote the 
model’s performance. In this scheme, the training is per-
formed on a single network, however, the predictions are 
made on a number of pre-networks by accumulating the 
predictions of multiple frozen instances of the same net-
work during training. Therefore the history-involved pre-
dictions correspond to an ensemble consensus of a large 
number of pre-networks from different epochs. Dropout 
approach (Srivastava et al. 2014b) is utilized as a regular-
izer, which has been shown effective to generalize and 
provide more certain predictions.

Based on the above analysis, we apply the temporal 
ensembling to the activity prediction of unlabelled sam-
ples, where the labels inferred in this way are exploited 
as training targets for the unlabelled instances. The unsu-
pervised loss term measures the divergence between the 
current network outputs and the previous ensemble predic-
tions, as given by,

where zi indicates the current prediction, and z̃i denotes the 
ensemble output aggregated from the deep neural networks 
in previous epochs. After every training epoch, the network 
outputs zi are accumulated into ensemble outputs �i by,

where � is a momentum term that controls how far the 
ensemble reaches to previous training epochs. To generate 
training targets z̃i , we perform bias correction on �i by,

where � and z̃ are set to zero in the first training epoch.
From the above formula, we can see that at the start of 

training the network, the total loss is dominated by the 
supervised loss term. As the training evolves, the unsuper-
vised loss term plays a more important role. The optimiza-
tion of the loss function in Eq. 2 is conducted using the 
SGD algorithm. In the tth iteration, the model parameters 
Θ are updated with � as the learning rate,

To conclude this section, Algorithm 1 and Fig. 4 illustrate 
the pseudo-code and flowchart of the proposed approach 
respectively.

(4)Lossu(Θ��) = −
1

CN

N�

i=1

‖zi − zi‖2,

(5)�i = ��i−1 + (1 − �)zi,

(6)z̃i =
�i

1 − 𝛼t
,

(7)Θt+1 = Θt − �
�Loss(Θ|�, Ss)

�Θ
.
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4 � Experimental evaluation

In this section, we justify and analyze the performance of the 
proposed method on three real HAR datasets. We first intro-
duce the datasets and experimental settings in Sect. 4.1. Next, 
we conduct ablation study in Sect. 4.2. Section 4.3 reports 
the comparative results with several competing approaches on 
benchmark object test, statistical significance test, and cross 
validation (CV) settings. The impact of parameters on the 
model performance is presented in Sect. 4.4.

4.1 � Datasets and experimental setting

4.1.1 � Datasets

We consider 3 public benchmark datasets for the evaluation 
of the proposed method, where the key information of them 
is summarized in Table 2.

The PAMAP2 dataset (Reiss and Stricker 2012) was col-
lected on 9 participants wearing three inertial measurement 
units on the hand, chest, and ankle respectively, sampled 
at 100 Hz. The sensors include accelerometer, gyroscope, 
magnetometer, temperature and heart rate sensor. There are 
52 raw features in total. This dataset contains 12 activities 
including lying, sitting, standing, walking, running, cycling, 
Nordic walking, ascending stairs, descending stairs, clean-
ing, ironing, and rope jumping. Following (Saeed et al. 
2019; Haresamudram et al. 2020), the data from participant 
106 is used for testing, the data from participant 105 for 
validation and the rest for training.

The USCHAD dataset (Zhang and Sawchuk 2012) was 
recorded on 14 volunteers using triaxial accelerometer and 
gyroscope which were attached to participant’s front right 
hip, yielding 6 features in total. The sampling rate of sensor 
data is 100 Hz. The dataset includes 12 activities: walk-
ing forward, walking left, walking right, walking upstairs, 

Fig. 4   Flowchart of the proposed approach
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walking downstairs, running forward, jumping, sitting, 
standing, sleeping, elevator up and elevator down. Follow-
ing (Saeed et al. 2019; Haresamudram et al. 2020), data from 
participants 1 to 10 is used for training, 11 and 12 for valida-
tion, and 13 and 14 for testing.

The UCIHAR Dataset (Anguita et al. 2013) was col-
lected with triaxial accelerometer and gyroscope from a 
Samsung Galaxy SII smart phone worn by 30 volunteers on 
their waist, providing 6 features. The activity set includes 6 
basic human activities, walking, walking upstairs, walking 
downstairs, sitting, standing and laying. Following Chen 
et al. (2020), Khan and Ahmad (2021), the training set was 
created with 70% of the volunteers, whereas the remaining 
30% were selected to generate the test test.

4.1.2 � Experimental setting

Table 3 displays the experimental configurations of the 
proposed method. The learning rate follows the cosine 
annealing function (Loshchilov and Hutter 2016). We 
choose the minimum value of learning rate � and weight 
decay by grid search on the baseline CNN with a limited 
training set, i.e., 200 randomly selected training samples, 
and the validation set. We performed experiments with � 
over {0.00001, 0.0001, 0.001, 0.01} and weight decay over 
{0.0001, 0.0005, 0.001, 0.005, 0.01}. The � and weight 
decay with the best performance are selected as the hyper-
paremters used for model training. Based on the obtained 
results, the weight decay and � are selected as 0.0005 and 
0.0001 respectively. We empirically set batch size as 20 
in low annotation setting with an annotation budget less 
than 500, and otherwise 100. We run 50 epochs for net-
work training. All the CNN based methods use the same 
hyperparameters as exhibited in Table 3.

We studied the impact of the dropout rate and ensem-
bling momentum on the semi-supervised temporal ensem-
bling, where the analysis can be found in Sect. 4.4. Based 
on the comparative results, dropout rate and ensembling 
momentum are set as 0.2 and 0.6 respectively. For active 
learning, we randomly select 100 samples in the first itera-
tion for the supervised model training, and actively select 
100 samples to be annotated in each active learning itera-
tion. All the experiments were executed on a workstation 
with GeFroce RTX 3090 GPU and 64GB RAM, whist the 
codes are implemented with Pytorch library.

4.1.3 � Evaluation metric

As is common in HAR research, we use Macro F1-Score 
as the evaluation metric, defined in the usual way:

where for a given class i, TPi and FPi denote the number 
of true positives and false positives respectively, and FNi 
represents the number of false negatives. Macro F1-Score 
is denoted as MacroF1 in following sections.

4.2 � Ablation study

In this set of experiments, taking the PAMAP2 data set as 
an example, we conduct an ablation study to examine the 
contributions of the key components of the method, i.e., 
active learning based sample selection and semi-supervised 
learning using temporal ensembling, to the prediction per-
formance. To verify their effectiveness, apart from the base-
line CNN, we establish two comparison methods which suc-
cessively add each of the two components. The compared 
methods include: 

1.	 CNN: This is the baseline CNN model with the archi-
tecture depicted in Fig. 3.

2.	 ActCNN (short for active convolutional neural net-
works): the combination of CNN and active learning.

3.	 ActSemiCNN (short for active semi-supervised con-
voluational neural networks): the combination of CNN, 
active learning and SSL, i.e., the proposed method.

(8)

MacroF1 =
1

C

C∑

i=1

2 ⋅ Precisioni ⋅ Recalli

Precisioni + Recalli
,

Precisioni =
TPi

TPi + FPi

,

Recalli =
TPi

TPi + FNi

,

Table 2   Summary of the dataset

A accelerometer, G gyroscope, M magnetometer, T temperature, H heart rate

Dataset # of activities Test subject # of users # of features # of samples Sensors

PAMAP2 12 106 9 52 38,857 A, G, M, T, H
USCHAD 12 13, 14 14 6 56,228 A, G
UCIHAR 6 30% 30 6 10,299 A, G

Table 3   Experimental configurations

Parameter Value Parameter Value

Min. learning rate 0.0001 Dropout rate 0.2
Weight decay 0.0005 Ensembling momentum 0.6
Batch size 20 Samples selected 100
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To analyze the sensitivity of the three compared methods 
to the number of labels, we performed experiments with 
different annotation budgets. To get more reliable results, 
we performed 5 rounds of independent repetitions for all 
three methods, and the average MacroF1 values and stand-
ard deviations are reported. It is noted that for the 100 label 
annotation budget setting, 50 samples are randomly selected 
in the first iteration and 50 samples are further chosen in 
the active learning process. Figure 5 presents the MacroF1 
value curves as a function of the annotation budgets, and 
the numerical results are listed in Table 4. Figure 6 gives 
the confusion matrices of the inner steps in one repetition 
of ActSemiCNN with an annotation budget of 200. These 
results lead to the below observations: 

1.	 ActSemiCNN constantly yields the highest MacroF1 
value with any number of labels compared. The com-
parisons between ActCNN and CNN, and ActSemiCNN 
and ActCNN respectively reflect the benefits brought 
by active learning and SSL. In this experiment, when 
only 200 samples can be annotated, ActCNN outper-
forms CNN by 0.05 MacroF1 units, while ActSemiCNN 
outperforms ActCNN by 0.04.

2.	 Inspecting Fig. 6a, we can notice obvious confusions 
between walking and Nordic walking, and among 
ascending stairs, descending stairs, cleaning classes. 
Yet, confusions among the 5 most confusing classes are 
greatly relieved in the results of ActCNN as shown in 
Fig. 6b, which can be explained as follows. Take the 
repetition in Fig. 6 for example, our active learning 
policy chooses more instances (81) from the 5 classes 
compared with random selection (44), and selects less 
samples from the classes that the current classifier is 
confident with (1 sample for lying and no sample from 
sitting). ActCNN surpasses CNN with random samples 
by a MacroF1 value of 0.05, precisely justifying the 
effectiveness of active learning.

3.	 Fig. 6c reflects a further improvement on MacroF1 value 
(0.04) compared with Fig. 6b, which proves that utiliz-
ing unlabelled data is particularly effective in improving 
the recognition performance.

4.	 The MacroF1 value (0.76) of ActSemiCNN with 200 
labels is even higher than the one achieved by the CNN 

with 500 labels (0.74), showing an obvious reduction of 
the annotation cost.

4.3 � Results and comparison

In this section, we conduct an extensive evaluation of our 
approach on the PAMAP2, USCHAD and UCIHAR data-
sets. The comparison results with 7 competitors on bench-
mark test objects, statistical significance test and CV set-
tings are presented in Sects. 4.3.1–4.3.3 respectively. The 
compared methods include: 

1.	 DeepConvLSTM (Ordóñez and Roggen 2016): Deep-
ConvLSTM is a supervised deep architecture based on 
the combination of convolutional and LSTM recurrent 
layers to recognize activities. DeepConvLSTMs reached 
state-of-the-art in distinguishing complex human activi-
ties (Slaton et al. 2020; Mahmud et al. 2020).

2.	 CoTrCNN: This is a semi-supervised method using a co-
training pipeline (Stikic et al. 2008) while with a CNN 
model (Laine and Aila 2016) as shown in Fig. 3.

3.	 ConvAE (Haresamudram et al. 2019): This is a state-
of-the-art deep architecture  (Mahmud et al. 2020; Liu 

Table 4   MacroF1 values with 
different combinations of 
methods on PAMAP2 dataset 
with different training sample 
numbers

Bold values represent the highest numerical values and the method with best performance

Method 100 200 300 400 500

CNN 0.57 ± 0.05 0.67 ± 0.02 0.69 ± 0.02 0.73 ± 0.01 0.74 ± 0.01
ActCNN 0.63 ± 0.03 0.72 ± 0.02 0.73 ± 0.01 0.76 ± 0.01 0.77 ± 0.01
ActSemiCNN 0.68 ± 0.02 0.76 ± 0.02 0.78 ± 0.01 0.80 ± 0.01 0.80 ± 0.01

Fig. 5   MacroF1 values as a function of the number of labels on the 
PAMAP2 dataset
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et al. 2020) which includes a convolutional encoder and 
decoder with a bottleneck layer in between. The feature 
representation from the bottleneck layer is used by an 
MLP for the classification.

4.	 MTSelfCNN (Haresamudram et al. 2020): This is a 
state-of-the-art self-supervised method. The accelerom-
eter representations are learnt by training a multi-task 
CNN to recognize eight transformations applied to the 
raw input signal. The original paper reports the results 
on UCIHAR dataset in a semi-supervised setting, which 
is used for comparison in this paper.

5.	 SemiConvAttn (Chen et al. 2020): This is a semi-super-
vised deep model based on co-training framework, 
where attention-based recurrent convolutional models 
are introduced to handle multi-modality data.

6.	 MeanTeacher (Narasimman et al. 2021): This is a semi-
supervised HAR model combining state-of-the-art mean 
teacher learning scheme and CNN.

7.	 DAL (Bi et al. 2021): This is a state-of-the-art active 
learning-based model which selects samples via mar-
ginal sampling scheme coupled with temporal-frequency 
features.

Among the above 7 approaches, we self-implemented Deep-
ConvLSTM, DAL, CoTrCNN and MeanTeacher. The numer-
ical results used for comparison with other 3 methods are 
directly extracted from the original papers (Haresamudram 
et al. 2019, 2020; Chen et al. 2020).

4.3.1 � Performance on benchmark test object

The quantitative results on benchmark test objects are sum-
marized in Table 5, wherein the MacroF1 values, used 
labels and time consumption are reported, with the best 
results highlighted in bold. The standard deviations of the 

5 self-implementing methods are obtained by averaging the 
results of 5 independent repetitions.

Table 5 suggests that our proposed method yields the 
best performance compared with other competitors on 
all three datasets. With the same number of used labels, 
ActSemiCNN outperforms DeepConvLSTM, DAL, 
CoTrCNN and MeanTeacher by 0.14, 0.09, 0.10 and 
0.09 on PAMAP2 dataset, 0.05, 0.03, 0.10 and 0.04 on 
USCHAD dataset, 0.29, 0.16, 0.10, and 0.06 on UCIHAR 
dataset respectively. ActSemiCNN even outperforms Con-
vAE with 20% labels and SemiConvAttn with 1000 labels 
which demonstrates that our proposed method substan-
tially reduces the annotation cost without loss of predictive 
performance. The superiority of ActSemiCNN over DAL 
again demonstrates the advantage of utilizing unlabelled 
data during model training.

We can see that the overall MacroF1 performance on 
the USCHAD dataset is lower than on the PAMAP2 data-
set, which is because USCHAD is a challenging dataset. 
Firstly, the sensor data is collected from the motion node 
attached to the hip, which provides less information than 
the multi-position case as PAMAP2 dataset. Secondly, 
the activities involve orientation such as elevator up or 
down which are difficult to discriminate (Mahmud et al. 
2020). Especially, CoTrCNN achieves the lowest MacroF1 
value of 0.35, which is due to two reasons. First, CoTrCNN 
directly assigns pseudo labels to unlabelled samples and 
utilizes them in the model retraining, which is unreliable 
when the model’s performance is unsatisfactory. Secondly, 
CoTrCNN splits the features into two views, which limits 
the performance of the model with incomplete views com-
pared with the complete view scenario.

As revealed in Table 5, ActSemiCNN and MeanTeacher 
consume more time than others, which is owing to their 
intrinsic mechanism that the massive unlabelled samples 
are engaged in training throughout the whole process.

(a) CNN (b) ActCNN (c) ActSemiCNN

Fig. 6   Confusion matrices. a CNN with 100 initial samples. b ActCNN with 100 initial samples and 100 actively selected samples. c ActSem-
iCNN with 100 initial samples and 100 actively selected samples
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4.3.2 � Statistical significance comparison

Apart from the numerical evaluation, we further compare 
the statistical significance by carrying out the variance-
based hypothetical F-test. Given that the original papers 
of ConvAE, MTSelfCNN and SemiConvAttn only provide 
the mean experimental results yet without variance infor-
mation, the significance comparison was conducted on 
five self-implementing methods. It is hypothesized that the 
MacroF1 values of multiple repetitions of each compared 
method follow the Normal distribution. With this assump-
tion, we calculated the p values to represent the level of 
evidence against null hypothesis which suggests that no sta-
tistical difference exists between two sets of observations. 
It is supposed that there is a significant difference between 
two groups of results when the obtained p value is less than 
a commonly employed threshold of 0.05.

Tables 6, 7 and 8 tabulate the statistical significance 
results on three experimental datasets. S1–S5 in the 
tables indicate the DeepConvLSTM, DAL, CoTrCNN, 
MeanTeacher and ActSemiCNN correspondingly. To spec-
ify, the symbols ‘0’, ‘+1’, ‘ −1 ’ respectively mean that the 
method in the column is significantly equivalent, better and 
worse than the method in the row. The symbol ‘-’ denotes 
that the method in the column is the same with the one in 
the row.

Inspecting the 3 tables, we can draw below conclusions: 

1.	 Our proposed ActSemiCNN is statistically superior to 
other competitors on all three datasets.

2.	 The two semi-supervised methods which involve all the 
unlabelled instances during training, i.e., MeanTeacher 
and ActSemiCNN, consistently yield better at least com-
parable results compared to other 3 methods.

4.3.3 � Performance on cross‑validation experiment

To demonstrate the robustness of the proposed method with 
regard to sensitivity to specific test subjects, we further con-
duct a Leave-one-subject-out CV (LOSO-CV) experiment. 
During the experiment, we repeatedly hold the data from 
one of the subjects out of the training set and use it only 
for testing purposes. This is done until all the subjects have 
been used in the test set, and the average values of MacroF1 

Table 5   MacroF1 values with 
different methods on benchmark 
test objects

Bold values represent the highest numerical values and the method with best performance

Dataset Method Supervision Used labels MacroF1 Running time

PAMAP2 DeepConvLSTM (2016) Supervised 200 0.62 ± 0.02 3 m 21 s
ConvAE (2019) Supervised 20% (5681) 0.72 –
DAL (2021) Active learning 200 0.67 ± 0.03 33 m 16 s
CoTrCNN (2016) Semi-supervised 200 0.64 ± 0.02 8 m 22 s
SemiConvAttn (2020) Semi-supervised 1000 0.73 –
MeanTeacher (2021) Semi-supervised 200 0.67 ± 0.03 31m19s
ActSemiCNN Semi-supervised 200 0.76 ± 0.02 35m15s

USCHAD DeepConvLSTM (2016) Supervised 200 0.40 ± 0.02 12 m 41 s
ConvAE (2019) Supervised 20% (7251) 0.43 –
DAL (2021) Active learning 200 0.42 ± 0.01 5 m 46 s
CoTrCNN (2016) Semi-supervised 200 0.35 ± 0.03 6 m 42 s
MeanTeacher (2021) Semi-supervised 200 0.41 ± 0.02 37 m 11 s
ActSemiCNN Semi-supervised 200 0.45 ± 0.02 34 m 43 s

UCIHAR DeepConvLSTM (2016) Supervised 300 0.62 ± 0.02 3 m 55 s
DAL (2021) Active learning 300 0.75 ± 0.01 1 m 21 s
CoTrCNN (2016) Semi-supervised 300 0.81 ± 0.01 4 m 58 s
MTSelfCNN (2020) Semi-supervised 300 0.87 –
SemiConvAttn (2020) Semi-supervised 1000 0.73 –
MeanTeacher (2021) Semi-supervised 300 0.85 ± 0.01 8 m 11 s
ActSemiCNN Semi-supervised 300 0.91 ± 0.01 7 m 34 s

Table 6   Significance 
comparison on PAMAP2 
dataset

Bold value represents the high-
est numerical values and the 
method with best performance

S1 S2 S3 S4 S5

S1 – −1 −1 −1 −1

S2 +1 – 0 0 -1
S3 +1 0 – -1 −1

S4 +1 0 +1 – −1

S5 +1 +1 +1 +1 –
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scores over all subjects are computed. In this experiment, 
we only focus in the low annotation scenario with 200 
labels available. It should be noted that the correspondence 
between the samples and objects in UCIHAR dataset is 
unavailable, thereby the results reported here were obtained 
with a 5-fold CV instead.

Table 9 presents the results of CV experiments. As can be 
observed from the table, the MacroF1 scores of the proposed 
method are constantly higher than the competing methods 
for CV experiments. ActSemiCNN outperforms DeepCon-
vLSTM, DAL, CoTrCNN and MeanTeacher by 0.12, 0.13, 
0.08 and 0.10 on PAMAP2 dataset, 0.13, 0.08, 0.15 and 0.03 
on USCHAD dataset, 0.27, 0.14, 0.15 and 0.03 on UCI-
HAR dataset respectively, which suggests that ActSemiCNN 
is robust to inter-subject variability.

4.4 � The impact of parameters

This section investigates the impact of the key parameters of 
ActSemiCNN–dropout rate and ensembling momentum–on 
the recognition performance. Taking PAMAP2 dataset as 
an example, we conducted comparative experiments on the 
above 2 parameters with varying values, where the results 
are tabulated in Tables 10 and 11.

The dropout rate specifies the proportion of nodes ran-
domly dropped out during training. Validation experiments 
were performed with dropout rates ranging [0, 0.5] with a 
step of 0.1, where the value 0 means that we do not drop 
any nodes in the network. From Table 10, we can find that 
the highest MacroF1 score is achieved with a dropout rate 

of 0.2. Based on these results, we have set the dropout rate 
to 0.2 in all other experiments.

Ensembling momentum controls how far the aggregation 
reaches to the training history, which has a value range of 
[0, 1). Value 1 indicates that the current loss is totally origi-
nated from the history predictions, while value 0 means that 
no history information is included in the current loss. We 
conducted experiments with ensembling momentum ranging 
[0.4, 0.8] with a step of 0.1. We can discover from Table 11 
that the best result is yielded with a value of 0.6, which is 
employed as the ensembling momentum configuration in 
all experiments.

5 � Discussions

The limited availability of annotations is arguably the 
most critical barrier that hinders the development of HAR. 
Thereby, it is crucial to develop approaches which can 
achieve favorable activity recognition performance while 
easing the burden of annotations. This is precisely the moti-
vation of this work. The novelties of this paper mainly lie in 
two aspects: (i) the initial integration of active learning and 
semi-supervised learning into one HAR framework; (ii) the 
exploitation of temporal ensembling with consistency regu-
larization in the deep CNN optimization. In what follows, 
we will: (1) offer explanations of ActSemiCNN, (2) provide 
insights on potential future research, (3) analyze the limita-
tions of the proposed model.

5.1 � Explanations

The comparative experiments in Sect. 4 suggest that the 
proposed model considerably boosts the recognition per-
formance in low annotation regime, and exhibits strong 
robustness and generalization ability. The superiority of Act-
SemiCNN is attributed to the effectiveness of its two compo-
nents. (1) The applied active learning selects samples which 
are most difficult to classify, therefore the inclusion of the 

Table 7   Significance 
comparison on USCHAD 
dataset

Bold value represents the high-
est numerical values and the 
method with best performance

S1 S2 S3 S4 S5

S1 – 0 +1 0 −1

S2 0 – +1 +1 −1

S3 −1 −1 – −1 −1

S4 0 −1 +1 – −1

S5 +1 +1 +1 +1 –

Table 8   Significance 
comparison on UCIHAR 
dataset

Bold value represents the high-
est numerical values and the 
method with best performance

S1 S2 S3 S4 S5

S1 – −1 −1 −1 −1

S2 +1 – −1 −1 −1

S3 +1 +1 – −1 −1

S4 +1 +1 +1 – −1

S5 +1 +1 +1 +1 –

Table 9   MacroF1 values of CV experiments with different methods 
on two datasets

Bold values represent the highest numerical values and the method 
with best performance

Method Used labels PAMAP2 USCHAD UCIHAR

DeepConvLSTM 200 0.54 0.49 0.58
DAL 200 0.53 0.54 0.71
CoTrCNN 200 0.58 0.47 0.70
MeanTeacher 200 0.56 0.59 0.82
ActSemiCNN 200 0.66 0.62 0.85
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annotations of these samples in training effectively helps the 
classifier refine the decision boundaries. (2) Leveraging the 
unlabelled data during training gives rise to more accurate 
results and the consensus ensemble prediction further allevi-
ates the prediction uncertainty.

5.2 � Insights

By analysis, we can conclude that the integration of diverse 
weak supervision paradigms ends up with additive benefits 
on the activity prediction, which offers insights for potential 
future researches. (1) Besides the label scarcity issue, the 
HAR task is confronted with another challenge, i.e., indi-
vidual diversity. The hybrid of active learning and transfer 
learning is believed to be a promising solution for transfer-
able personalized activity analysis, yet with sparse annota-
tions. (2) Activity data are usually collected with multiple 
sensors, which brings challenges on the data fusion. The 
synthetic integration of self-supervised learning and semi-
supervised learning is a compelling venue to address this 
issue, where the former enables the mutual and comple-
mentary interaction via proxy task between data of different 
views, and the latter is capable of inferring useful informa-
tion from the vast amount of unlabelled data.

5.3 � Limitations

Although prominent improvements are revealed by this 
study, ActSemiCNN still suffers from two limitations. (1) 
Involving the unlabelled data throughout the whole training 
process inevitably increases the time consumption. More 
computation resources are needed if there are requirements 
on the processing timeliness. (2) Although active learning 
greatly reduces the number of samples to be annotated, 
it poses higher standards on the labelling quality. This is 
because in active learning paradigm, the queries are usually 
raised on samples that are most difficult to classify, which 
requires that the experts have the capability to assign cor-
rect labels out of two or several options. This means that 

the oracles need to be cautiously selected to guarantee the 
smooth and effective proceeding of active learning.

6 � Conclusion

Recognizing human activities from wearable sensors has 
been a challenging task, especially when annotations are 
scarce. The prime purpose of this paper is to explore the 
effect of (1) the combination of different paradigms of 
weakly supervised learning, and (2) the ensemble consensus, 
on the accuracy and robustness of human activity recogni-
tion. To this end, we presented a novel activity recognition 
approach called ActSemiCNN which integrates active learn-
ing and semi-supervised learning benefiting from temporal 
ensembling into one framework. We draw below conclusions 
from extensive comparative experiments: (1) The integra-
tion of active learning and semi-supervised learning leads 
to state-of-the-art performance, and the annotation cost is 
greatly reduced, which is attributed to the active sample 
selection and the utilization of massive unlabelled data. (2) 
The statistical significance and cross validation tests high-
light the effectiveness of ensemble consensus in enhancing 
the robustness of HAR models.

In future work we plan to investigate few-shot learning 
for adaptive and personalized human activity recognition. 
We are also interested in exploring the interplay between 
different views of multi-modality activity data.
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Table 10   MacroF1 values of the proposed method on PAMAP2 dataset with different dropout rates

Dropout Rate 0 0.1 0.2 0.3 0.4 0.5

MacroF1 0.57 ± 0.03 0.62 ± 0.03 0.63 ± 0.02 0.62 ± 0.03 0.61 ± 0.02 0.58 ± 0.03

Table 11   MacroF1 values of the proposed method on PAMAP2 dataset with different ensembling momentum values

Momentum 0.4 0.5 0.6 0.7 0.8

MacroF1 0.58 ± 0.03 0.61 ± 0.02 0.63 ± 0.02 0.60 ± 0.03 0.59 ± 0.03
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