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Abstract
In this paper, a new fault diagnosis approach based on elite opposite sparrow search algorithm (EOSSA) optimized LightGBM 
is proposed. It is necessary to extract appropriate features when dealing with high-dimensional data. Since the distribution 
of the high-dimensional data is not always approximately subject to a normal distribution, it will cause errors when it is 
approximated to normal distribution for feature extraction. The dimension reduction algorithms based on Euclidean distance 
often ignore the change of data distribution. To address this problem, cam locally linear discriminate embedding (CLLDE) 
based on cam weighted distance is proposed, which can improve the performance dealing with the deformed data of locally 
linear discriminate embedding (LLDE). The performance of CLLDE is better than LLDE on the iris dataset. It is important 
to establish a classifier with optimized hyper-parameters for fault identification. Sparrow search algorithm (SSA) is a novel 
optimization algorithm, which has achieved good results in many applications, but its optimization ability and convergence 
speed still need to be improved. Elite opposite sparrow search algorithm (EOSSA) is proposed by introducing elite opposite 
learning strategy and orifice imaging opposite learning strategy into SSA. The optimization results on benchmark functions 
show that EOSSA converges faster and has better optimization ability compared with the other five algorithms. EOSSA is 
used to optimize the hyper-parameters of LightGBM to train a classifier that can obtain a better fault recognition rate. Finally, 
the effectiveness of the proposed fault diagnosis approach is verified on Tennessee Eastman (TE) process dataset. Experiment 
results demonstrate that the EOSSA-LightGBM-based approach is superior to other algorithms.

Keywords  Fault diagnosis · Feature extraction · High-dimensional data · Intelligent optimization · Opposite learning 
strategy

1  Introduction

Fault diagnosis and detection are mostly data-driven nowa-
days. Although data acquisition becomes easier, how to deal 
with a large amount of high-dimensional data has become 
a difficult problem. There is a lot of information that can be 
used in high-dimensional data, but most of them are redun-
dant, and a large amount of data increases the computational 
complexity, which may lead to the curse of dimensionality.

A common feature extraction method to deal with high-
dimensional data is dimension reduction. The traditional lin-
ear dimension reduction methods include principal compo-
nent analysis (PCA) (Duchene and Leclercq 1988; Wold et al 
1987), linear discriminant analysis (LDA) (Duda et al 2001; 
Etemad and Chellapa 1997) and others. Later, Schölkopf 
et al. (1997) proposed kernel principal component analysis 
(KPCA) to deal with nonlinear data, which achieved good 
results. With the further development of manifold learning, 
there is a better choice to deal with nonlinear data.

Manifold learning is mainly divided into local informa-
tion preserving methods and global information preserving 
methods. Locally linear embedding (LLE) (Roweis and Saul 
2000) is a classical manifold learning method based on local 
information, which can generate an implicit function to map 
data from high-dimensional space to low-dimensional space. 
Nonlinear methods for preserving global information mainly 
include multi-dimensional scaling (MDS) (Cox and Cox 
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1994), isometric mapping (ISOMAP) (Law and Jain 2006; 
Tenenbaum et al 2000) and others. ISOMAP proves that it 
is feasible and effective to change the measurement distance 
between data points. Li et al. (2008) combines maximum 
margin criterion (MMC) (Li et al 2006) with LLE to pro-
pose locally linear discriminant embedding (LLDE). LLDE 
uses the category attributes of data, and it makes the data 
of different categories farther apart and similar data closer 
to each other after dimension reduction. Besides, the algo-
rithm avoids the small sample size (SSS) problem (Zheng 
et al 2004).

As mentioned above, using category attributes is more 
conducive to classification. Because of the attraction or 
repulsion between data samples (Zhou and Chen 2006), 
the distribution of data may be deformed. Cam weighted 
distance considers the scale of data distribution and the 
direction of deformation, which can well measure deformed 
data. When building a neighborhood with cam weighted dis-
tance, the samples with larger density will be given smaller 
weight and larger weight for the smaller ones (Zhou and 
Chen 2006). The fault data should be paid more attention in 
fault diagnosis, while cam weighted distance can give more 
attention to fault data. Owing to the way that LLDE cal-
culates distance, LLDE has some limitations when dealing 
with deformed data. To address this problem, cam locally 
linear discriminant embedding (CLLDE) is proposed based 
on cam weighted distance.

It is necessary to classify the extracted data to realize fault 
identification after feature extraction. Zhang et al. (2018) 
used robust LLE to extract features, then used support 
vector machine (SVM) to identify mechanical faults. Fan 
et al. (2019) used convolutional neural network (CNN) for 
feature extraction, and then used LightGBM for mechanical 
fault prediction. LightGBM (Ke et al 2017) is a gradient lift-
ing algorithm based on the decision tree proposed by Micro-
soft. In this algorithm, the histogram is introduced to gener-
ate the decision tree. In the sampling process, gradient-based 
one side sampling (GOSS) and exclusive feature bundling 
(EFB) are used to merge independent features. In addition, 
the enhancement to the leaf-wise growth strategy improved 
the computation efficiency of the algorithm.

The influence of hyper-parameters should be considered 
when training a classifier. LightGBM has some hyper-
parameters that determine the final classification effect. 
Thus, it is important to select the appropriate hyper-param-
eters for the classifier.

Swarm intelligence optimization algorithm is widely 
applied in engineering and plays an important role in the 
adjustment of model parameters. Zeng et al. (2017) applied 
the improved particle swarm optimization (PSO) to address 
the short-term load forecasting problem. Liu et al. (2019) 

used an improved PSO and K-means algorithm to solve 
the clustering problem of the emergency patient. You 
et al. (2018) use BP neural network optimized by hybrid 
PSO to study the electro-hydraulic control system. Zeng 
et al. (2018) proposed a switching delayed PSO to optimize 
the hyper-parameters of SVM to implement medical diag-
nosis. Pathana et al. (2021) show that an optimization algo-
rithm to optimize CNN to identify COVID-19 patients by 
X-ray image of the lung.

Sparrow search algorithm (SSA) (Xue and Shen 2020) is a 
novel swarm intelligence algorithm, which has been applied 
in many fields and achieved good results, such as (Xing et al 
2021; Zhang and Ding 2021; Zhu and Yousefi 2021). Xing 
et al. (2021) apply SSA in fault diagnosis of the wheelset-
bearing system. Zhang et al. (2021) show that the chaotic 
mapping strategy to improve SSA to optimize the stochastic 
configuration network. Zhu et al. (2021) proposed an adap-
tive SSA to address the parameters identification problem. 
However, the search efficiency and the convergence speed 
of SSA are needed to be improved. To improve the ability 
of the algorithm to find the optimal solution and accelerate 
the convergence speed of the algorithm, the elite opposite 
sparrow search algorithm (EOSSA) is proposed based on the 
elite opposite learning strategy and orifice imaging opposite 
learning strategy. EOSSA is used to optimize LightGBM 
to find the most suitable hyper-parameters to identify fault 
data. The diagram of the proposed fault diagnosis approach 
is shown in Fig. 1.

The main contributions of this paper are summarized 
as follows. CLLDE algorithm is proposed based on cam 
weighted distance to improve the limitations when deal-
ing with the deformed data of LLDE. EOSSA is proposed 

Fig. 1   Diagram of the proposed framework based on the EOSSA-
LightGBM approach
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based on elite opposite learning strategy and orifice imaging 
opposite learning strategy, which improves the ability to find 
the optimal solution and accelerate the convergence speed 
compared with SSA. SSA and EOSSA are used to optimize 
the hyper-parameters of LightGBM for the first time, and a 
new fault diagnosis approach based on EOSSA optimized 
LightGBM is proposed. Aimed at the problem that the fault 
data may not be approximated to normal distribution for 
similarity measurement. An approach based on CLLDE and 
EOSSA-LightGBM is proposed to address the diagnosis 
problem of the deformed fault data.

The rest of this paper is organized as follows. In Sect. 2, 
CLLDE is proposed based on cam weighted distance, and 
its effectiveness is verified on the iris dataset. In Sect. 3, 
EOSSA is proposed by introducing the elite opposite learn-
ing strategy and orifice imaging opposite learning strategy 
into SSA. The establishment process of EOSSA-LightGBM 
and the fault diagnosis experiment are introduced in Sect. 4. 
The conclusion of the whole paper is in Sect. 5.

2 � Cam locally linear discriminate 
embedding

2.1 � Cam weighted distance

Let d dimensional vector Z obey standard normal distribu-
tion N(0, I), and its probability density function is

Random vector X can be defined by the transformation (Zhou 
and Chen 2006)

where z denotes the original well distributed dataset. 
a > b ⩾ 0 reflects the scale of data distribution and the 
deformation direction in a certain direction. � is a normal-
ized vector that describes the deformation orientation. 
��z�� = √

zTz , X is the deformation distribution, and a and 
b are the deformation parameters (Pan et al 2009). The 
deformed data can be changed into normal distribution by 
transforming z = X∕(a + b cos �) , then the definition of cam 
weighted distance is obtained.

Let x0 ∈ Rd be the center of cam distribution Dd(a, b, �) . 
The cam weighted distance from point x ∈ Rd to x0 can be 
defined as

(1)f (z) =
1

(2�)
d

2

exp
(
−
1

2
zTz

)
.

(2)X =

(
a + b

zT�

z

)
z.

Lemma 1    (Zhou and Chen 2006) If a random vector 
X = Dd(a, b, �) , then E(X) = c1b� and E(‖x‖) = c2a , where 
c1 and c2 are constants and can be expressed as

where d is the dimensionality of the random vector X. �  
represents Gamma function 𝛤 (m) = ∫ ∞

0
tm−1e−tdt(m > 0).

According to Lemma 1, for arbitrary x in dataset, we can 
suppose that it is the center of the cam distribution. The 
points around it are subject to cam distribution, and its 
k-nearest neighbors Xi = [xi1, xi2,… , xik] can be transformed 
as Vi = [vi1, vi2,… , vij] , where vij = xij − xi , j = 1, 2,… , k . 
The central vector Ĝi and the average vector length L̂i can 
be presented as follows:

Ĝi and the mean value of vij can be used to estimate E(X) . 
Besides, L̂i and the mean value of ‖vij‖ can be used to esti-
mate E(‖X‖) . The parameter estimation can be obtained by 
Lemma 1:
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Ĝi
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2.2 � Cam locally linear discriminate embedding

In practical applications, most high-dimensional data are not 
normally distributed. For fault data, it is often different from 
normal data in the process of acquisition due to attraction, 
repulsion, and other factors. These changes can not be ignored. 
Under this condition, it assumes that the data approximately is 
subject to the standard normal distribution will produce large 
errors. The original Euclidean distance calculation method 
based on normal distribution is no longer applicable. It can 
transform the deformed data into normal distribution to use 
cam weighted distance, which can eliminate the influence 
of data deformation and better describe the similarity (Zhou 
and Chen 2006). Considering this condition, cam weighted 
distance is used to improve the nearest neighbor distance cal-
culation method of LLDE to make it more suitable for fault 
data diagnosis. Cam Locally Linear Discriminate Embedding 
(CLLDE) uses cam weighted distance to calculate the distance 
between the samples, and other calculation processes are simi-
lar with LLDE.

Changing the calculation method of the distance that used 
in LLDE between the nearest neighbor points can change the 
direction of the algorithm to select the nearest neighbor points. 
Instead of taking the nearest neighbor points as the selection 
criteria, the calculation method will consider the points in all 
directions of the center point to select the nearest neighbor 
points.

Based on the cam distance, combined with LLE and MMC, 
CLLDE is proposed to extract feature. LLE is a nonlinear 
dimension reduction method. Let X = {X1,X2,… ,Xn} , and 
Xi ∈ RD denotes n points in D dimensional space, where 
i = 1, 2,… , n . The mapping of high-dimensional data in low-
dimensional space can be recorded as Y = {Y1, Y2,… , Yn} , 
Yi ∈ Rd , where i = 1, 2,… , n . The d represents the dimension-
ality of low-dimensional space.

LLE achieves the goal through three steps (Lei et al 2010). 
Firstly, kNN algorithm or �-ball criterion is used in LLE to find 
the nearest neighbors. LLE is to find the best reconstruction 
weight matrix in the second step, and to minimize the local 
reconstruction error of xi can realize it. It can be described as

where N is the amount of all data points, xi denotes the i-
th data point, xj denotes the j-th nearest neighbor, and wij 
represents the weight coefficient of the i-th data point to the 
j-th nearest neighbor.

(11)�(W) = argmin
w

N�
i=1

‖xi −
k�

j=1

wijxj‖2,

Let Nk
i
 be the set of neighbor points of xi . The xi is recon-

structed by its neighbor points, if xj is the neighbor point of 
xi , then wij ≠ 0 ; on the contrary, wij = 0 . In addition, it should 
meet 

∑k

j=1
wij = 1 to have a better data distribution after 

dimensionality reduction. The restriction of weight W can be 
written as

In the third step, the reconstruction matrix W can be used to 
calculate the optimal embedding matrix Y after dimension 
reduction. This step can be described as

Let M = (I −W)T (I −W) , and (13) can be transformed as 
arg min

y
tr{YTMY} , where M =

[
Mij

]
n×n

 . To avoid degener-
ate solutions, it constrains the embedding vectors to have 
unit covariance with which satisfy 1

N
YTY = I . According to 

Rayleigh-Ritz theorem (Li et al 2008), the smallest nonzero 
eigenvector of the sparse matrix M is the solution of (13).

Li et al. (2008) linearize LLE by introducing Y = VTX into 
LLE to address this problem, and (13) can be rewritten as

The maximum margin criterion (MMC) restricts the map-
ping relationship, and its purpose is to maximize the dis-
tance between each class of samples. It can use the category 
attributes of data to improve the separability of data. Sw is 
the within-class scatter matrix. Sb is the between-class scat-
ter matrix. They can be calculated by  Li et al (2006)

where c is the number of classes, m is the mean vector of all 
the samples, mi represents the average vector of the i-th 

(12)

⎧
⎪⎨⎪⎩
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.
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class, ni is the number of samples in the i-th class, and xi
j
 is 

the j-th sample in the i-th class.
The objective function of MMC under projection matrix W 

can be described as

The class relationship between samples is considered in 
MMC. It can obtain the optimal linear discriminant map-
ping and maintain the internal geometric structure of neigh-
bors. The linearized LLE obtains the manifold structure of 
high-dimensional data, which ensures the scalability of the 
data. To minimize the reconstruction error and maximize 
the distance between classes, a multi-objective optimization 
problem can be obtained by combining (14) and (17), and 
they have the same mapping matrix in this case. The multi-
objective optimization problem can be represented as

Since (14) and (17) have the same mapping matrix, a single 
objective optimization problem can be constructed by mak-
ing a difference to solve the mapping matrix V. The single 
objective optimization problem can be written as

The problem can be solved by the Lagrange multiplier 
method, and the form of (19) can be transformed into

where �i is the generalized eigenvalue of (XMXT − (Sb − Sw)) 
and XXT . V is the corresponding generalized eigenvector.

Therefore, the minimum value of the objective function 
(19) can be required as long as the generalized eigenvector 
V of (21) is obtained. V is composed of eigenvectors corre-
sponding to the first d smallest eigenvalues of the general-
ized spectral decomposition, where d is the target dimension 
to be reduced to.

After changing the distance of selecting the nearest 
neighbor, mapping matrix Y can be obtained by (21) and 
Y = VTX , which can better reflect the actual distribution of 
the deformed data. The main steps of CLLDE are summa-
rized in Algorithm 1.

(17)J = tr{WT
(
Sb − Sw

)
W}.

(18)
{

min tr{VTXMXTV},

max tr{VT
(
Sb − Sw

)
V}.

(19)min tr{VT
(
XMXT −

(
Sb − Sw

))
V},

(20)s.t. VTXXTV = I.

(21)
(
XMXT −

(
Sb − Sw

))
V = �XXTV ,

The next part is the performance experiment of CLLDE 
in comparison with LLDE. The integrated development 
environment is Python 3.7.6 for all the experimenta-
tions, the model of CPU is Intel(R) Core(TM) i7-8750H, 
and the operating system is Windows 10. The following 
experiments are in the same environment.

The iris dataset contains 150 records of three catego-
ries called iris-setosa, iris-versicolour, and iris-virginica 
respectively. Each category contains 50 data, and each data 
contains 4 characteristic variables, which means the sam-
ple is 4-dimensional. Figure 2 shows the dimension reduc-
tion effect of LLDE on the iris data with 10, 20, 30, 40, 
and 50 neighbors, while Fig. 3 is the dimension reduction 
effect of CLLDE on the iris data with 10, 20, 30, 40, and 
50 neighbors. Through the comparison, we can conclude 
that CLLDE achieves a better dimensionality reduction 
effect on the iris dataset than LLDE.
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Fig. 2   LLDE dimension reduction effect on iris dataset

Fig. 3   CLLDE dimension reduction effect on iris dataset
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In summary, the experiments on the iris dataset show 
that CLLDE can better distinguish different categories of 
data, and it is more suitable for pattern recognition with 
labels under the same neighborhood conditions for uneven 
data or deformed data.

3 � Elite opposite sparrowsearch algorithm

3.1 � Sparrow search algorithm and elite 
opposite sparrow search algorithm

SSA is a novel swarm intelligence algorithm inspired by the 
behaviors of the sparrows. SSA searches for the solution to 
the optimization problem by imitating the foraging behaviors 
and anti-predatory behaviors of the sparrows. Firstly, some 
sparrows are randomly selected as producers in the sparrow 
population. The main mission of the producers is to find food 
for the whole population, which determines the direction and 
the area of foraging. Scroungers will follow the producers to 
find food, and some scroungers will keep a lookout over the 
producers and wrest food from the producers. Once the preda-
tor is detected, the individuals will send the anti-predatory 
signal. Finally, sparrows find the most suitable location to for-
age for the whole group by iterating the location of producers 
and scroungers for many iterations.

The dimension of the sparrow population is n × H, and n 
is the number of all the sparrows. H represents the dimen-
sionality of variables to be optimized. The position of the i-th 
sparrows can be described as Si = [si,1, si,2,… , si,q] , i ∈ [1, n] , 
q ∈ [1,H] , and si,j shows the position of the i-th sparrow hav-
ing j dimensional variables. The fitness value of the sparrow 
population can be described as

where n represents the number of all the sparrows of popula-
tion, and the value of each row in FS is the fitness value of 
the individual sparrow.

In SSA, the mission of the producers is to find food for the 
population, and the main behavior of the scroungers is mainly 
to follow the producers to get food. Besides, some scroungers 
may compete with producers for the food, and the scroungers 
will get the food if they win. Based on the above description, 
the location of producers is defined as

(22)FS =

⎡⎢⎢⎢⎣

f
��
s1,1, s1,2,… , s1,q

��
f
��
s2,1, s2,2,… , s2,q

��
⋮

f
��
sn,1, sn,2,… , sn,q

��

⎤⎥⎥⎥⎦
,

where t represents the current iteration, st
i,j

 is the value of the 
i-th sparrow in the j-th dimension at the t-th iteration, T is 
the maximum number of iterations, and � ∈ (0, 1] is a ran-
dom number. Aalarm ∈ [0, 1] represents the warning value 
while Jth ∈ [0.5, 1] expresses the safety threshold. Q is a 
random number that is subject to the normal distribution. � 
is a 1 × q matrix where all elements are one (Xue and Shen 
2020).

The position of the scrounger can be updated by

where st+1
pbest

 represents the best position in the global search 
space at the t+1 iteration, while st

worst
 represents the global 

worst position at  t-th iteration. � is a 1 × q matrix whose 
elements are randomly assigned 1 or -1, and �+ satisfies 
�+ = �T (��T )−1.

When the sparrows in the population are aware of the dan-
ger, for the sparrows at the edge position, they will fly to a 
safe place. For the sparrows in the middle of the population, 
they approach other sparrows in a random walk. According to 
mentioned above, the mathematical model can be expressed as

where st
best

 express the optimal position in the global search 
space at t-th iteration, and � is a random number, which 
subjects to standard normal distribution and controls the 
step size. K ∈ [−1, 1] shows the moving direction of spar-
row. � is a very small constant, which is aimed to avoid 
zero-division-error.

In a swarm intelligence algorithm, the initial solution deter-
mines the distribution of the initial population in the solution 
space. The spatial distribution of the solution will affect the 
search-ability and convergence efficiency of the algorithm. The 
high-quality initial population can accelerate the convergence 
speed of the algorithm, which is more conducive to finding 

(23)st+1
i,j

=

⎧
⎪⎨⎪⎩

st
i,j
⋅ exp

�
−i

𝛽 ⋅ T

�
, Aalarm < Jth,
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i,j
+ Q ⋅ 𝜗, Aalarm ⩾ Jth,

(24)st+1
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⎧
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�
st
worst

− st
i,j

i2

�
, i > n∕2,

st+1
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+ �st
i,j
− st+1

pbest
� ⋅ 𝜄+ ⋅ 𝜗, i ⩽ n∕2,

(25)st+1
i,j
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⎧⎪⎨⎪⎩

st
best

+ � ⋅

�
st
i,j
− st

best

�
, fi ≠ fg,
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i,j
+ K ⋅

�
st
i,j
−st

worst

�fi−fw�+�
�
, fi = fg,
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the global optimal solution. Based on mentioned above, the 
elite opposite learning and orifice imaging opposite learning 
strategy are introduced into SSA, and the elite opposite spar-
row search algorithm (EOSSA) is proposed.

Before introducing EOSSA, it is necessary to explain 
the opposite point and the elite opposite solution. Let 
s =

[
s1, s2,… , sq

]
 be a point in q dimensional space, where 

si ∈
[
�j,�j

]
, j = 1, 2,… , q , �j and �j represent the lower 

boundary and the upper boundary of search space, respec-
tively. The opposite point is defined as (Wang et al 2011)

Let si,j be the value of ordinary individual si in the j dimen-
sion, then the elite opposite solution can be defined as (Sih-
wail et al 2020)

where � ∈ [0, 1] is a random number, 
[
�j,�j

]
 is the interval 

constructed by the elite sparrows, and se
i,j
∈
[
�j,�j

]
.

The elite opposite strategy can provide more alternative 
solutions. The dynamic boundary can accelerate the con-
vergence of SSA. EOSSA takes the sparrows with the top 
� % of fitness values as the elite solutions. � is a constant 
that represents the ratio of the elite sparrows. EOSSA can 
obtain the dynamic boundary of the elite sparrows, and then 
uses the opposite strategy to obtain the opposite solutions. 
Compared with the sparrow before updating and the sparrow 
after updating, if it obtains a better value, it will replace the 
previous sparrow.

The rest of the population is the ordinary sparrows. For 
ordinary sparrows, their low fitness is mainly because the 
search area is far away from the search range of excellent 
individuals. To expand the search range and have the ability 
to jump out of the current poor search area, and to increase 
the diversity of the population, we use the different oppo-
site learning strategies from elite individuals to operate on 
ordinary sparrows.

(26)s∗
j
= �j + �j − sj.

(27)se
i,j
= �

(
�j + �j

)
− si,j,

Orifice imaging opposite learning is an opposite learn-
ing strategy based on optical principle (Zhang et al 2021), 
which assumes that there is a light source � with a height 
of h, and the upper and lower boundaries of the coordinate 
axis are �j and �j , respectively. The projection point of the 



10481A new elite opposite sparrow search algorithm‑based optimized LightGBM approach for fault…

1 3

light source on the coordinate axis is s. The image that has 
height h̃ formed by the light source through the orifice is 
�∗ , and its projection on the coordinate axis is soi , which 
is called the opposite point of s. The schematic diagram 
of orifice imaging is shown in Fig. 4.

According to the principle of orifice imaging, the pro-
cess can be described as

Let h∕h̃ = 𝜚 , then (28) can be transformed as

The process is extended to EOSSA, which can be described 
as

where st
i,j

 is the j-th dimension of the i-th sparrow individual 
in the t-th iteration, soi

i,j
 formed by imaging through orifice 

represents the opposite point of st
i,j

 , �j and �j represent the 
lower boundary and the upper boundary of search space, 
respectively, � is regulation factor.

Remark 1  SSA as a swarm intelligence optimization algo-
rithm is essentially a greedy algorithm. SSA may fall into a 
locally extremum point. The orifice imaging opposite strat-
egy and opposite learning strategy are introduced into SSA 
to make it have the ability to escape the local extremum 
point. These strategies can help the algorithm explore more 
space in a limited time. The opposite strategy will make 
the sparrow search in the opposite direction in its search-
ing space when the algorithm tends to local optimization. 
Besides, this approach can increase the diversity of the 

(28)

(
𝜐j + 𝜔j

)
∕2 − s

soi −
(
𝜐j + 𝜔j

)
∕2

=
h

h̃
.

(29)soi =

(
�j + �j

)
2

+

(
�j + �j

)
2�

−
s

�
.

(30)

(
�j + �j

)
∕2 − st

i,j

soi
i,j
−
(
�j + �j

)
∕2

= �.

(31)soi
i,j
=

(
�j + �j

)
2

+

(
�j + �j

)
2�

−
st
i,j

�
,

search population, which is conducive to the algorithm to 
obtain the optimal solution.

The steps of the EOSSA can be summarized as 
Algorithm 2.

3.2 � The convergence characteristics 
of the algorithms on benchmark functions

In this part, benchmark functions are used to verify the 
feasibility and effectiveness of EOSSA. SSA, chaotic SSA 
(CSSA)  (Zhang and Ding 2021), chaos particle swarm 
optimization(CPSO) (Kennedy and Eberhart 1995; Su et al 
2015; Pluhacek et al 2018), disturbance and somersault for-
aging grey wolf optimizer (DSFGWO) (Mirjalili et al 2014; 
Wang et al 2021), and Levy-flight based moth-flame opti-
mization (LMFO) (Mirjalili 2015; Suja 2021) are used to 
compare the convergence characteristics with EOSSA. The 
initial population number of all algorithms is set to 100. 
The number of iterations is 1000. The parameters of each 
algorithm for comparison are set according to (Mirjalili 
2015; Xue and Shen 2020). The detailed information of the 
standard benchmark functions is listed in Table 1 and the 
optimization results are listed in Table 2. The optimization 
results are the average value and standard deviation (Std) of 
30 experiments. Figure 5 shows the optimization process 
curves of the algorithms on the unimodal benchmark func-
tions F1(x) , F2(x) , F3(x) , F4(x) , and F5(x) . Figure 6 shows 
the optimization process curves of the algorithms on the 
multimodal benchmark functions F6(x) , F7(x) , F8(x) , and 
F9(x) , while Fig. 7 shows the optimization process curves of 
the algorithms on the fixed-dimension benchmark functions 
F10(x) and F11(x).

Remark 2  F1 to F5 are the unimodal benchmark functions. 
This kind of benchmark function has only one extreme point. 
They can be used to verify the convergence speed, optimi-
zation accuracy, and local development ability of the algo-
rithm. F6 to F9 are multimodal benchmark functions. This 
kind of benchmark function has multiple local extremum 
points, which makes the algorithm extremely easy to fall 
into the local extremum. They can be used to verify the abil-
ity of the algorithm to escape from the local extremum and 
global exploration ability. F10 and F11 are the fixed dimen-
sion benchmark functions. They can be used to further verify 
the convergence speed, stability, and convergence accuracy 
of the algorithm.

From the optimization results, because the opposite strat-
egy provides more alternative solutions for the algorithm 
and improves the ability to avoid falling into local optimum, 
the optimization performance of EOSSA is improved com-
pared with SSA. After 30 experiments, the average test result Fig. 4   The schematic diagram of orifice imaging principle
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of EOSSA is better than other algorithms, and Std is also 
better than other algorithms in most benchmark functions, 
but the standard deviation is slightly worse than others in a 
few benchmark functions, such as F6(x) . From the conver-
gence curve, the convergence speed of EOSSA is improved 
compared with SSA.

To better evaluate and compare the optimization perfor-
mance of various optimization algorithms, the box plot is 
used for statistical comparison and analysis. Figure 8 a–k 
show the statistical results of SSA, EOSSA, CSSA, CPSO, 
DSFGWO, and LMFO on each benchmark function of this 
experiment, respectively. From the results of the box plots, 
it can be concluded that the comprehensive performance 
of EOSSA on the benchmark functions is better than other 
algorithms. In summary, the convergence characteristics 
of EOSSA are better than the other five optimization algo-
rithms on the whole from the above analysis.

4 � Experiments of fault diagnosis

The feature extraction accuracy will affect the final rec-
ognition rate. Simple and significant features can improve 
fault recognition accuracy and reduce computational com-
plexity. Manifold learning reduces the redundant dimen-
sion through the geometric structure of data. LLE is a 
classical manifold learning algorithm, which can reveal 
the internal structure of data. For labeled data, it does 
not use the category attributes of data. Therefore, LLDE 

is proposed by combining LLE with MMC. Because of 
the deformed data distribution, the Euclidean distance in 
LLDE is replaced by cam weighted distance, and CLLDE 
is proposed. The previous experiment shows a good effect 
on the classification problem.

The main steps of the fault diagnosis approach can be 
summarized as follows. Firstly, CLLDE is used to map 
the original high-dimensional data to the low-dimensional 
feature space. Secondly, EOSSA is used to optimize the 
hyper-parameters of LightGBM to establish a classifier to 
obtain a better diagnosis effect. Finally, the trained EOSSA-
LightGBM is used to identify the new test fault data. The 
flowchart of EOSSA-LightGBM is shown in Fig. 9.

The fault data used in this paper is Tennessee East-
man (TE) process (Yin et al 2012) dataset. Each sample 
of the simulation dataset contains 52 observed variables, 
among which the first 22 are non-categorical variables, the 
23rd to 41st are categorical variables, and the last 11 are 
control variables. Considering the influence of the real envi-
ronment, Gaussian noise is added to all observed variables.

No. 18 data set is selected to test the effectiveness of the 
algorithm. There are 980 training samples, including 480 
fault samples and 500 normal samples. The training sam-
ples are randomly divided into training set and validation 
set according to the ratio of 7 : 3. There are 960 samples 
in the testing set, including 160 normal samples and 800 
fault samples. The intrinsic dimension of CLLDE is set to 7 
and the numbers of the nearest neighbor point are 13 after 
validating.

Table 1   The list of benchmark 
functions

Functions Type Dim Optimal value

F1(x) =
n∑
i=1

x2
i

Unimodal 30 0

F2(x) =
n∑
i=1

�xi� +
n∏
i=1

�xi� Unimodal 30 0

F3(x) = maxi{|xi|, 1 ≤ i ≤ n} Unimodal 30 0

F4(x) =
n−1∑
i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

� Unimodal 30 0

F5(x) =
n∑
i=1

(
�
xi + 0.5

�
)2

Unimodal 30 0

F6(x) =
n∑
i=1

−xi sin(
√�xi�) Multimodal 30 – 418.9829 ×n

F7(x) =
n∑
i=1

[x2
i
− 10cos(2�xi) + 10]

Multimodal 30 0

F8(x) = −20 exp(−0.2

�
1

n

n∑
i=1

x2
i
) − exp (

1

n

n∑
i=1

cos(2�xi)) + 20 + e

Multimodal 30 0

F9(x) =
1

4000

n∑
i=1

x2
i
−
∏n

i=1
cos(

xi√
i
) + 1

Multimodal 30 0

F10(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
Fixed-dimension 2 – 1.0316

F11(x) = [1 − | sin[�(x1−2)]sin[�(x2−2)]
�2(x1−2)(x2−2)

|5][2 + (x1 − 7)2 + 2(x2 − 7)2] Fixed-dimension 2 0
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Table 2   Results of benchmark 
functions

Func-
tions

SSA EOSSA CSSA CPSO DSFGWO LMFO

F1

Ave 4.022E – 47 0 8.001E – 223 54.066 0 3.309
Best 0 0 0 11.773 0 0.145
Std 1.784E – 46 0 0 34.647 0 6.468

F2

Ave 2.517E – 29 0 9.404E – 140 11.927 1.108E – 235 22.722
Best 0 0 0 4.653 8.638E – 241 0.085
Std 6.982E – 29 0 4.099E – 139 5.324 0 25.826

F3

Ave 8.226E – 22 0 4.654E – 128 12.916 7.119E – 230 48.662
Best 0 0 0 7.524 1.915E – 234 25.917
Std 3.679E – 21 0 1.975E – 127 2.590 0 11.438

F4

Ave 0.029 2.383E – 04 0.010 1202.341 27.120 1271.089
Best 7.462E – 09 3.053E – 08 1.398E – 04 224.222 26.178 219.703
Std 0.025 5.155E – 04 0.009 693.940 0.533 1255.157

F5

Ave 2.071E – 04 2.092E – 05 4.184E – 04 48.772 0.259 3.332
Best 3.382E – 07 1.209E – 07 6.611E – 07 12.967 0.046 0.641
Std 1.651E – 04 2.879E – 05 4.000E – 04 41.854 0.236 4.034

F6

Ave – 8407.882 – 10515.376 – 7805.348 – 8033.901 – 6939.431 – 7736.184
Best – 12131.162 – 12569.486 – 12349.014 – 10071.662 – 9085.051 – 9279.032
Std 1388.270 2327.085 4301.964 4020.411 1053.820 711.895

F7

Ave 0 0 0 63.160 0 159.565
Best 0 0 0 39.971 0 106.136
Std 0 0 0 12.943 0 40.705

F8

Ave 4.441E – 16 4.441E – 16 4.441E – 16 274.244 1.700E – 12 311.964
Best 4.441E – 16 4.441E – 16 4.441E – 16 158.920 4.441E – 16 55.547
Std 0 0 0 66.046 3.697E-12 537.414

F9

Ave 0 0 0 1.440 0 12.337
Best 0 0 0 0.831 0 0.084
Std 0 0 0 0.348 0 29.392

F10

Ave – 1.0316 – 1.0316 – 1.0316 – 1.0316 – 1.0316 – 1.0316
Best – 1.0316 – 1.0316 – 1.0316 – 1.0316 – 1.0316 – 1.0316
Std 0 0 0 0 0 0

F11

Ave 2.539E – 04 2.245E – 05 0.006 2.667 0.004 2
Best 1.329E – 06 3.652E – 08 8.748E – 05 1.506 5.040E – 07 2
Std 4.535E – 04 3.135E – 05 0.007 0.606 0.005 2
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F1 score is used to analyze and evaluate the perfor-
mance of the fault diagnosis approach. F1 score can be 
calculated by precision rate and recall rate, the mathe-
matical expressions of the three above indicators can be 
written as

(32)Precision =
TP

TP + FP
,

(33)Recall =
TP

TP + FN
,

where TP is the number that the predicted label of the sam-
ple is the same as the real label, FN is the number of the 
sample that the actual label is the misjudgment, and FP rep-
resents the number of the false positive sample.

The process of fault diagnosis is divided into feature 
extraction and fault recognition. Different commonly used 
feature extraction methods and classification algorithms 
are combined and then compared with the method using 
CLLDE as feature extraction and EOSSA-LightGBM as 
fault diagnosis. Feature extraction methods include PCA, 

(34)F1 score =
2 × Precision × Recall

Precision + Recall
,

Fig. 5   The convergence curves 
on the unimodal benchmark 
functions
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KPCA, ISOMAP, LLE, and LLDE. Classification algo-
rithms include random forest (RF) (Cerrada et al 2016) and 
support vector machine (SVM) (Mavroforakis and Theodor-
idis 2006; Pan et al 2008; Su et al 2015).

In order to obtain the best super parameters of Light-
GBM, EOSSA is used to optimize its parameters. The major 
hyper-parameters learning rate � and decision tree depth � 
of LightGBM are selected for optimization. The calculation 
formula of F1 score is selected as the fitness function of 
EOSSA, which is formulated as

(35)f =
2 × Precision × Recall

Precision + Recall
.

When the learning rate is 0.1058 and the depth of the deci-
sion tree is 7, the F1 score is the best, and it is effectiveness 
is verified in the validation set. Therefore, the two super 
parameters � and � of LightGBM are set to 0.1058 and 7, 
respectively. The experimental results on the test set are 
listed in Tables 3 and 4. In Table 3, the horizontal compari-
son is the performance of classifiers using different feature 
extraction algorithms, and the vertical comparison is the 
performance of classifiers using the same feature extraction 
algorithm. Table 4 lists the results of various optimization 
algorithms in fault diagnosis. In order to show the results 
more intuitively, its histogram is shown in Fig. 10. From 
Table 4 and Fig. 10, we can conclude the proposed approach 

Fig. 6   The convergence curves 
on the multimodal benchmark 
functions

Fig. 7   The convergence curves 
on the fixed-dimension bench-
mark functions



10486	 Q. Fang et al.

1 3

is better than others. The experiment proves the effectiveness 
of the approach we proposed.

Also, to compare the performance of various algo-
rithms more intuitively, the receiver operating char-
acteristic (ROC) curves and the precision-recall (PR) 
curves are shown in Figs. 11, 12, 13, 14, 15, and 16. Fig-
ures 11, 12, 13, 14, 15, and 16 shows that LightGBM is 
optimized by SSA, EOSSA, CSSA, CPSO, DSFGWO, and 

LMFO, respectively. They show the performance of differ-
ent fault diagnosis approaches when using different feature 
extraction methods. From area under curve (AUC) values, 
we can conclude that the proposed approach is superior 
to other algorithms in fault identification in the contrast 
experiment.

Fig. 8   Box plot comparison of six algorithms in this experiment
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5 � Conclusion

In this paper, a new fault diagnosis approach based on 
EOSSA optimized LightGBM is proposed. Aimed at the 
deformation problem of data distribution, cam weighted 
distance is introduced into LLDE to extract the feature. 
The experiments show that CLLDE is effective. The influ-
ence of the randomly selected k value on CLLDE is smaller 
than that of LLDE in comparison. In the fault diagnosis 
experiment, CLLDE is used as a feature extraction method 
to improve the performance of various classifiers, which 
shows that it can effectively extract data features. EOSSA 
is proposed by introducing the elite opposite strategy 
and orifice imaging opposite learning strategy into SSA. 
The experimental results show that the strategies used 
in EOSSA are worked, which can accelerate the conver-
gence speed of SSA as well as making the solution more 
effective. Overall, EOSSA shows superior performance 
on unimodal, multimodal, and fixed-dimension problems, 
but its statistical performance on the No. 6 benchmark 
function is not as good as other algorithms in compari-
son. EOSSA has the best solution of all the algorithms 
in the No. 6 benchmark function. However, its standard 
deviation is greater than other algorithms, which indicates 
that its performance in the No. 6 benchmark function is 
poor because it cannot guarantee that the solution of each 
searching mission is in an appropriate range. Compared 
with other optimization algorithms, EOSSA still shows 
advantages in the fault diagnosis problem, which indicates 
that EOSSA is still feasible and effective in this problem. 
In future work, we can study the application of deep learn-
ing (DL) (Liu et al 2017) and reinforcement learning (RL) 
in fault diagnosis (Song et al 2021). Also, we will study 

Fig. 9   The flowchart of EOSSA-LightGBM

Fig. 10   The histogram of 
Table 4
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Fig. 11   The ROC curve and PR 
curve of LightGBM optimized 
by SSA

Fig. 12   The ROC curve and PR 
curve of LightGBM optimized 
by EOSSA

Table 3   F1 score (%) 
comparison of different 
feature extraction methods and 
classifiers

Methods PCA KPCA ISOMAP LLE LLDE CLLDE

RF 45.5 45.4 66.7 75.7 77.6 81.2
SVM 45.0 45.1 78.6 71.4 78.0 79.2
LightGBM 43.5 43.3 77.9 63.2 64.7 81.4

Table 4   F1 score (%) 
comparison of different 
feature extraction methods and 
optimization algorithm

Methods PCA KPCA ISOMAP LLE LLDE CLLDE

SSA-LightGBM 45.9 46.4 81.7 67.1 81.4 82.2
EOSSA-LightGBM 47.5 48.2 79.6 64.0 82.0 84.0
CSSA-LightGBM 45.3 45.4 81.6 68.5 81.9 81.8
CPSO-LightGBM 45.9 49.1 81.8 70.3 82.8 82.6
DSFGWO-LightGBM 46.1 47.3 81.6 71.2 82.6 82.3
LMFO-LightGBM 43.9 45.4 81.2 64.1 82.8 82.8
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Fig. 13   The ROC curve and PR 
curve of LightGBM optimized 
by CSSA

Fig. 14   The ROC curve and PR 
curve of LightGBM optimized 
by CPSO

Fig. 15   The ROC curve and PR 
curve of LightGBM optimized 
by DSFGWO
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the performance of DL and RL combined with EOSSA in 
engineering applications.
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