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Abstract
The different thermal comfort indices such as Predictive Mean Vote (PMV), Standard Effective Temperature (SET), and 
Thermal Sensations (TS) have been used to predict occupants’ thermal comfort in a building. The advances in the machine 
learning approach help overcome the challenges of predicting current traditional thermal indices in a real-time environment. 
The different indices have different types of data samples (continuous/labelled). Therefore, while considering the machine 
learning technique in developing the models of the predictive thermal indices, it is essential to select the vital features, the 
proper learning type, the algorithm, and the evaluation method to establish the models of the predictive thermal comfort. 
The main focus of this paper is on the development of the ML model and the evaluation technique that helps in selecting the 
best model in predicting the thermal indices. This work proposes the new neighbourhood-component-analysis Bayesian-
optimization-algorithm-based artificial-neural-network to develop a predictive model for the thermal indices. Here, we 
have proposed a regression-based model to predict PMV, SET and a classification-based model to predict 7-point TS. The 
statistical-testing results specify that the ANN model's performance is highly accurate and more reliable in predicting the 
thermal perception in a real-time environment. The performance of the selected model is validated using subjective measures. 
This prediction leads to the pre-emptive control of the setpoint temperature of the air-conditioning unit, hence resulting in 
energy efficiency and comfort.

Keywords Artificial neural network · Bayesian optimization algorithm · Feature selection · Neighborhood component 
analysis · Thermal comfort metrics · Machine learning · Temperature setpoint

1 Introduction

While considering the energy consumption of a building, 
maintaining good thermal comfort in an indoor environment 
plays a significant role (Petidis et al. 2018). The setpoint 
of airspeed and temperature and the number of occupants 
present impact both the energy-saving and the occupant's 
thermal comfort (Hoyt et al. 2015). Many studies have been 
carried out in reducing the consumption of energy of a build-
ing while maintaining comfort for the occupants in an indoor 
environment (Sharma et al. 2019; Petidis et al. 2018).

As per the ASHRAE standard, thermal comfort is given 
as ‘the state of mind, which expresses the satisfaction with 

the thermal environment’ (ANSI/ASHRAE 2017). Hence, 
this is influenced by a person's mindset, culture, and social 
factors. The individual difference was first found in the early 
1970s. The comfort may vary from person to person because 
everyone does not feel the same. The thermal comfort in an 
indoor environment is evaluated using two methods: heat 
balancing and adaptive. The controlled laboratory experi-
mentation is considered for the heat balance method, and 
the field studies in the building derive the adaptive mod-
els. Many experimental studies have proposed the Effective 
Standard Temperature (SET) to develop the human heat bal-
ance model (Gagge et al. 1986). Fanger (1967) developed 
the most popular method for calculating Predicted Mean 
Vote (PMV), Predicted Percentage of Dissatisfied (PPD) 
for estimating the thermal comfort based on the four envi-
ronmental and the two personal factors with the two models. 
The currently developed comfort models fail in terms of 
self-learning to update the model for proper operation to 
maintain comfort for the occupants (Deng and Chen 2018; 
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Wu et al. 2018) in different types of buildings. The tradi-
tional thermal comfort evaluation method needs in-depth 
subject knowledge to understand the process and is complex 
to implement in a real-time environment, and computation-
ally expensive to update the models based on human per-
ception. Accordingly, the advances in a data-based machine 
learning approach help overcome the shortcomings and chal-
lenges faced in the current/traditional comfort models and 
update the models in a real-time environment.

Wu et al. (2018) proposed the method of ensemble-based 
machine learning to predict the TS, the PMV, the PPD and 
the SET by considering the indoor and the outdoor environ-
mental parameters. Kim et al. (2018) proposed the model of 
machine learning-based personal comfort for the individual 
occupant. Deng and Chen (2018) proposed the ANN and 
the ensemble-based model to predict the thermal comfort 
in an indoor environment by considering the behaviour of 
the occupant and the thermal sensation. However, the robust 
design of the model of heat balancing predictive (PMV, PPD, 
SET, TS) with a proper algorithm, suitable feature selection 
and learning method (regression and classification) selec-
tion with appropriate evaluation techniques to improve the 
generalization ability is still lacking. The feature selection 
and the hyper-parameter optimization technique are getting 
crucial attention in developing the machine-learning model 
due to their ability to reduce the complexity and improve 
the model's performance (Probst et al. 2019). Based on the 
ASHRAE comfort database, Wang et al. (2020) proposed the 
Principal Component Analysis (PCA) based dimensionality 
reduction technique for the thermal comfort metrics.

Nowadays, the NCA feature selection (Amasyali and El-
Gohary 2019; Yang et al. 2012) and the Bayesian hyper-
parameter optimization to tune the parameters (Shang et al. 
2019) have been getting importance and proven to be more 
effective in the machine learning field to improve the per-
formance of the model. Amasyali et al. proposed the NCA 
feature selection for convenient features and proved how to 
predict energy consumption effectively. The current litera-
ture is lagging in applying the automatic feature selection 
with the optimization technique to predict the thermal indi-
ces in a real-time environment to find the thermal comfort 
of the group of occupants in an indoor environment. Most 
of the methods considered the relevant features to achieve a 
better prediction accuracy of the models. The preprocessing 
using a proper feature selection technique helps find the most 
suitable features to develop the model, reduces the complex-
ity, and improves the model’s performance.

Similarly, the recent literature considered the default 
model parameters given by the software or k-fold cross-
validation to develop the thermal comfort predictive model. 
To derive the best model, we considered the NCA feature 
selection for automatic feature selection and the Bayes-
ian hyper-parameter optimization technique to tune the 

parameter. Hence, for the comparison of various algorithms 
with multiple data set (training, testing and validation), we 
considered the Analysis of Variance Method (ANOVA) 
(Demšar 2006). As per the literature, Friedman's/Kruskal 
Wallis tests (Alpaydin 2014) are better to find that the algo-
rithm performs significantly better than the other algorithms.

This paper considered the physical measurement method 
to collect the data and conducted the subjective survey for 
clothing insulation evaluation as per the ASHRAE clothing 
chart. The proposed method leads to the pre-emptive con-
trol of the thermal comfort of the occupants based on the 
HVAC/AC temperature setpoint or the fan speed (Air veloc-
ity) for the looping of the split air-conditioning system. The 
main highlights of this research are (1) considered the NCA 
feature selection method to find the best suitable features 
automatically in developing the comfort models (2) consid-
ering the BOA in optimizing the hyper-parameters, which 
helps in selecting the best parameters to improve the model 
performance (3) proper evaluation method to estimate the 
performance (e) estimate in a real-time environment to pre-
dict the thermal comfort of the group of occupants present 
in an indoor environment iv) decide at the proper setpoint 
selection with this prediction.

2  Methodology

This section delineates the development of the Machine-
learning model, including data collection, data preprocess-
ing, feature selection, Bayesian hyper-parameter optimiza-
tion-based model development, and statistical evaluation 
method for both the regression (PMV, SET) and the classifi-
cation (TS) models to select the best model for the prediction 
of the thermal comfort for the occupants. Figure 1 shows 
the detailed architecture of developing the machine-learning 
model. CBE Comfort Tool block details are available in Tar-
tarini et al. (2020).

2.1  Data collection

We collected the data from the college building (located at 
longitude 74.79° E, latitude 13.36° N) for the development 
and evaluation of the model. The data was collected during 
the college hours from 8 AM to 6 PM and was collected in 
different seasons to develop the models. In this work, we 
referred to the ASHRAE 55-2017 standard for collecting 
the data and positioning the sensor to calculate the ther-
mal comfort of the occupants based on the classical thermal 
indices for the group of occupants in a centralized and split 
air-conditioned indoor environment.

The data was collected from the classrooms, the computer 
labs and the test room (Kumar et al. 2020a, b), which has a 
centralized air conditioning (A/C) and Split A/C system for 
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every day, by considering with and without occupants. We 
collected the indoor and the outdoor temperature, humidity, 
the number of occupants, A/C operation (on or off), A/C 
temperature setpoint, Clothing insulation, and air velocity 
during this period. Here collected the field data on both 
occupied and unoccupied hours from 8:00 AM to 6.00 PM 
with the A/C status (on/off). We considered the without A/C 
operation to collect the data for warm and hot conditions as 
per the ASHRAE comfort model because, during the A/C 
operation, the indoor environment maintains comfort for 
the occupants, and some state goes slightly warm slightly 
cold. The students and the faculty members involved were 
considered as the samples in the field study to find the cloth-
ing insulation. In this work, we did not conduct the survey 
using the questionnaires for the adaptive thermal comfort 
but rather considered the physical measurement to estimate 
the comfort of the occupants as per the ASHRAE 55-2017 
standard (Standard 2017; de Dear 2011; ANSI/ASHRAE 
2017) and CBE tool (Tartarini et al. 2020). According to 
the ASHRAE 55-2017 collected the indoor relative humid-
ity, air temperature and air velocity for every 5 min, the 

sensors were positioned at the height of 1.1 m above the 
ground. Temperature and Relative Humidity (RH) sensor 
(Si7021i/Hoboware sensor), Anemometer (AVM 08) and 
Pyranometer(BF5 sunshine sensor) are the main sensors 
used for measuring the indoor and outdoor environmental 
conditions.

2.1.1  Features and selection of output index

The input features were chosen based on their correlation 
with the target variables, as given in Sect. 2.2.1. These fea-
tures can be selected for different categories such as envi-
ronmental, personal, occupancy and A/C parameters. Firstly, 
determine the characteristics by focusing on the Fanger PMV 
index (Fanger 1967). ‘The index indicated that the thermal 
sensation depended on four environmental parameters: 
indoor temperature, relative humidity, mean radiant tem-
perature, and air velocity and the two personal parameters 
were: clothing insulation and metabolic rate’. Additionally, 
the earlier studies showed that the outdoor thermal history, 
the number of occupants present in an indoor environment, 

Fig. 1  Flow chart for the Machine learning based thermal comfort model development and the model selection
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and the A/C system information indicated a relationship with 
the thermal sensation (von Grabe 2016; Wu et al. 2018). 
Accordingly, selected the number of occupants present 
in an indoor environment, and the outdoor environmental 
parameters: the outdoor temperature, the outdoor humidity, 
and the A/C information parameters: A/C operation status 
represented in binary (‘0’ for ‘off’ and ‘1’ for ‘on’) and A/C 
temperature set point. To access the thermal sensation and 
evaluate the accuracy of the comfort algorithms for many 
people, several classical thermal indices (i.e., TS, SET, and 
PMV) were selected as the output features (responses). The 
statistical ranges of the collected data used for finding ther-
mal comfort, as shown in Table 1, after the data collection, 
the data preprocessing was carried out. Table 2 shows the 
thermal sensation scale based on PMV.

2.2  Data preprocessing

The data preprocessing is vital as the models are based on 
the real-time sensor data and the recorded data required for 
data cleaning. For thermal comfort, the sensors measure and 
log every 5-min data and samples to thirty minutes of data 
by averaging the data points. During the data preprocessing, 
discarded the unique data points, which increase the control-
ler’s memory. After the data cleaning, it needs to select the 
suitable feature, which influences the response to enhance 
the performance of the generalization prediction and reduces 
the complexity as shown in the Feature Selection Section; 
once the best appropriate features are chosen, standardized 
the data into a standard format as per the Eq. (1), for devel-
oping the model.

where x represents a predictor sample from a population, � 
a sample mean, and � a standard deviation.

(1)Z =
(x − �)

�

2.2.1  Feature selection

During the machine learning model development, the 
suitable feature selection (predictors) plays a vital role to 
improve the model performance. Figure 2 shows the NCA 
feature selection pseudo code. The feature which is having 
the highest weight shows more impact on the response. Fig-
ure 3 shows the weights of the NCA feature for different 
indices. Finally, select the best suitable features based on the 
features that have more significance than the 5% of the high-
est weighted feature. We consider the trial and error method 
to select the threshold for feature weight to eliminate the 
feature under different experimentation (5%/15%/20%/25%). 
Finally, we found that 5% is appropriate for our application 
to select the suitable features. The increasing data points 
under different conditions may vary the feature weight. 
Table 3 shows the selected best features to develop the pre-
dictive thermal indices model.

We used the selected best features to develop the predic-
tive model for PMV, SET, and TS throughout. In addition, 
this procedure allows updating the model with new features 
and finding the optimum temperature set point for the air-
conditioning system.

Let T = {((outdoor temperature, outdoor humidity, indoor 
temperature, indoor humidity, temperature setpoint, number 
of occupants, HVAC operation, Air velocity, Clothing insu-
lation), (PMV, SET, TS))} = {(x�ℝd, y�ℝ)}. ℝd represents 
the d dimensional, the feature vector, and ℝ the individual 
response (PMV/PPD/Set/TS).

2.3  Development and selection of Machine 
Learning (ML) model

We have tested different regression algorithms for predicting 
the PMV and the SET. Testing the different types of machine 
learning algorithms to predict the 7-point TS scale repre-
sented in the labels helps find how the occupants feel sub-
jectively, as shown in Table 2. Here, we tested (SVR) with 
Gaussian kernel function (Megri et al. 2005), decision Tree 
(Loh 2002), bagged Ensemble with tree learner (Dietterich 

Table 1  Statistical characteristics of the collected data

Parameters Mean Std. dev Min Max

Outdoor temperature (°C) 26.76 2.50 22 36.85
Indoor temperature (°C) 25.06 1.55 20.21 35.36
Outdoor humidity (%) 83.66 38 11.37 100
Indoor humidity (%) 74.22 8.84 53.51 93.89
Air velocity (m/s) 0.35 0.35 0.05 1.2
Clothing insulation (clo) 0.55 0.13 0.32 0.8
No. of occupants 5.64 10.54 0 35
Temperature set point (°C) 16.84 10.93 18 25
PMV − 0.02 0.84 − 3.36 3.42
PPD (%) 18.88 17.20 5.00 99.92
SET (°C) 25.34 3.39 15.86 37.21

Table 2  Thermal sensation scale based on PMV

Scale Classes Training samples Validation 
samples

+ 3 Hot 546 64
+ 2 Warm 821 164
+ 1 Slightly warm 13,338 2730
0 Normal (comfort) 21,338 5023
− 1 Slightly cool 12,484 4216
− 2 Cool 2911 1107
− 3 Cold 344 151
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Fig. 2  Pseudocode for NCA Feature Selection (NCAFS)

(a) (b) (c)

Fig. 3  The weights of the NCA feature for the feature indexes a TS, b PMV, and c SET

Table 3  predictive features 
considered to develop the model 
for PMV, SET and TS

Predictors Response

Outdoor temperature, outdoor humidity, indoor temperature, indoor humidity, A/C status, num-
ber of occupants, air velocity, clothing insulation

PMV

Outdoor humidity, indoor temperature, indoor humidity, air velocity, clothing insulation SET
Outdoor temperature, outdoor humidity, indoor temperature, indoor humidity, number of occu-

pants, air velocity, clothing insulation
TS



12054 T. M. S. Kumar, C. P. Kurian 

1 3

2000), and ANN with Bayesian regularization learner (Liu 
et al. 2007). The tested classification algorithms are Decision 
tree, bagged ensemble tree and ANN with a scaled conjugate 
gradient backpropagation for the TS prediction (Anyanwu 
and Shiva 2009). We considered a k-fold validation with the 
Bayesian hyper-parameter optimization technique to select 
a suitable parameter to develop the models of the predictive 
thermal indices during training. The k-fold cross-validation 
technique helps to avoid model overfitting.

In k-fold cross-validation, the condition splits the samples 
into k groups. The model is used to train the k − 1 group, 
used the kth group to validate the model, and similarly 
repeats the step for all the groups. It helps to use all the data 
sets for training and validating and finally averages the error 
obtained from each training to validate the model. In this 
work, the tenfold cross-validation (Wu et al. 2018) has been 
used to evaluate the model. Initially, the data was divided 
into two sets: training (80%) and testing set (20%). The train-
ing data set was used to train the ML models with the k-fold 
cross-validation with a parameter optimization technique 
and used the testing data set to validate the model perfor-
mance based on the standard statistical error evaluation 
methods. Finally, it compares all the developed machine-
learning models based on the standard statistical evaluation 
technique and helps to select the best suitable model. After 
obtaining the best suitable thermal comfort model, retrain 
the model with the best hyper-parameter obtained and the 
original data (the training and the test data) for the final ML 
model to predict the thermal comfort.

2.3.1  Bayesian hyper‑parameter optimization

While developing the machine-learning model, the hyper-
parameter plays the leading role in improving the model’s 

performance. The hyper-parameters are input into any 
machine-learning model, which generates its parameters to 
influence the values of the said created settings to make the 
model more accurate. ‘Parameters which define the model 
architecture are referred to as the hyper-parameter, and thus 
this process searching for the ideal model architecture is 
referred to as parameter tuning’. This work considered the 
Bayesian optimization algorithm (BOA) to tune the machine 
learning hyper-parameter (Gelbart et al. 2014), which helps 
auto-select the best suitable parameters by minimizing the 
objective function. The objective function considered to 
tune the parameter for the regression-based model is the 
Mean Square Error (MSE) (Eq. 3) and the classification 
error (Eq. 4) (percentage of misclassification) for the clas-
sification model. The BOA has an advantage over the other 
traditional optimization technique for optimizing the hyper-
parameter because of its fewer iteration and the faster search 
speed during optimization. Figure 4 shows the pseudocode 
for the Bayesian optimization algorithm for optimizing the 
hyper-parameter. A more detailed explanation of the BOA 
is available in the literature, including authors publications 
(Snoek et al. 2012; Gelbart et al. 2014; Kumar et al. 2020a, 
b). This work finally selects the ANN model based on its 
statistical error performance and ranking obtained from 
the standard hypothesis testing for both the regression and 
the classification-based models. For the ANN model, the 
hyper-parameter considered for optimization is the number 
of neurons (1–100) with a single hidden layer and the learn-
ing rate (0–1). Finally, based on the optimization, selects 
the optimum number of neurons and learning rate to make 
the thermal comfort models. This study considered the log-
sigmoid function in the hidden layer and used the Bayesian 
regularization-training algorithm to train the model. Equa-
tion (2) shows the primary neural network mathematical 

Fig. 4  A pseudocode for Bayesian Optimization (Snoek et al. 2012)
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model used in this study, and Fig. 5 shows the neural net-
work structure of the models for different comfort indices, 
where w and b represent the weight and the bias.

where Ŷ  represents the predictive thermal comfort output, X 
the features selected to develop the model, �output the output 
weight matrix, �hidden the hidden layer weight matrix and 
�output the bias in the output layer.

2.4  Model evaluation

This section discusses the different model performances for 
the selected features from the NCA. The regression-based 
model performance is assessed based on MSE, RMSE, MAE, 
and MAPE (Wu et al. 2018). Also, we used the error histo-
gram to visualize the model performance based on the mini-
mum and the maximum error levels and the effectiveness of 
the model's prediction with the lowest error. The model with 
low MAE/RMSE/MAPE indicates that the prediction accu-
racy is good, and the model with the high  R2 indicates a higher 
efficiency of the model. The standard statistical metrics were 
used to evaluate the classification model, and the confusion 
matrix provides the information about each class’s correct and 
incorrect prediction. The confusion matrix helps estimate each 
category’s performance measure based on precision, recall, 

(2)
Ŷ = woutput

{

1 + exp
[

−
(

whidden X + bhidden
)]}

-1 + boutput

(3)MSE =
1

N

N
∑

i=1

(

yi − Ŷi

)2

(4)Percentage Error =

N
∑

i=1

FPi + FNi

TPi + TNi + FPi + FNi

and F1-score. The diagonal element in a confusion matrix 
gives the correct predicted responses and is represented in a 
metric called accuracy—the higher the accuracy, the better 
the model performance. The off-diagonal elements give the 
misclassification error rate represented in percentage error. 
The most commonly used metric to evaluate the classification 
model performance is the area under the curve (AUC) in the 
range of 0–1, and the higher the value better the version of 
the model. The receiver operating characteristics (ROC)-AUC 
is mainly evaluated based on the true positive (sensitivity) 
versus the false-positive rates (specificity).

2.4.1  Model selection

We considered the multiple algorithms (SVM, Decision tree, 
Ensemble bagged tree and ANN) to develop the predictive 
models. Hence, for the comparison of various algorithms 
with multiple data set we considered ANOVA. As per the 
literature, Friedman’s /Kruskal Wallis tests (Alpaydin 2014) 
are better to find at least one algorithm that performs signifi-
cantly different than the other algorithms. Moreover, these 
tests rank the algorithms from the best performing one to the 
poorest one (Alpaydin 2014). In the second step, we applied 
the pairwise test with the corresponding post-hoc correction 
for multiple comparisons to obtain a significant difference 
between the algorithms.

However, sometimes it is preferred to perform a test to 
determine which pairs of the column effect are significantly 
different. Therefore, in this work, we considered Friedman's 
test to check the significant difference between the algo-
rithms, the Fisher's the least significant post hoc test to check 
for pairwise comparison of the ranks, used the 5 × 2 cross-
validation losses for testing the hypothesis, and 5% signifi-
cance level to reject the null hypothesis. Finally, model one 
that reached grade 1 was selected as the best performing 
model for the final production.

The goal was to test the null hypothesis for the signifi-
cant difference between the algorithms and analyze all the 
pairwise comparisons. Therefore, the first hypothesis was 
to try whether all the algorithms performed equally or, in 
contrast, some of them had significantly different behaviour. 
When all the differences were tested for every pair of algo-
rithms, the resulting p-values showed a significant differ-
ence between the two algorithms. The details of the model 
selection and the comparative analysis is given in the result 
analysis section.

3  Result and analysis

This section presents the performance of PMV, SET, and TS 
prediction models developed to estimate the comfort level 
of the occupants. We analyzed the prediction capability of 

Fig. 5  Sample structure of the neural network a 7-point TS prediction 
multiclass neural network model b PMV prediction neural network 
model
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the SVR, Tree, Bagged Ensemble Tree, and ANN model 
approach using the correlation plot of True response values 
against the predicted response values. Based on the results 
illustrated in Tables 4 and 5 we can infer that the proposed 
ANN model outperforms the other machine learning meth-
ods in terms of accuracy, linear relationships and ranking. 
Figure 6 shows the confusion plot of true class versus the 
predicted class of seven points TS scale for SVM, Tree, 
bagged ensemble tree, and ANN models, and helps to find 
the best suitable model for predicting the TS. The confusion 
matrix gives information about the probability of correct and 
incorrect classification of observations. Table 7 shows recall, 
precision, and F1-Score for different classification models. 
The BO select the suitable hyperparameters automatically to 
develop the ML models by minimizing the objective func-
tion, and it is one of the techniques used for the automatic 
selection of hyperparameters to the ML algorithms.

The model with the highest precision, recall, and accuracy 
represents the performance of a good model. This estimate 

Table 4  Statistical performance of the SVR, Tree, Ensemble Tree, 
and ANN model for PMV prediction

Models MSE RMSE MAE MAPE (%) R2 (%)

ANN 2.49E−06 0.0016 0.001 0.56 100
SVR 0.0063 0.0797 0.055 12.379 99
Ensemble bag 0.019 0.1378 0.0794 17.8148 97
Tree 0.0463 0.2152 0.1334 55.4364 92.69

Table 5  Statistical performance of the SVR, Tree, Ensemble Tree, 
and ANN model for SET prediction

Models MSE RMSE MAE MAPE (%) R2 (%)

ANN 0.0013 0.0357 0.0162 0.0821 99.98
SVR 0.0513 0.2266 0.1727 0.8185 99.13
Ensemble bag 0.2371 0.4869 0.2955 1.4706 95.97
Tree 0.383 0.6189 0.4072 1.9576 93.49
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Fig. 6  A confusion matrix of the true class versus the predicted class for different models

Table 6  Statistical performance 
of the SVR, Tree, Ensemble 
Tree, and ANN model for TS 
prediction

Models Classification loss Percentage error Accuracy (%) F1-Score

ANN 0.00641 1.29358 98.7064 0.96077
Ensemble bag 0.03843 6.10364 93.8964 0.89492
SVM 0.0475 8.46777 91.5322 0.83955
Tree 0.11023 15.2331 84.7669 0.77511

Table 7  Precision, recall, and F1-score for thermal comfort model

Classes ANN SVM Ensemble Bag Tree

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-Score

Cold 0.99 0.74 0.85 1.00 0.07 0.12 0.96 0.36 0.52 NaN 0.00 NaN
Cool 0.96 0.96 0.96 0.83 0.48 0.61 0.88 0.65 0.75 0.71 0.33 0.45
Slightly cool 0.99 0.99 0.99 0.86 0.92 0.89 0.90 0.96 0.93 0.77 0.86 0.81
Comfort 0.99 1.00 0.99 0.93 0.99 0.96 0.95 0.99 0.97 0.86 0.93 0.90
Slightly warm 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98 0.97 0.93 0.95
Warm 0.98 0.98 0.98 0.97 0.94 0.96 0.99 0.98 0.98 0.98 0.84 0.90
Hot 0.97 0.93 0.95 0.98 0.93 0.96 1.00 1.00 1.00 0.98 0.97 0.97
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the quality of the classifier (individually) based on sensi-
tivity and specificity for each class, and the ROC applies 
threshold values across the interval [0, 1] to the outputs. 
Tables 6, 7 and 8 indicate that the ANN model outperforms 
all the other models. The AUC is shown in Table 8, which 
indicates the overall quality of the classifier, the higher the 
AUC indicates, the better the performance. Finally, we con-
ducted hypothesis testing to estimate the performance of dif-
ferent models quantitatively and select the best performing 
model based on the ranking obtained from Friedman's rank 
test. The quantitative estimation considered training, testing, 
and 5 × twofold cross-validation losses for the hypothesis 
testing. Tables 9 and 10 show the results of the statistical 
testing for the PMV model, indicate a significant difference 
between the performances of algorithms and Friedman’s 
ranking, and show how the ANN model stands in rank 1.

The accepted error level for this model is ± 0.1, and based 
on this error level, the selected ANN predicts 100% of the 
instances within the accepted error level. Finally, the maxi-
mum and the minimum error levels for the ANN are less 
than the other models.

This work selects the ANN model to predict the PMV, 
which helps find the occupants' thermal comfort. The cho-
sen model gives the lowest MAPE of 0.56 and the highest 
coefficient (R2) of 100%, as shown in Table 4. Although the 
other models also give the highest ratio (R2), the MAPE is 
high compared to the ANN model.

The accepted error level for this model is ± 0.5 °C, and 
based on this, the selected ANN predicts 100% of the 
instances within the accepted error level, and similarly, the 
SVR, tree, and bagged ensemble tree models predict 95.93%, 
76.51%, and 80.72% of the instances, respectively. Finally, 
the maximum and the minimum error levels for the ANN are 
less than the other models.

The selected model gives the lowest MAPE of 0.5326 and 
the highest coefficient  (R2) of 99.98%, as shown in Table 5. 
The confusion matrix analysis helps select the best suit-
able model to predict the thermal sensation, which helps to 
find how the occupant feels in an indoor environment. Even 
though the SVM and the ensemble tree models perform well 
with an accuracy of 91.53% and 93.89%, respectively, for 
all the classes from − 3 to 3, the sensitivity (Recall) of the 
individual classifier classifies the SVM model cold condi-
tion 70% and 24.5% incorrectly as cool and slightly cool and 
classifies 32.5% correctly as cold. In addition, the cold state 
misclassified 61.6% and 2.6% incorrectly as cool and slightly 
cool for the ensemble tree model and classified 35.8% cor-
rectly as cold. However, the misclassification happens in the 
other classes too and adequately have a high chance to mis-
predict cool, slightly cold, warm, and somewhat. Therefore, 
when compared the ANN with other models, we observed 
that the six categories (Hot to Cool) are predicted with the 
highest probability of greater than 0.9. The cold level clas-
sifies 26% incorrectly as cool, and 74% classifies correctly, 
with an accuracy of 98.71% for all classes from − 3 to 3.

Finally, since it is impossible to conclude the model’s 
performance only with the confusion matrix, we did a ROC-
AUC analysis, which helped find the classifier’s quality. 
Table 8 shows the AUC numbers, which help measure the 
classifier’s overall quality in which the higher the AUC value 
indicates, the better the performance. Based on the AUC-
ROC comparison found that the ANN model performed 
better than the other algorithms. During the comparison of 
the ANN model with others, the ROC curve showed that all 
the classes of the ANN model (7-classes: ‘Cold’, ‘Cool’, 
‘Slightly Warm’, ‘Comfort’, ‘Slightly Warm’, ‘warm’, ‘hot’) 
were close to 1, and its overall quality is given in AUC meas-
urement. Finally, Tables 6, 7 and 8 indicate that the ANN 
model performs better than all the other models.

Table 8  AUC numbers which help to measure the quality of the clas-
sifier

Classes ANN SVM Ensemble bag Tree

Cold 0.87082 0.53311 0.67873 0.5
Cool 0.97776 0.73357 0.82235 0.6559
Slightly cool 0.99266 0.92606 0.95401 0.86905
Comfort 0.99467 0.97253 0.97742 0.91671
Slightly warm 0.99485 0.99138 0.98198 0.96048
Warm 0.9907 0.96935 0.98776 0.9206
Hot 0.96659 0.96663 1 0.98329

Table 9  Average rank position for four different algorithms deter-
mined during Friedman’s test

1-st 2-nd 3-rd 4-th

ANN
(1)

Ensemble Tree (ET)
(2.2)

SVR
(2.8)

Decision Tree (DT)
(4)

Table 10  A comparison of results with the corresponding group 
names

Groups Lower limit Estimated 
group mean

Upper limit P-value

SVR DT − 2.33159 − 1.2 − 0.06841 0.037667
SVR ET − 0.53159 0.6 1.731586 0.298698
SVR ANN 0.668414 1.8 2.931586 0.001823
DT ET 0.668414 1.8 2.931586 0.001823
DT ANN 1.868414 3 4.131586 2.03E−07
ET ANN 0.068414 1.2 2.331586 0.037667
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3.1  Testing the hypothesis

Once again, we conducted Friedman’s ANOVA test to com-
pare the performance of different models for the confirma-
tion of the final model. Besides, the ranking established in 
Table 9 indicates that the ANN model performs better than 
all the other models.

Secondly, we conducted Fisher’s pairwise comparison 
test to estimate the significant difference between the per-
formances of the multiple algorithms. Table 10 shows the 
significant difference in performances of various algorithms. 
The p-value column helps to find the considerable difference 
between the two algorithms; if the p-value is less than or 
equal to 0.05, it indicates rejecting the null hypothesis and 
suggests that there is a significant difference between the 
algorithm or otherwise does not reject. The ANN model 
is significantly different from the SVM, ensemble tree and 
decision tree model, but the p-value of 0.299 refers to accept 
the null hypothesis. As per the ranking, ANN is found in 1st 
place, hence selected the ANN as the final model. Similarly, 
the SET and TS models also conducted hypothesis testing 
and found that the ANN performed better than the other 
models. The p-value 1.3800e−06 and 2.39e−10 obtained 
for the SET and TS indicate a significant difference between 
performances of the algorithms.

3.2  Pre‑emptive control of A/C setpoint

The real-time ML-based predicted PMV model helps to 
find the temperature setpoint to the A/C system automati-
cally. Here, PMV is the reference to estimate the setpoint 
temperature to the A/C system to maintain thermal com-
fort to occupants present in an indoor environment. The 
conditions considered to estimate the temperature setpoint 
are (1) initially considered the PMV range between − 0.5 
to 0.5 as the neutral represents the comfort, and initialize 
the human parameters difficult to monitor implement in a 
real-time environment. (2) If PMV ranges exceed 5, then 
reduce the temperature setpoint 1 °C and estimate the PMV 
by considering setpoint temperature is similar to room tem-
perature because in A/C rooms, maintain room temperature 
as similar to setpoint shown in data collection section. (3) 
Similarly, if PMV ranges less than − 0.5, then increase the 
temperature set point to the A/C system and consider it input 
to the PMV model rather than air temperature to estimate 
the occupant comfort. After setting the temperature setpoint 
to the A/C system, wait for 5–10 min and monitor the room 
temperature, other measurable sensor data (because after 
changing the setpoint to the A/C system takes a minimum 
of 5–10 min to maintain room temperature) and use as the 
input to the predictive model and estimate the PMV to find 
the comfort to the occupants. Figure 7 shows the flowchart 
for the estimation of temperature setpoint to the A/C system.

4  Conclusion

In this work, we have derived machine learning-based mod-
els for predicting the thermal comfort of the occupants. 
Here, we considered the models PMV, SET, and TS using 
different algorithms and identified the best model using dif-
ferent performance measures. Finally, the work proposed 
NCA-BOA based ANN model to predict the thermal indices. 
This work considered the NCA feature selection method to 
select the most suitable feature influence on the response and 
used the Bayesian hyper-parameter optimization to tune the 
parameters during the development of the machine-learning 
model. We considered a regression-based strategy to develop 
the predictive model for PMV, SET and considered a clas-
sification algorithm to develop the predictive model for the 
7-point TS. Initially, we considered four different algorithms 
to develop the predictive models SVM, DT, ET, and ANN. 
After training the data, here considered the statistical evalu-
ation metrics to find the performance of all the four algo-
rithms and conducted the hypothesis test to evaluate the per-
formance of multiple algorithms. This methodology helps 
select the best performing algorithm and find a significant 
difference between the performances of the different algo-
rithms. Besides, for testing the hypothesis, considered Fried-
man’s ranking and Fisher’s least significance test. Finally, 
the statistical error test results and Friedman's ranking test 
specify that the performance of the recommended ANN 
model is highly accurate and more reliable in predicting the 
thermal indices.

Table 11 quantifies the features of the proposed model, 
in which we highlight the adoption of the feature selection, 
parameter tuning method and hence it is possible to obtain 
high accuracy compared to the that of the models in recent 
literature.

The predicted PMV is further used for the estimation of 
setpoint leading to occupant thermal comfort. For a building 
space to be ASHRAE 55 compliant, the PPD value should 
be below 20%, and PMV should be in the range of − 0.5 
to + 0.5. The thermal conditions of the room for different 
humidity ranges were observed. An operative temperature of 

Fig. 7  Flowchart for A/C temperature setpoint estimation leading to 
thermal comfort
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25 °C was found to satisfy relative humidity values of 61%, 
71%, 81% when airspeed was 0.2 m/s, and clothing level 
was 0.6, and the metabolic rate was set as 1.2 met. The PMV 
and PPD values were − 0.31 and 7%, respectively, when 
the humidity was set as 61%, and operating temperature as 
25˚C. The PMV and PPD values were − 0.14 and 5%.for the 
same conditions; the humidity was 81%. For higher humid-
ity ranges, the more comfortable cooling setpoint would be 
24 °C. A cooling setpoint of 25 °C would be satisfactory for 
low humidity values. Each 1 °C changes in setpoint lead to 
3–6% energy consumption.

Finally, here implemented the model in a test room with 
the myRIO platform; the model is verified with subjective 
measures with an error rate of 5% and verified the setpoint 
changes manually. The proposed model is not universal; it 
can be made universal by retraining with a global dataset 
under different climatic conditions and locations. In machine 
learning model development, the time and space constraint 
of the models vary based on the training data, processor, 
system specification high end and highly processed or GPU 
based systems take less time to train even more complex 
models); in this work, we have not focused on time and 
space complexity.
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