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Abstract
Convolutional Neural Networks (CNNs) are efficient tools for pattern recognition applications. They have found applications 
in wireless communication systems such as modulation classification from constellation diagrams. Unfortunately, noisy 
channels may render the constellation points deformed and scattered, which makes the classification a difficult task. This 
paper presents an efficient modulation classification algorithm based on CNNs. Constellation diagrams are generated for 
each modulation type and used for training and testing of the CNNs. The proposed work depends on the application of Radon 
Transform (RT) to generate more representative patterns for the constellation diagrams to be used for training and testing. 
The RT has a good ability to represent discrete points in the spatial domain as curved lines. Several pre-trained networks 
including AlexNet, VGG-16, and VGG-19 are used as classifiers for modulation type from the spatial-domain constellation 
diagrams or their RTs. Several simulation experiments are presented in this paper to compare different scenarios for modula-
tion classification at different Signal-to-Noise Ratios (SNRs) and fading channel conditions.

Keywords Deep learning · Convolutional Neural Networks (CNNs) · Radon Transform (RT) · Modulation classification · 
Pre-trained networks

1 Introduction

Modulation of the transmitted signals is one of the funda-
mental steps in the transmission chain of wireless com-
munication systems. In adaptive modulation systems, the 

modulation type is varied in each transmission in response 
to the SNR to enhance the Bit Error Rate (BER) perfor-
mance. Modulation classification is an important step in the 
receiver chain of several wireless communication applica-
tions, e.g. electronic surveillance systems, and electronic 
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warfare. Different traditional methods have been used for 
modulation classification.

In Al-Makhlasawy et al. (2012) and Keshk et al. (2015), 
Mel-Frequency Cepstral Coefficients (MFCCs) have been 
used as features and Neural Networks (NNs) and Support 
Vector Machines (SVMs) have been investigated as modu-
lation classifiers for Orthogonal Frequency Division Multi-
plexing (OFDM) systems. Higher-order statistics have also 
been used. Higher-order moments have been utilized in Abu-
Romoh et al. (2018). The main advantage of relying on such 
statistical features is their robustness to noise. Nevertheless, 
estimating these higher-order statistics endures large com-
putational complexity. Another study introduced different 
types of images called contour stellar images for modula-
tion classification (Lin et al. 2017). Signal identification can 
be implemented on different scales. It can be applied for 
Single-Carrier (SC), OFDM, single-antenna and Multiple 
Input Multiple Output (MIMO) systems (Eldemerdash et al. 
2016).

For modulation classification, Feature-Based (FB) and 
Likelihood-Based (LB) methods have been investigated. 
The FB methods depend on feature selection and detection 
methods to provide sub-optimal performance, which results 
in reduced complexity and reduced sensitivity to model mis-
matches (Dobre et al. 2007). Most of the FB methods require 
frequency synchronization. Generally, they depend on the 
extraction of robust features and the design of the classifier. 
On the other hand, the LB methods depend on the likelihood 
function of the modulated signal, and they rely on Bayesian 
estimation of the modulation type considering prior informa-
tion such as noise and channel models (Xu et al. 2010). Usu-
ally, they have high computational complexity and are not 
suitable for highly dynamic environments. Machine learn-
ing, especially pattern recognition, played a major role in the 
classification of the modulation type. Both K-Nearest Neigh-
bor (KNN) and Support Vector Machine (SVM) classifiers 
have been applied for modulation classification (Aslam et al. 
2012; Peng et al. 2017), and Medium Access Control (MAC) 
protocol classification (Hu et al. 2014).

Deep Learning (DL) is a new type of machine learning. 
It has gained an increased interest in recent years and has 
achieved a remarkable success in classification tasks, mainly 
due to its high-performance capability achieved by the large 
number of involved hidden layers. It is used in several appli-
cation fields such as computer vision (Jean et al. 2016), bio-
informatics (Min et al. 2017), economics (Nosratabadi et al. 
2020), security (Liu et al. 2020), and natural language pro-
cessing (Wu et al. 2016). For modulation type classification 
based on DL, some studies have been reported e.g., (Mendis 
et al. 2016; Ali et al. 2017; Wang et al. 2017; O’Shea et al. 
2018). Recently, DL models have been proposed for modula-
tion classification without requiring prior information such 

as the channel model (Lin et al. 2017; Jiang et al. 2020). 
In Zhang et al. (2020), a CNN was used to classify 11 dif-
ferent modulation types in the RadioML2016.10A dataset, 
with  an accuracy exceeding 70%. To improve the accuracy, 
DL models such as Recurrent Neural Networks (RNNs) (Lin 
et al. 2017) and fusion methods have been utilized.

In wireless communication applications, DL has several 
advantages compared to traditional classifiers. A shortcom-
ing of DL techniques is the need for large training datasets. 
However, in wireless communication settings, we can make 
use of the high transmission rate to obtain the necessary 
datasets. This is specifically true if we consider limited pos-
sibilities of transmission patterns, which is the exact case 
with adaptive modulation, when the modulation is confined 
to a set of well-defined modulation types.

An important challenge for wireless communication is the 
manual feature selection, which is completely solved by the 
automated extraction of features that is inherent in DL (Al-
Makhlasawy et al. 2020). In Eltaieb et al. (2019), contour 
stellar images with different colors have been used for modu-
lation classification. These images are used as inputs for 
the CNN to identify the modulation types and their orders. 
Pre-trained CNNs including AlexNet, ResNetv4, VGG-16, 
and GoogLeNet-v2 have been used for modulation classi-
fication (Eltaieb et al. 2019). Radon Transforms (RTs) of 
constellation diagrams have been used with Singular Value 
Decomposition (SVD) for blind optical modulation classi-
fication in Eltaieb et al. (2019). In Al‐Makhlasawy et al. 
(2020), a scheme based on DL was proposed to deal with 
modulation classification in the presence of Adjacent Chan-
nel Interference (ACI). This scheme depends on the gener-
ated constellation diagrams for the received signals.

In this paper, we depend on CNNs for modulation clas-
sification. These CNNs work on constellation diagrams for 
the classification task. To enhance the accuracy of modula-
tion classification in Al-Makhlasawy et al. (2020), we use 
the RTs of the constellation diagrams for different modula-
tion types as inputs for the CNNs. Seven types of modu-
lation are considered in the classification process. These 
types are BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, 
and 32QAM. AlexNet, VGG-16, and VGG-19 are used as 
classifiers.

2  Problem formulation

Following a general wireless transmission chain, the analog 
signal is firstly converted into a baseband signal, at the trans-
mitting end, through the consecutive processes of sampling, 
quantization, and encoding. Then, this signal is transmit-
ted over a certain frequency band to the receiving end. The 
received signal is given by:
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where s(t) is the transmitted signal, r(t) is the received signal 
and n(t) is the Additive White Gaussian Noise (AWGN). The 
signal s(t) can be expressed as:

where Am  is the modulation amplitude, an is the symbol 
sequence, Ts is the symbol period,  fc is the carrier frequency,  
fm is the modulation frequency, ϕ0 is the initial phase, g(t) 
is the line code function, and ϕm is the modulation phase.

In digital wireless communication systems, representa-
tion of the amplitude and phase of the received signal is 
done efficiently with the aid of the constellation diagram of 
that signal. The receiver divides the received signal s(t) to 
obtain the in-phase (I) component and quadrature (Q) com-
ponent that are orthogonal to each other (Goldsmith 2005). 
The transmitted signal can be represented in terms of the two 
orthonormal I/Q basis in the form of a + jb , which is called 
a constellation point.

3  Radon transform (RT)

The RT is an integral transform that maps a function  f (x, y) 
defined on one plane to another function W(d, �) on a differ-
ent plane (Radon 1986). This transform was first introduced 
by Radon (1917), who provided a formulation for the inverse 
transform as well.

The RT is obtained with the following equation (Wiki-
pedia 2005):

where f (x, y) is the constellation diagram image,  x  and 
y represent the coordinate point, � is the angle of projec-
tion, d is the normal from the origin to the line of projection, 
W(d, �) is the RT image, and �(.) is the Dirac delta function. 
The collection of all values of this integral in a single matrix 
is the RT. The angle of projection is taken from 0 to �∕2 
due to the symmetry property of the RT. Figure 1 shows the 
constellation diagrams and their RTs for different modula-
tion types at different SNRs.

(1)r(t) = s(t) + n(t)

(2)s(t) = Am

∑

n

ang(t − nTs)cos[2�(fc + fm)t + �0 + �m]

(3)W(d, �) =

∞

∫
−∞

∞

∫
−∞

f (x, y)�(d − x cos(�) − y sin(�))dxdy

4  Constellation diagram classification with 
DL

The DL is used in several scientific fields. It depends on 
multiple layers of neurons for operation, where the output of 
a specific layer is fed into the consecutive one (Abu-Romoh 
et al. 2018). Each layer is prepared for extracting a huge 
amount of data. Deep neural networks depend on learning 
a large amount of features from the data in order to identify 
patterns (Peng et al. 2018), without the need for manual 
feature extraction. A network can collect simple features, 
through multiple nonlinear transformations in order to gen-
erate more complex features, autonomously (Meng et al. 
2018). In the literature, there exists a group of well-designed 
pre-trained CNNs that can be used through transfer learning 
to execute new identification and classification tasks. In the 
following sub-sections, we list the pre-trained CNNs that 
we  will apply on our datasets.

4.1  AlexNet

AlexNet is used in various applications with a huge and deep 
architecture. It includes a large number of neurons up to 650 
thousands and 60 million parameters. It was implemented 
to classify 1.2 million images from 1000 groups. It contains 
five convolutional layers as well as three fully-connected lay-
ers with a 1000-channel softmax layer. To enhance the per-
formance and decrease the time of training, Rectified Linear 
Units (ReLUs) are adopted as neurons with non-saturating 
nonlinearity (Krizhevsky et al. 2012). The ReLUs are con-
nected to fully-connected and convolutional layers. If we add 
a randomization mechanism to the first two fully-connected 
layers, the speed of convergence can be doubled.

4.2  Deep VGGNet

With the success of CNNs in image classification, an effec-
tive and simple design for CNNs was investigated, namely 
VGG (Simonyan et al. 2014). The VGG-16 and VGG-19 
networks are composed of 16 and 19 layers, respectively. 
The VGG network is larger than the AlexNet. It depends on 
a stack of 3 × 3 filters. The concurrent placement of 3 × 3 
filters eliminates the need for large-size filters. The exploita-
tion of small-size filters grants an advantage of low compu-
tational complexity by decreasing the number of parameters. 
The VGG network complexity is reduced by inserting 1 × 1 
convolution masks in between the convolutional layers. An 
inserted mask targets learning a linear set of the resultant 
feature maps.

To tune the network, after each convolutional layer, max-
pooling is implemented, and padding is performed to pre-
serve the spatial resolution. The VGG achieves particularly 



6266 H. S. Ghanem et al.

1 3

good results for localization problems and image identifica-
tion tasks. High computational cost is the essential restric-
tion associated with the VGG network, even with the use 
of small-size filters. This is mainly attributed to the use of 
about 140 million parameters (Khan et al. 2020).

The VGG-16 network contains three fully-connected lay-
ers and thirteen convolutional layers. Two combined 3 × 3 
convolution masks have a field of 5 × 5. By using more lay-
ers, the expressiveness of features is increased. The inte-
grated layers are followed by the ReLU layer with either a 
max-pooling or average pooling operation. Pooling layers 
result in a decrease in the spatial dimensions of features, and 
hence they enhance the classification performance. The final 
output layers are fully-connected layers.

The VGG-19 network is characterized by its simplicity as 
it utilizes 3 × 3 convolution masks that are mounted on top 
to increase depth. Max-pooling layers are used to decrease 
the volume size of data. In the training phase, for feature 
extraction, convolutional layers are used. Max-pooling layers 
are associated with the convolutional layers to decrease the 
feature dimensionality. In a convolutional layer, 64 kernels 

are used for feature extraction from the input images. To 
prepare the feature vector, fully-connected layers are used. 
The 10-fold cross-validation is applied in the testing phase 
depending on the softmax activation.

5  Simulation experiments

In this paper, we have used CNN models for modulation 
classification  in wireless communication systems. The 
communication system with modulation classification is 
illustrated in Fig. 2. We used seven types of modulation 
including BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, 
and 32QAM. We used a CNN with three convolutional lay-
ers as a classifier. In addition, we investigated the utiliza-
tion of pre-trained networks such as AlexNet, VGG-16, and 
VGG-19 as modulation type classifiers. The inputs of these 
classifiers are the RTs of the constellation diagrams. We gen-
erated more than 15,000 images of constellation diagrams 
for different modulation types at different SNRs. For the 
training phase, the RTs are used to enhance the accuracy of 

SNR 20 dB 5 dB -5 dB

Modulation 

type

Constellation 

diagram

RT Constellation 

diagram

RT Constellation 

diagram

RT

BPSK

8PSK

8QAM

16PSK

16QAM

32QAM

QPSK

Fig. 1  Constellation diagrams and their RTs for different modulation types at different SNRs
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classification in the presence of AWGN and fading channel 
effects.

The CNN with three convolutional layers has been 
applied on the constellation diagram images and their RTs, 
and the results are shown in Fig. 3. We notice that with RTs 
of constellation diagrams for an AWGN channel, the classi-
fication accuracy reaches 100% at an SNR of 5 dB for differ-
ent modulation types. For the classification of BPSK based 
on RTs, we achieve a good accuracy at − 5 dB SNR. At 
− 5 dB, the classification of 32QAM based on constellation 
diagrams achieves a good accuracy. For the AlexNet classi-
fier, the accuracy is 100% for different modulation types at 

an SNR of 10 dB from constellation diagrams as shown in 
Fig. 4. For VGG-16, 8QAM classification is performed with 
high accuracy at low SNRs as shown in Fig. 5. The accuracy 
reaches 100% for different modulation types when RTs are 
used at 5 dB, but the accuracy reaches 100% at 10 dB when 
the constellation diagrams are used. At an SNR of 5 dB, the 
accuracy is 100% for different modulation types with VGG-
19, when the RTs are used as shown in Fig. 6.

For fading channel, the CNN classifier with RTs of con-
stellation diagrams has higher accuracies than those with 
constellation diagrams only as shown in Fig. 7. At low 
SNRs, the classification accuracy of 16QAM is good with 
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Channel
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Fig. 2  The proposed communication system with modulation classification
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constellation diagrams. With RTs of constellation diagrams, 
32QAM achieves a good accuracy of classification at low 
SNRs as well. We notice that the accuracies are low com-
pared to those obtained in the case of AWGN channels. For 
the AlexNet classifier, the accuracy is 100% at the SNR 
of 10 dB. Both 8PSK and QPSK achieve high accuracy of 

classification at low SNRs as shown in Fig. 8. As shown in 
Fig. 9, 16QAM achieves a high accuracy of classification at 
low SNRs, when the VGG-16 classifier is applied. Figure 10 
illustrates the accuracy for the VGG-19 classifier over a fad-
ing channel.
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Fig. 4  Accuracy of AlexNet classifier for constellation diagrams and RTs of constellation diagrams for different modulation types versus SNR 
over AWGN channel
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6  Conclusion and future work

In this paper, we investigated the utilization of RTs of con-
stellation diagrams for modulation classification with CNNs. 
The RTs of the constellation diagrams can enhance, for sev-
eral modulation types, the performance of the classifiers and 
increase the accuracy to reach acceptable values at small 
values of SNR. The proposed classifier has been applied at 
different SNRs with AWGN and fading channels. In addi-
tion, we investigated the utilization of pre-trained networks 
such as AlexNet, VGG-16, and VGG-19 for modulation 
classification. These classifiers achieve good performance. 
Moreover, the fading channel reduces the accuracy of clas-
sification. We notice that the proposed CNN achieves higher 
accuracy than those of other classifiers at low SNRs. In the 
future plan, to enhance the accuracy of the classifiers, we 
can use other transforms to extract features from the constel-
lation diagrams such as Gabor transform, and Speeded-Up 
Robust Feature (SURF) transform. In addition, the SVD can 
also be investigated with the RT, as it has previously suc-
ceeded in the classification of optical modulation formats.
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