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Abstract
Corrosion has been concerned as a serious safety issue for metallic facilities. Visual inspection carried out by an engineer 
is expensive, subjective and time-consuming. Micro Aerial Vehicles (MAVs) equipped with detection algorithms have the 
potential to perform safer and much more efficient visual inspection tasks than engineers. Towards corrosion detection 
algorithms, convolution neural networks (CNNs) have enabled the power for high accuracy metallic corrosion detection. 
However, these detectors are restricted by MAVs on-board capabilities. In this study, based on You Only Look Once v3-tiny 
(Yolov3-tiny), an accurate deep learning-based metallic corrosion detector (AMCD) is proposed for MAVs on-board metallic 
corrosion detection. Specifically, a backbone with depthwise separable convolution (DSConv) layers is designed to realise 
efficient corrosion detection. The convolutional block attention module (CBAM), three-scale object detection and focal loss 
are incorporated to improve the detection accuracy. Moreover, the spatial pyramid pooling (SPP) module is improved to 
fuse local features for further improvement of detection accuracy. A field inspection image dataset labelled with four types 
of corrosions (the nubby corrosion, bar corrosion, exfoliation and fastener corrosion) is utilised for training and testing 
the AMCD. Test results show that the AMCD achieves 84.96% mean average precision (mAP), which outperforms other 
state-of-the-art detectors. Meanwhile, 20.18 frames per second (FPS) is achieved leveraging NVIDIA Jetson TX2, the most 
popular MAVs on-board computer, and the model size is only 6.1 MB.

Keywords Corrosion detection · High accuracy · MAVs · Deep learning

1 Introduction

Corrosion is a major threat to metallic facilities for indus-
tries, as it gradually reduces the strength of metallic assets 
(Gomes et al. 2013). Additionally, failures of these infra-
structures caused by corrosions will lead to unacceptable 
safety concerns for the public and environmental damage. 
Thus, regular inspection and maintenance of metallic struc-
tures are required (Tscheliesnig et al. 2016).

Visual inspection is one of the most basic and reliable 
inspection techniques (Moosavi 2017). These assets are 

traditionally inspected by experienced human engineers 
that mainly rely on their naked eyes. However, lots of facili-
ties are set in the harsh or cluttered environment where it 
is hard to reach for humans. Therefore, liberating human 
engineers from dangerous, expensive and time-consuming 
tasks becomes urgent (Agnisarman et al. 2019).

Currently, with the development of autonomous Robot-
ics and Autonomous Systems (RAS), an increasing number 
of companies choose to exploit robots for smart inspection. 
Among them, Micro Aerial Vehicles (MAVs) have gained 
great interest due to their flexibility and manoeuvrability. 
MAVs inspection of facilities is able to increase the diag-
nostic speed and reduce the costs associated with the inspec-
tion procedure (Chen et al. 2019). Furthermore, thanks to 
advanced image processing and MAVs technologies, there 
is an opportunity to deploy these technologies for automated 
and efficient inspection of facilities in industries (Hoskere 
et al. 2018). To develop MAV-based autonomous visual 
inspection systems, high-accuracy corrosion detectors based 
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on advanced computer vision techniques will be the primary 
concern (Atha and Jahanshahi 2018).

Over the last couple of years, a variety of algorithms 
for corrosion detection have been proposed. Among them, 
texture and colour analyses by a filter-based approach or 
a statistical model have gained great interest. The colour 
wavelet filter bank is one of the most popular techniques, 
which detects corrosion through filtering texture and colour 
features. However, when the optimal features are not identi-
fied, the detection accuracy will decrease heavily (Chu and 
Thuerey 2017).

Recently, Convolution Neural Networks (CNNs) have 
been proved to surpass humans on the ImageNet classifica-
tion (He et al. 2015a). According to our investigation, an 
increasing number of researchers have adopted CNNs to 
assist their research, such as morbidity identification (Kumar 
et al. 2021), SAR image classification (Gao et al. 2017a), 
vehicle detection (Chen et al. 2020), wind turbine blade 
structural state evaluation (Sarkar and Gunturi 2020) and 
bridge crack detection (Xu et al. 2019). These results suggest 
that CNNs could also be utilised to achieve high accuracy 
corrosion detection. Unlike previous approaches, CNNs do 
not need prior designed low-level features, which are not 
robust enough for computer vision tasks. For CNN-based 
computer vision tasks, features are determined inherently by 
CNNs and the training dataset. The results in Guindel et al. 
(2017) indicated that CNNs are robust enough to detect or 
classify objects with different scales, orientations and illu-
minations. Thus, an opportunity has emerged for CNN-based 
detectors to achieve much more accurate corrosion detection 
than traditional approaches.

Although several existing works have shown accurate 
corrosion detection with CNNs, the high computational 
cost of image processing still poses a challenge in adopting 
these methods onto a low-cost and low-power computing 
platform (the MAVs on-board computer). These researches 
only focus on image processing without consideration of 
limitations of the MAV platform. In this paper, an accurate 
deep learning-based corrosion detector is proposed for real-
time implementation on MAVs on-board platforms. To our 
best knowledge, this is the first deep learning-based MAV 
on-board real-time corrosion detector. The main contribu-
tions of this paper are as follows: 

1. A novel accurate deep learning-based metallic corrosion 
detector (AMCD) is proposed, which is able to achieve 
high accuracy detection with acceptable frames per sec-
ond (FPS) on the off-the-shelf commercial MAVs on-
board computer.

2. Depthwise separable convolution (DSConv) layers are 
applied to corrosion detection for the first time to reduce 

model parameters significantly and preserve detection 
accuracy.

3. An improved Spatial Pyramid Pooling (SPP) module 
is presented to fuse local features for further improv-
ing the detection accuracy. Moreover, the convolutional 
block attention module (CBAM), three-scale detection 
and focal loss are adopted in the corrosion detector for 
further enhancement of detector performance.

4. Comprehensive validation experiments, analysation and 
comparisons are performed to evaluate the effectiveness 
of the AMCD in both corrosion detection accuracy and 
efficiency.

The rest of this article is organised as follows. In Sect. 2, 
a comprehensive overview of the related literature on corro-
sion detection is presented. Details of the proposed detector 
are given in Sect. 3. Section 4 shows the experimental envi-
ronment and results. Section 5 concludes the whole article.

2  Related works

2.1  Low‑level feature‑based corrosion detectors

Apparently, feature extraction plays a crucial role in cor-
rosion detection. Colour, as one of the most basic and 
popular features, is widely used for computer vision tasks. 
Bonnín-Pascual and Ortiz (2010) trained a classifier to 
classify corrosions which used a code-word dictionary 
consisting of the stacked histogram for red, green and blue 
colour channels. Utilising colour information for corrosion 
detection was further investigated in Bonnin-Pascual and 
Ortiz (2014). As Hue-Saturation-Value (HSV) values of 
corrosion areas are confined in the Hue-Saturation (HS) 
plane, they utilised a classifier that works over HSV space 
to recognise corrosions. Shapes and sizes of corrosions 
were applied to detect the pitting corrosion in Pereira 
et al. (2012). The texture analysis for corrosion detection 
was proposed in Hoang and Tran (2019). In their theory, 
based on image colour, gray-level co-occurrence matrix 
(GLCM) and gray-level run lengths (GLRL), 78 features 
were extracted from the corrosion area. After that, a deci-
sion boundary for classifying corrosion images was con-
structed by the support vector machine (SVM). In Hoang 
(2020), the texture analysis was utilised for pitting corro-
sion detection. Statistical measurements of colour chan-
nels, GLCM and local binary pattern were computed to 
characterise properties of the metal surface, and 93 texture 
features were obtained. The SVM was then employed to 
detect the pitting corrosion. These traditional approaches 
require previous knowledge about corrosions and their 
optimal features. However, how to determine optimal 
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features of corrosions is still challenging (Khaire and 
Dhanalakshmi 2019).

2.2  Deep learning‑based corrosion detectors

For CNN-based approaches, it is simple to determine the 
features autonomously, which is able to avoid the require-
ment of prior information. Several studies on high-accuracy 
corrosion detection with CNNs have already been proposed 
recently. Atha and Jahanshahi (2018) finetuned a CNN net-
work to classify and identify the corrosion position through 
the sliding window technique. Based on corrosion levels, 
Du et al. (2018) proposed a two parallel CNN architecture to 
classify corrosions. Apart from aforementioned approaches, 
there are also some other works that adopted CNN-based 
object detection approaches to locate corrosions. Faster 
RCNN was trained by 1737 images to detect the steel corro-
sion and bolt corrosion in Cha et al. (2018). Li et al. (2018) 
modified the You Only Look Once (Yolo) architecture to 
all convolutional layers to detect corrosions of flat steel. 
These works achieved satisfying corrosion classification 
or detection results in their scenarios. However, they only 
focus on image processing without consideration of MAV-
based applications. Their networks contain a large number 
of standard convolutions, resulting in a large model for the 
entire network. For this reason, these approaches cannot be 
applied to MAVs on-board platforms.

3  Corrosion detection approach

3.1  Motivation

The Yolov3-tiny (Redmon and Farhadi 2018) is an object 
detector which has been proved to be fast and accurate on 
embedded platforms. Fig. 1 shows the network structure of 
the Yolov3-tiny. There are seven convolution layers and six 
max pooling (MaxPool) layers for extracting image features. 
Two-scale detection is utilised to detect different scale tar-
gets. The detection process of the Yolov3-tiny is described 
as follows: 

Step 1 Load the input image and resize the image into size 
416*416

Step 2 Extract features with convolutional and MaxPool 
layers

Step 3 Produce feature maps of size 13*13 on a small scale
Step 4 Upsample small scale feature maps to size 26*26 

and connect them to the same size feature maps gener-
ated by the feature extraction network

Step 5 Produce feature maps of size 26*26 on a large 
scale.

Step 6 Divide the input image into 13*13 and 26*26 grids 
for two-scale object detection. Based on the predefined 
anchors, the grid will be responsible for predicting the 
object when the centre of the object lies in the grid.

Step 7 Output the two-scale prediction results
Step 8 Fuse different scale prediction results and acquire 

accurate bounding boxes

Since the simple and shallow network is designed as the 
backbone, detection accuracy of the Yolov3-tiny is not 
high enough (Fang et al. 2019). Moreover, the Yolov3-tiny 
deploys many convolution layers with 512 and 1024 convo-
lution filters, which leads to a large number of parameters of 
the network and requires enormous storage space for embed-
ded platforms.

To address these problems in the Yolov3-tiny for corro-
sion detection, this paper proposes a novel metallic corro-
sion detector. The overall schematic architecture is presented 
in Fig. 2. A brand-new lightweight backbone network with 
the DSConv (Howard et al. 2017) to reduce parameters of 
the model is designed. Considering the simplified back-
bone network cannot extract robust corrosion features, as 
a complement, the SPP is introduced and improved to fuse 
local features. Meanwhile, the attention mechanism, three-
scale object detection and focal loss are adopted to further 
improve the feature extraction capabilities and prediction 
accuracy. Details of the AMCD will be explained in the fol-
lowing parts.

3.2  Structure of the AMCD

As shown in Fig. 2, the backbone is responsible for extract-
ing features from images, and the detection part will output 
the position and category of the corrosion. As the AMCD 
focuses on achieving accurate corrosion detection on embed-
ded platforms, a shallow network has been designed. What 

Fig. 1  Framework of the 
Yolov3-tiny
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is more, the DSConv is adopted to reduce parameters. To 
enhance the feature extraction capability of the shallow 
network, the CBAM (Woo et al. 2018), three-scale predic-
tion, improved SPP and focal loss (Lin et al. 2017) are also 
utilised. Finally, the designed backbone contains 1 tradi-
tional convolution layer, 7 DSConv layers, 1 SPP layer and 
4 CBAM modules.

DSConv The DSConv can reduce model parameters 
significantly. Unlike the traditional convolution pro-
cesses images from height, width and channel dimen-
sions simultaneously, the DSConv divides the convolu-
tion process into the depthwise convolution and pointwise 

convolution. Fig. 3 demonstrates the comparison of the 
DSConv with standard convolution.

The first step of the DSConv is a depthwise convolu-
tion. In this step, the number of filters is the same as that 
of input channels, which ensures that only one feature map 
is generated through one input channel. The equation of 
the depthwise convolution is shown as follows:

where W indicates the weight matrix of convolutional filters. 
X denotes input feature maps. (i, j) represents the coordi-
nate of point within output feature maps. M and N are the 
height and width of input feature maps. Meanwhile, m and 
n represent the height and width of the convolutional filter, 
respectively.

In the second step, a set of 1 × 1 convolutional layers is 
applied to fuse feature maps generated by the depthwise 
convolution, and it is called the pointwise convolution. 
The pointwise convolution focuses on the combination of 
spatial features, which only changes the number of chan-
nels while keeping the width and height of feature maps. 
The formula of the pointwise convolution is written as:

where C is the total number of channels of input feature 
maps. c represents the channels of convolution filters.

Overall, the whole process can be represented by:

(1)DWConv(W,X)(i,j) =

M,N
∑

m,n

W(m, n) ⋅ X(i+m,j+n)

(2)PWConv(W, x)(i,j) =

C
∑

c

W(c) ⋅ x(i,j,c)

Fig. 2  Structure of the AMCD

Fig. 3  Comparison of the DSConv with standard convolution
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At the same time, the formula of the standard convolution 
can be represented by:

Compared with the traditional convolution, parameters of 
the DSConv are reduced significantly. There is an assump-
tion that the number of output channels is o. According to 
Eq. (4), total parameters of the standard convolution are 
m × n × c × o . While the DSConv is utilised to generate the 
same output feature maps, based on Eq. (3), total parameters 
are m × n × c + c × o . Comparison of parameters between 
the DSConv and standard convolution is presented:

For example, input feature maps contain 3 channels. The 
convolutional kernel size is 3 × 3 , and there are 4 sets of 
convolutional filters to output 4 feature maps. The stand-
ard convolution processes images from height, width and 
channel dimensions simultaneously, and all parameters are 
108. Meanwhile, same input feature maps are processed by 
the DSConv to output same size and channels of feature 
maps. At first, every single channel of the input feature map 
is processed by a 3 × 3 convolutional filter. Then, 4 sets of 
1 × 1 × 3 convolutional filters are utilised to process the 
generated feature map and output 4 feature maps. The total 
parameters of the DSConv are 39, which is almost 1/3 of the 
traditional convolution. 

SPP The Yolov3-tiny only focuses on the fusion of global 
features extracted by different scale convolutional layers 
(Huang et al. 2020). To take the concatenating of local 
region features on the same convolutional layer, a new SPP 
module is designed. The combination of global and local 
features is utilised to improve the performance of corrosion 
detection.

The architecture of the SPP presented by this paper is 
shown in Fig. 4. Different from the traditional SPP proposed 

(3)
DSConv(Wd,Wp,X)(i,j) =

PWConv(Wp,DWConv(Wd,X)(i,j))(i,j)

(4)Conv(W,X)(i,j) =

M,N,C
∑

m,n,c

W(m, n, c) ⋅ X(i+m,j+n,c)

(5)
m × n × c + c × o

m × n × c × o
=

1

o
+

1

m × n

by He et al. (2015b), the improved SPP does not resize fea-
ture maps into feature vectors. Instead, the improved SPP 
outputs feature maps. Based on the size of input feature 
maps, MaxPool layers with kernel sizes of 3 × 3 , 5 × 5 and 
7 × 7 are utilised to pool feature maps. The stride of each 
pooling layer is 1, and padding is adopted to make sure the 
size of generated feature maps is the same as that of input 
feature maps. After the concatenation, there are 1024 feature 
maps generated by the improved SPP which extracts and 
fuses local region features. 

CBAM Inspired by human visual attention mechanism, 
CNNs can employ attention mechanism to select optimal 
information from the training dataset. The attention mod-
ule selects the most representative area in the image and 
allows the network to focus on there. Thus, more critical 
features can be extracted, and the detection accuracy will 
be improved. The attention mechanism has proven its effec-
tiveness in many tasks, such as river detection (Gao et al. 
2017b), outdoor illumination estimation (Jin et al. 2020) and 
synthetic aperture radar (SAR) image recognition (Gao et al. 
2019).

The CBAM outputs refined feature maps by channel 
and spatial attention sequentially. The overview diagram 
of the CBAM is shown in Fig.5. In general, the channel 
attention module focuses on figuring out optimal feature 
maps between different channels of feature maps. The spa-
tial attention module aims to output a spatial attention map 

Fig. 4  Structure of the improved SPP Fig. 5  Diagram of the CBAM
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based on local information. The MaxPool and global aver-
age pooling (AvgPool) operations are utilised to construct 
feature map statistics. The MaxPool could return the signifi-
cant features of the target. At the same time, the AvgPool 
provides global statistics of feature maps. With the usage 
of MaxPool and AvgPool operations, the representation of 
features extracted by CNNs is improved. Channel attention 
focuses on global information, whereas spatial attention is 
employed locally. Therefore, the CBAM can extract com-
prehensive salient features to improve the performance of 
corrosion detection.

3.3  Loss function

The Yolov3-tiny uses anchors to generate candidate object 
location from the whole image. The number of potential 
bounding boxes containing objects is much less than those 
only containing background. What is more, negative sam-
ples contribute no useful learning signal and cause biased 
learning. Finally, it will lead to a degenerate detector, which 
cannot detect the corrosion correctly. To overcome this limi-
tation, the focal loss is introduced into the AMCD, which 
gives a high loss value to an object. This makes the detec-
tor concentrate on object areas and become sensitive to the 
target. The formula of the focal loss is:

The � is the hyperparameter which down-weights the loss 
contributed by backgrounds. p indicates the confidence of 
whether the candidate bounding box contains the object. 
� represents the exponential scaling factor which down-
weights the loss generated by easy examples and makes the 
CNNs focus on difficult examples. In the AMCD, the � and 
� are 0.5 and 2, respectively.

According to Eq.(6), the loss function of the AMCD can 
be defined as:

(6)F = � × (1 − p)�

(7)

Loss =

S2
∑

i=0

B
∑

j=0

1
obj

ij
[(xi − x̂i)

2 + (yi − ŷi)
2]

+

S2
∑

i=0

B
∑

j=0

1
obj

ij
(2 − wi × hi)[(wi − ŵi)

2 + (hi − ĥi)
2]

+F

S2
∑

i=0

A
∑

j=0

1
obj

ij
[Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)]

+F

S2
∑

i=0

A
∑

j=0

1
noobj

ij
[Ĉilog(Ci) + (1 − Ĉi)log(1 − Ci)]

+

S2
∑

i=0

1
obj

ij

∑

c∈classes

[p̂i(c)log(pi(c)) + (1 − p̂i(c))log(1 − pi(c))]

where S2 denotes the number of grid cells. B is the number 
of bounding boxes predicted by each cell. 1obj

ij
 indicates that 

the jth bounding box predicted in cell i contains an object. 
At the same time, 1noobj

ij
 refers to the predicted bounding box 

only contains background. xi and yi are the centre coordinate 
of the bounding box. w and h represent the dimension of the 
bounding box. The variables with ̂ indicate they are pre-
dicted values. Otherwise, they are groundtruth. Ci denotes 
the confidence of whether the bounding box contains an 
object or just pure background. The prediction of classes is 
represented by pi(c).

4  Experiments and analysation

4.1  Dataset

To construct a dataset to train and verify the AMCD, 5625 
images are captured by a DJI Phantom 4. Images are taken 
from different facilities such as pressure vessels and oil wells 
at a distance from 1m-10m under different angles and illu-
mination conditions. These images contain the bar corro-
sion, nubby corrosion, fastener corrosion and exfoliation. 
If the aspect ratio of a damage area is less than 1:2, this 
region will be treated as the nubby corrosion. Otherwise, 
the damage region will be considered as the bar corrosion. 
Bolt and nut corrosions are treated as the fastener corrosion, 
and the exfoliation corrosion includes cracked coatings. To 
annotate captured images with different corrosion types, 
labelImg (https:// tzuta lin. github. io/ label Img/) is utilised 
to put bounding boxes on images by human experts. Each 
bounding box contains the upper-left corner position and 
width and height of the box. Thus the format of the bound-
ing box is (x, y, w, h). There is a total of 27039 corrosion 
areas labelled in 5625 images. Several annotated images are 
shown in Fig. 6. Bounding boxes with different colours rep-
resent different kinds of corrosions.

To generate training and test sets, labelled images are 
randomly divided by contained corrosions. The training and 
validation dataset contains 4500 images. Other 1125 images 
are utilised to test the proposed detector.

4.2  Experimental environment

All training processes are conducted by applying Tensorflow 
1.15 and CUDA 10.0 on a computer with an Intel®CoreTM 
i7-8750 @2.20 GHz CPU, 12 GB installed memory (RAM) 
and 6 GB GDDR5 memory NVIDIA GTX1060 graphics 
processing unit (GPU). To evaluate the performance of the 
AMCD on MAVs on-board platform, testing processes are 
made on the Nvidia Jetson TX2. It is equipped with a hexa-
core CPU and an NVIDIA PascalTM family GPU with 256 

https://tzutalin.github.io/labelImg/
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CUDA cores. It loads with 8GB of memory and 59.7GB/s 
of memory bandwidth.

Transfer learning has the ability to transfer knowledge 
from a related task that has already been learned to a new 
domain. A lot of works have proved that transfer learning is 
an optimisation technique which saves training time and gets 
better test performance. Instead of using randomly initialised 
weights of CNNs, layers of the proposed model are initial-
ised by the weight trained on PASCAL VOC2007 (Evering-
ham et al. 2007) and PASCAL VOC2012 (Everingham and 
Winn 2011) datasets. To further improve the performance 
of the ACMD, predefined anchors are clustered by K-means 
(Kanungo et al. 2002) as [14,15, 18,21, 31,17, 25,26, 20,38, 
36,35, 30,78, 63,48, 93,118].

The explained network is trained using the SGD algo-
rithm, and the tuning of learning rates influences the training 

performance significantly. To make the training process sta-
ble and efficient, warmup (He et al. 2016) and cosine learn-
ing rate decay (Loshchilov and Hutter 2016) are utilised. 
Fig. 7 depicts the variation of the learning rate during the 
training stage. The x axis represents iterations, and the learn-
ing rate is updated every iteration. The momentum param-
eter is 0.9995. The batch size is assigned by 2, and the model 
is trained for 450000 iterations. The loss curve during the 
training process can be seen in Fig. 8, which indicates the 
loss function is optimised and convergent to a stable value.

4.3  Evaluation metrics

Precision and recall concepts (Olson and Delen 2008) 
are utilised widely to evaluate the performance of object 
detection approaches. Precision denotes the number of 

Fig. 6  Labelled images

Fig. 7  Learning rate curve dur-
ing the training procedure

Fig. 8  Loss decline curve of the 
AMCD
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True Positive (TP) results divided by all positive detec-
tion results. Recall is defined as the percentage of the TP 
in all correct detection results. The area under the preci-
sion and recall curve is called average precision (AP). 
The AP indicates the ability of the detector to locate 
objects and classify them into a single class. In general, 
the higher AP for a category of objects, the better per-
formance of the detector to identify them. Mean average 
precision (mAP) represents the performance of the detec-
tor across all classes and can be defined by the average 
value of APs for all classes.

In reality, predicted results cannot match groundtruth 
perfectly. Thus, the Intersection-over-Union (IoU) met-
ric is adopted to represent the overlap of the predicted 
bounding box with groundtruth box. This allows pre-
dicted results can partially overlap with groundtruth. 
While the overlap area between suspicious corrosion and 
groundtruth exceeds the IoU threshold, the prediction 
result is classified as positive. Otherwise, the detection 
result is categorised as negative. In this study, the IoU 
value is 0.5.

4.4  Performance of the AMCD

The trained model is used to identify different kinds of cor-
rosions, and some recognition results are shown in Fig. 9. 
As images are taken under different angles and illumination 
conditions, backgrounds are cluttered. We can see that four 
kinds of corrosions can be detected correctly. What is more, 
when an image contains multiple types of corrosions, all 
of corrosions can be identified. As shown in Fig. 9b, the 
fastener corrosion and bar corrosion are detected correctly, 
even though some shadows exist in the image. In Fig. 9f, 
small holes in the structure are very similar to the nubby cor-
rosion, the AMCD still can locate corrosion areas precisely.

Precision-recall (PR) curves and APs for four kinds of 
corrosions are demonstrated in Fig. 10 and Table 1, respec-
tively. Based on unique features of the fastener corrosion, 
the detection results show a high accuracy towards this 
kind of corrosion. As its shape distinguishes bar corrosion 
and nubby corrosion, the features extracted from them are 
similar. The number of the nubby corrosion in the training 
dataset is far more than that of the bar corrosion. Thus, the 
bar corrosion can be misunderstood as the nubby corrosion 
easily, leading to a relatively low detection accuracy of the 

Fig. 9  Some detection results
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bar corrosion. Besides its unique features, the exfoliation 
contains part of features of the nubby corrosion or bar cor-
rosion. Due to the least samples of the exfoliation gathered, 
its detection accuracy is between that of the bar corrosion 
and nubby corrosion.

4.5  Comparison with state‑of‑the‑art detection 
methods

In this section, the proposed network is compared with some 
state-of-the-art detectors. As the AMCD towards to detect 
corrosion with limited computing resources, the Yolov2-
tiny (Redmon and Farhadi 2017), Yolov3-tiny, Yolov4-tiny 
(Bochkovskiy et al. 2020), single shot multibox detector 
(SSD) (Liu et al. 2016) and RetinaNet (Lin et al. 2017) are 
selected for the comparison. To make a fair comparison, 
the input dimension of compared detectors is resized into 
a similar scale, and all compared detectors are trained with 
default parameters provided by the authors. As shown in 
Table 2, the proposed detector achieves 84.96% mAP, which 
is the best among these algorithms. The superiority of the 
AMCD is validated.

Figure 11 shows that the proposed method can achieve 
optimal corrosion detection results compared with other 
state-of-the-art algorithms. Other detectors are limited by 
the tightly layout and sizes of corrosions. The Yolov2-tiny is 
struggling to generate accurate bounding boxes to corrosion 
areas. The Yolov3-tiny, Yolov4-tiny and RetinaNet cannot 
detect small-size corrosions. The SSD and AMCD identify 
corrosions correctly in this image. When taking the model 
size and detection speed into consideration, the AMCD still 
outperforms the SSD. More details are shown in Fig. 12. 
Due to the shallow network architecture and DSConv being 
utilised in the AMCD, the detection speed reaches 20.18 
FPS on average. It is much faster than the SSD, which 
uses the VGG16 as the backbone. With the adoption of the 
DSConv, the model size reduces significantly, and it is only 
6.1 MB. This suggests that the AMCD could perform cor-
rosion detection efficiently, which is essential for MAVs on-
board visual inspection applications.

5  Conclusions

In this study, a deep learning-based corrosion detection 
technique has been developed for automated visual inspec-
tion of steel structures in industrial areas with MAVs. This 
study focuses on processing images captured by MAVs 
to identify the presence of corrosions on structures with 
limited computing resources. In the step of detection, we 
use the DSConv to build the backbone, which can signifi-
cantly reduce parameters and improve the detection speed. 
In order to improve the detection accuracy of the AMCD, 
the attention mechanism, three-scale object detection 
and focal loss are adopted, which are helpful for accurate 
corrosion detection. What is more, the improved SPP is 
introduced for further improving the detection accuracy. 
The proposed approach achieves excellent performance 
in detecting and recognising different categories of cor-
rosions. Experimental results prove that the proposed 
detector obtains satisfactory corrosion detection results, 
which is able to achieve 84.96% mAP for corrosion iden-
tification in the complex environment and get the real-time 

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
ci

si
on

Bar corrosion
Exfoliation
Fastener corrosion
Nubby corrosion

Fig. 10  PR curves of four kinds of corrosions

Table 1  Detection results of four kinds of corrosions

Number of cor-
rosions

Detection accu-
racy (%)

AP (%)

Nubby corrosion 3559 89.83 85.81
Bar corrosion 501 84.23 75.78
Exfoliation 290 93.45 86.36
Fastener corrosion 985 93.81 91.88

Table 2  Comparison of corrosion detection performance

Detector Backbone Input dimen-
sion

mAP (%)

Yolov2-tiny Yolov2-tiny 320 71.87
Yolov3-tiny Yolov3-tiny 320 79.02
Yolov4-tiny Yolov4-tiny 320 82.1
SSD VGG16 300 81.2
RetinaNet Resnet50 320 83.5
AMCD (ours) AMCD 320 84.96
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performance (20.18 FPS) with off-the-shelf MAVs com-
mercial on-board processing platform. What is more, the 
model size is only 6.1MB.
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