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Abstract
Smart homes of the future will have to deal with multi-occupancy scenarios. Multi-occupancy systems entail a preliminary 
and critical feature: the capability of counting people. This can be fulfilled by means of simple binary sensors, cheaper and 
more privacy preserving than other sensors, such as cameras. However, it is currently unclear how many people can be 
counted in a smart home, given the set of available sensors. In this paper, we propose a graph-based technique that allows 
to map a smart home to an undirected graph G and discover the lower-bound of certainly countable people, also defined as 
certain count. We prove that every independent set of n vertices of an undirected graph G represents a minimum count of 
n people. We also prove that the maximum number of certainly countable people corresponds to the maximum independ-
ent sets of G, and that the maximal independent sets of G provide every combination of active sensors that ensure different 
minimum count. Last, we show how to use this technique to identify and optimise suboptimal deployment of sensors, so that 
the assumptions can be tightened and the theoretical lower-bound improved.

Keywords Counting · Smart Home · Multi-occupancy · Graph Theory · Independent Set

1 Introduction

With the advent of the Internet of Things (IoT), a plethora of 
smart devices appeared in our daily lives and in our homes. 
IoT devices are necessary for unlocking the potential of 
regular homes to become smart homes, but not sufficient. 
Single devices can achieve limited results; they must interact 
with each other and combine their output data for delivering 
the complex features offered by a typical smart home. This 
is particularly critical for Ambient Assisted Living (AAL) 
applications, which aim to assist disabled people and elderly 
ones, enabling them to retain their independence.

As noted by Benmansour et al. (2015), the largest body 
of research on smart homes focused on mono-occupant sce-
narios, assuming only one person in the environment. Less 
work about multi-occupancy has been done until today, but 
more will be done in the future. Taking into consideration 

multi-occupancy is extremely important for AAL applica-
tions, and smart homes in general. Elderly and sick people 
require help from visiting nurses; people in general have 
guests for birthday parties and movie nights. Such events 
introduce a considerable amount of variability that can easily 
disrupt mono-occupancy systems, and that multi-occupancy 
systems will have to recognise and manage.

One of the most important building blocks for develop-
ing multi-occupancy systems, is the capability of counting 
people. People counting enables smart homes to combine 
more effectively ground truths and to reason more efficiently 
about inferred data. For example, a context-aware system 
might need to know that two people are hosted in a smart 
home to correctly interpret observed data. Such information 
can be an external input, or inferred by the context-aware 
system itself.

Researchers developed reliable techniques for vision-
based human detection and counting, such as Paul et al. 
(2013), Raghavachari et al. (2015), Sun et al. (2020), but 
such techniques require cameras, which are expensive and 
can invade privacy. On the other end, binary sensors are 
cheap and, positioned strategically, can be used for count-
ing people, even though they can produce only two states. 
Renoux et al. (2018) showed that it is possible to perform 
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online counting of people, reasoning about the activation 
patterns of simple binary sensors.

Break-beam sensors are among the cheapest binary sen-
sors, and their working principle is simple. Whenever a 
person walks in front of the sensor, the beam is interrupted 
and the sensor changes its output bit. By using two of them 
sequentially, it is possible to assess the walking direction, 
inferring if people are entering or exiting, and keeping an 
updated people counter.

Potentially, a single binary sensor can count infinite 
people, assuming sufficient geographical information. 
Imagine a factory that organises educational visits. Typi-
cally, there is an entrance, a predefined route, and an exit 
which is different from the entrance. If we place a break-
beam sensor at the entrance, and we assume that none ever 
walks out of the entrance, a single binary sensor can count 
vast numbers, if we store the increasing counter. This can 
happen only because we have sufficient spatial knowl-
edge. We know how people move in the factory, where 
the break-beam sensor is deployed, and that the counter 
can only increase throughout time - maintaining de facto 
memory about past events.

If one of the aforementioned conditions is not met, the 
capability of counting more than one person is lost. Lacking 
spatial knowledge and the walking path constraints prevents 
from detecting if a single person goes back and forth x times. 
If the system lacks the capability of retaining memory, any 
activation of the break-beam sensor is an independent event 
that does not add up to the previous ones and is simply lost. 
In other words, if we miss such conditions and we take a 
random snapshot of a binary sensor, at any time of the day, 
the only certain knowledge that we can obtain is if the sensor 
is currently active, or not.

In this paper, we investigate theoretical bounds for real-
time people counting, when solely relying upon snapshot 
observation of active sensors. The main objective is to pro-
pose a technique that, given a set of binary sensors, defines 
a theoretical lower-bound on the calculable number of 
occupants, demonstrating that it is possible to define such 
a lower-bound. While our goal is different from performing 
people counting, the inferred knowledge could be used as a 
preprocessing phase for narrowing down the range of accept-
able solutions for probabilistic reasoners, as we discuss in 
Sect. 6.

First, we claim that the problem of identifying the mini-
mum number of countable people (in this paper also defined 
as certain count) can be reduced to a maximum independent 
set (MIS) graph problem. Second, we claim that identifying 
the minimum number of countable people for specific sets 
of active sensors, equals to identifying the maximal inde-
pendent sets of a graph. These claims entail that it is pos-
sible to identify a theoretical lower-bound of countable peo-
ple, under specific conditions. Last, we show that through 

reduction to a MIS problem, sensors deployment can be 
efficiently planned to increase the theoretical lower-bounds.

1.1  Outline

 The paper is organised as follows. In Sect. 2 we provide 
an overview of relevant related work. In Sect. 3 we define 
all the items for the scope of this paper, while in Sect. 4 we 
show how an environment, such as a smart-home, should be 
mapped to an undirected graph. In Sect. 5 we prove the rela-
tion between a graph maximum independent and the lower-
bound of countable people, within that graph. In Sect. 6 we 
expand our approach and we show that maximal independ-
ent sets can be used to identify the lower-bound of count-
able people, in case of sub-optimal activation patterns. In 
Sect. 7 we tighten some assumptions, discussing how they 
affect counting accuracy, and how this knowledge can help 
to deploy sensor networks in a smarter way. Last, in Sect. 8 
we discuss the tractability of the maximum independent set 
problem and the maximal independent set problem used in 
this paper, and in Sect. 9 we draw our conclusions.

2  Related work

To the best of our knowledge, there are no other literature 
works that investigate the theoretical bounds of people 
counting algorithms deployed in binary sensor networks. 
However, the number of papers that propose different algo-
rithms and sensors for performing people counting dem-
onstrates that the problem is relevant for the research com-
munity. In this section, we give a brief overview of relevant 
works that face the challenge of counting people. First, we 
focus on PIR sensors, given their high correlation with our 
work. Then, we provide different examples of people count-
ing techniques that use different approaches. Teixeira et al. 
(2010) surveyed the main methods for evaluating occupancy 
at different levels of precision, such as detection, counting, 
identity, and so on. The authors also classified such methods 
and organised them in a taxonomy.

More recently, Sun et  al. (2020) reviewed different 
occupancy measurement systems and differentiated such 
systems based on the type of sensors. Most notably, with 
regard to cameras the authors noted two things. First, using 
only depth images can preserve privacy, but the false posi-
tive rate increases; second, RGB-D images allow for high 
accuracy, at the expense of privacy and computational com-
plexity. Last, they highlighted that PIR sensors provide only 
binary information, that the noise must be filtered, and that 
the accuracy is affected by the distance between sensors 
and people. Wu and Wang (2019) further discuss PIR sen-
sors drawbacks. They argue that PIR sensors are basically 
motion detectors, which respond only to incident radiation 
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variation. Hence, they are subject to misleading lighting 
swings, energy waste, false negative detection rates, and 
inaccurate occupancy estimation. To achieve true presence 
detection, the authors proposed an optical shutter driven by a 
Lavet motor PIR (LAMPIR) sensor. Their experiments show 
that the LAMPIR sensor can detect with high accuracy both 
stationary and moving occupants.

The binary nature of PIR sensors, however, does not pre-
vent them to count a considerable number of human beings. 
In 2012, Wahl et al. (2012) showed that unmodified PIR 
sensors can be used in pairs to observe passage gateways. 
Later in 2016, Raykov et al. (2016) applied non-parametric 
machine learning algorithms to data extracted from a single 
PIR sensor. Assuming a single room and a controlled envi-
ronment, their approach proved to be capable of counting 
occupants with a deviation of ±1 individual. Akhter et al. 
(2019) proposed a pedestrian counting device composed of 
three pairs of PIR sensors, whose Fresnel lenses are spe-
cially tuned for monitoring human beings and excluding 
domestic animals. Paired with their proposed algorithm, the 
experiments show that their approach is capable of achiev-
ing a counting with 95% of accuracy. Notably, the authors 
mention that they opted for PIR sensors because they are 
cost-effective and consume low energy, which is a relevant 
advantage over solutions that use expensive sensors, such as 
the camera-based ones.

Renoux et al. (2018) proposed a two-step probabilistic 
approach which applies to different binary sensors. First, 
their algorithm estimates the number of people in the envi-
ronment by means of a Constraint Satisfaction Problem 
(CSP) solver. The CSP solver is based on the network topol-
ogy, as well as the sensors’ activation pattern. Second, a 
Hidden Markov Model (HMM) refines the estimate, while 
taking into consideration the uncertainty of the sensors. 
Furthermore, Tsou et al. (2020) designed a people counting 
device that combines an array of 16 PIR sensors. Positioned 
on the ceiling over an entrance, this device collects passing-
bys data which is first used for collecting training data for 
a Convolutional Neural Network (CNN). Then, the authors 
use the same device for testing the performance of the CNN, 
showing that it can achieve up to 92.75% accuracy.

Regarding more complex - and more expensive - sen-
sors, extensive research has been conducted in the field of 
security cameras and visual surveillance. Hou and Pang 
(2011) proposed a method that estimates the number of 
people from low resolution images of crowded scenes. In 
their approach, the authors subtract the background and 
process the foreground pixels, and they show that ≈ 80% 
of their tests were able to estimate the correct number of 
people within a percentage error of 15%. Also Wang et al. 
(2015) tackled the problem of performing people counting 
on crowded camera images. The authors used a CNN as a 

framework for learning counting features and fed the deep 
model with negative samples for improving the robustness.

Barandiaran et  al. (2008) created a counting method 
that relies upon an overhead mounted camera. The camera 
image is split in vertical slices and, by multiple line analysis, 
the approach counts people with 95% accuracy. An over-
head mounted camera was also used by Zhang et al. (2012) 
but, instead of a regular RGB camera, their work uses a 
Microsoft Kinect camera which provides both RGB and 
depth images. Using a water filling inference algorithm, the 
authors achieve a counting accuracy of 99.72%.

Using security cameras for counting people can be expen-
sive and, most importantly, not privacy-friendly. Beyond PIR 
sensors, researchers explored the feasibility of performing 
people counting with other sensors. For example, Singh 
and Aksanli (2019) proposed a framework to detect and 
track people non-intrusively within an environment. Their 
approach uses only ambient low-resolution thermal sensors, 
allowing to preserve privacy and spare users’ active partici-
pation. Choi et al. (2017) investigated the use of impulse 
radio ultra-wideband radar sensors (IR-UWBs) for counting 
people. The authors prove that it is possible to estimate the 
number of people by evaluating the cumulative signal pat-
terns, instead of detecting the signal of each person within 
the total signal received by the radar. In another work, Choi 
et al. (2018) use two IR-UWB sensors for a framework that 
performs bidirectional passing people counting.

Recently, Wang et al. (2020) proved that it is possible to 
leverage the channel state information (CSI) of commer-
cial WiFi devices for detecting humans’ respiration rates 
and, consequently, estimate the number of people in a room. 
Their experiments show that their technique is capable of 
achieving an accuracy of ≈ 87% when deployed in restricted 
areas, such as cars and offices.

3  Definitions

In this section, we give an overview of the definitions that 
are necessary for the scope of this work. Throughout the 
paper, unless otherwise specified, a graph is always assumed 
to be an undirected graph G = (V ,E).

Definition 1 (Configuration) A configuration is a set of 
simultaneously active sensors.

Definition 2 (Independent Set) For an undirected graph 
G = (V ,E) , a set S ⊆ V  is an independent set if there is no 
pair of vertices (v1, v2) ∈ S such that (v1, v2) are adjacent.

In other terms, no edge e ∈ G can connect any vertex 
v ∈ S . For example, the simple coloured subset of the graph 



3842 A. Giaretta, A. Loutfi 

1 3

shown in Fig. 1 is an independent set composed of 2 verti-
ces, not adjacent to each other.

Definition 3 (Maximal Independent Set) For an undi-
rected graph G = (V ,E) , an independent set S ⊆ V  is a 
maximal independent set if, for every v ∈ V  , either v ∈ S 
or N(v) ∩ S ≠ � , where N(v) denotes the neighbours of v.

We can say that a maximal independent set (MIS) is an 
independent set which is not a subset of any other independ-
ent set. Figure 2 shows an example of a maximal independ-
ent set of a graph. In this case, the vertex in the centre com-
poses alone a maximal independent set, since that there are 
no larger independent sets that contain this vertex.

Definition 4 (Maximum Independent Set) For an undirected 
graph G = (V ,E) , a maximal independent set S ⊆ V is maxi-
mum if it contains the maximum number of vertices possible 
for a maximal independent set, for that graph.

A single graph G can contain multiple independent sets, 
multiple maximal independent sets, and even multiple maxi-
mum independent sets.

The number of vertices in a maximum independent set 
is known as the independence (or stability) number, �(G) . 
Sometimes it is referred as the vertex independence num-
ber, to distinguish it from the edge independence number. 
In simple terms, identifying a maximum independent set 
equals to a colouring graph problem, where the following 
rules must be followed:

– Each vertex has a different colour from the adjacent (i.e., 
connected) ones;

– We colour as many vertices as possible with the same 
colour (i.e., we maximise �(G)).

As an example, Fig. 3 shows an intuitive maximum inde-
pendent set. This is the only configuration for this graph G 
that allows to have an independent set composed of 3 ver-
tices. It is also worth noting that this subset and the subset 

shown in Fig. 2 are the only two maximal independent sets 
of this graph. In the next section, we show how a smart 
home maps to a graph, explaining the semantics of verti-
ces and edges regarding this work, as well as the necessary 
assumptions.

4  Mapping the smart home

To determine how many people we can distinctly count 
within a smart home, we need to analyse it and map it to 
a graph. As a case study, we use the Ängen smart home, 
depicted in Fig. 4. Ängen is a research facility used in 
E-carehome by Alirezaie et al. (2017), an interdisciplinary 
Swedish project that brings together experts from different 
fields.

Each Ängen room is equipped with one motion sensor. 
The motion sensors are deployed as shown in Fig. 4, so that 
there are no blind spots in the room they monitor. How-
ever, we must consider that the motion sensors might detect 
(erroneously) activities from an adjacent room, due to their 
physical deployment. This can easily happen if a sensor is 
positioned next to a door, and a person moving in the adja-
cent room casts a shadow and triggers the motion sensor. 
Taking as an example Fig. 4, a person moving next to the 

Fig. 1  An example of an independent set of a graph. No coloured ver-
tex is adjacent to another coloured vertex

Fig. 2  An example of a maximal independent set of a graph, com-
posed of only one vertex. Intuitively, there is no other independent set 
that is also a superset of this set

Fig. 3  An example of a maximum independent set of a graph, show-
ing that it is unfeasible to colour more than 3 vertices of this graph 
without violating the non-adjacency property of an independent set
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motion sensor in the kitchen could also trigger the motion 
sensor in the living room, given that the two sensors are 
positioned in each others’ line of sight. In Fig. 4, this pos-
sibility is depicted with a solid grey line.

Last, we take into account that motion sensors might 
exhibit a considerable delay, such that a person moving from 
a room to another could simultaneously activate two sensors. 
Using again the running case study shown in Fig. 4, even 
though the motion sensor in the closet is not precisely in 
line of sight with the living room sensor, a person quickly 
moving from one room to the other might create an overlap-
ping activation for both sensors. Similarly to the previous 
example, this possibility is depicted in Fig. 4 with a solid 
grey line. As a direct consequence of this, n active sensors 
do not automatically relate to n occupants. According to 
these considerations, we make three assumptions:

Assumption 1 Motion sensors detect every human being 
moving in the room they are deployed in.

Assumption 2 Motion sensors might detect movements from 
adjacent rooms and might exhibit delays.

Assumption 3 The environment does not host animals nor 
children.

In particular, the first assumption implies that motion 
sensors are placed in a way that there are no blind spots 
and that any human being moving in the room would be 
detected. However, as stated in the second assumption, a 
sensor might be placed in a way that it detects also some 
movements from adjacent rooms. Moreover, sensors might 
exhibit relevant delays, such that a moving person might 

cause an overlap of active sensors. With these assumptions 
in mind, the next step is to define the rules for mapping an 
environment to a graph. For doing so, we follow two rules:

Rule 1 A vertex vx represents a binary sensor deployed in 
the environment.

Rule 2 An edge ex,y between two vertices vx and vy represents 
the possibility that a single person activates sensor vx and 
sensor vy , simultaneously.

Following these two rules, let us depict the Ängen map 
as a graph G = (V ,E) . First, we identify each motion sen-
sor as a graph vertex, hence creating V. Second, we con-
nect every pair of vertices < vA, vB > with an edge e, if 
there is a chance that a person could activate vA and vB at 
the same time. The result should look similar to Fig. 5.

Analysing the figure, we realise that a person mov-
ing from the kitchen to the bathroom must pass through 
the living room, activating three motion sensors in 
total. Walking this path, the person might activate two 
pairs of sensors at a time (i.e, < kitchen,living room > , 
and < living room,bathroom > ), following our previous 
assumptions about sensors adjacency and delay. For the 
scope of this paper, an active sensor is represented as a 
coloured vertex in our figures.

Ängen features different kinds of sensors, not only 
motion sensors. For example, the smart TV is equipped 
with a on/off sensor; chairs and sofas are equipped with 
pressure sensors which detect whether a person is sitting 
or not. For the sake of clarity, besides the motion sensors, 
we assume that only two pressure sensors are available in 
Ängen. Both pressure sensors are installed on two different 
chairs, positioned in the kitchen. To supplement the three 
assumptions previously made, we add two assumptions for 
pressure sensors:

Fig. 4  Ängen map

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Fig. 5  Ängen map as a graph
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Assumption 4 Pressure sensors’ thresholds are adjusted to 
trigger only on adult human beings’ weight.

Assumption 5 No object with a weight comparable to an 
adult human being is positioned on pressure sensors.

In this paper, we focus on motion and pressure sensors 
because, under the aforementioned assumptions, these sen-
sors are strong indicators that a human being is currently 
present in the room. This does not apply to other binary 
sensors, such as TV on/off sensors and door open/close 
ones which could remain triggered for hours without any 
human intervention. A television left on is not as a strong 
indicator as a motion sensor which is detecting movement; 
a cabinet door open in the kitchen yields less occupancy 
probability than 60 kg sitting on a chair pressure sensor.

Next step in the mapping graph, we introduce the 
remaining sensors as new vertices, as we did for the 
motion sensors. Since we assume that a motion sensor 
detects every movement that happens in its room, it is 
appropriate to connect all new sensors to the motion sen-
sor of the room they belong to. In our example in Fig. 6, 
we connect the two chairs pressure sensors to the kitchen 
motion sensor.

Last, if two sensors might identify the same person 
at the same time, we draw an edge between the vertices 
depicting them, regardless if they are situated in the same 
room or not. As shown in Fig. 6, not only we draw an edge 
between the kitchen motion sensor and the sensor pres-
sure 1 and pressure 2, but we also draw edges between 
the pressure sensors and the living room motion sensor. 
This correctly depicts the aforementioned case of a person 
sitting in the kitchen, activating kitchen and living room 
motion sensors.

5  People counting lower‑bounds

In this section, taking into account the assumptions 
described in the previous Sect. 4, we prove that any inde-
pendent set of n vertices guarantees a minimal counting 
of n people. We also prove that the scenarios that allow 
for the highest counting lower-bounds, correspond to the 
maximum independent sets of a graph.

We recall that, for the scope of this paper, an active 
sensor is represented as a coloured vertex of a graph. Let 
us also recall the definition of maximum independent set, 
previously given in Sect.  3. A maximum independent 
set S ⊆ V  is a maximal independent set which contains 
the maximum number of vertices possible for the graph 
G(V, E).

Theorem 1 For every set of sensors represented as an undi-
rected graph G(V, E), every independent set of n vertices in 
G represents a minimum counting of n people. Similarly, 
every possible counting of n people can be expressed as an 
independent set of n vertices in G.

Proof Let us assume an undirected graph G(V,  E). By 
Definition 2, a set Sind ⊆ V  is an independent set if, and 
only if, ∄ex,y ∈ E , such that vx ∈ Sind , vy ∈ Sind . By Rule 2, 
∀(vx, vy) ∈ Sind , Sind does not represent any possibility that a 
single person activates (vx, vy) simultaneously.

In simple terms of graph theory, if the set of coloured 
vertices corresponds to an independent set, we can con-
clude that each sensor is counting at least a different per-
son from every other sensor. Independent sets of n vertices 
ensure that, at least, n people are counted and present in 
the smart home. This is a lower-bound, since that a binary 
sensor alone (such as a motion sensor) cannot detect more 
than one person at a time. If two or more people perform 
the same actions in the same room, it is likely that they 
will be detected as a single person. Therefore, n binary 
sensors in an independent set equal to n people or more.

Theorem 2 For every set of sensors represented as an undi-
rected graph G, the lower-bound of simultaneously count-
able people equals to the independence number �(G) , and 
the configuration that allows it corresponds to the maximum 
independent set.

Proof Let us assume an undirected graph G(V, E), and the 
maximum independent set Smax{v0, .., vn−1} . Let us also 
assume, ad absurdum, that the set Sabs{v0, .., vn−1, vn} ⊃ Smax 
represents a minimum counting of n people. By defini-
tion, Smax is the largest independent set possible within G. 
Sabs is a superset of Smax , so Sabs is a non-independent set. 

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Pressure 2

Pressure 1

Fig. 6  Ängen map as a graph, kitchen pressure sensors added
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A non-independent set implies that ∃ex,y ∈ E , such that 
vx ∈ Sabs , vy ∈ Sabs . However, an edge ex,y means that a sin-
gle person might activate vx and vy simultaneously; vx and vy 
active at the same time do not ensure a count of two distinct 
people. In conclusion, Sabs has n vertices but does not repre-
sent a lower-bound of n countable people.

Following Theorem 2, the minimum number of people 
that we can certainly count equals to the maximum inde-
pendent set. We define this as a certain count. The subtle 
implication of Theorem 2 is that we can ensure that at least 
�(G) = n distinct people are in the smart home, if such peo-
ple activate simultaneously the sensors, according to the 
maximum independent set. If we also assume that the smart 
home hosts m = �(G) = n people, this would result in an 
exact count of every person in the smart home.

Example 1 (Independent Set) If Ängen were composed only 
of motion sensors, as shown in Fig. 5, then the theoretical 
lower-bound of countable people would equal the independ-
ence number �(G) = 6 , as shown in Fig. 7. In particular, 
we could certainly count at least 6 people in two cases. If 6 
people were moving in hall, kitchen, bedroom 2, bathroom, 
closet, and balcony; or if 6 people were moving in bedroom 
1, kitchen, bedroom 2, bathroom, closet, and balcony. The 
independence number provides a lower-bound of 6 people, 
under the condition that the active sensors correspond to the 
maximum independent set.

A lower-bound higher than 6 is impossible, in this sce-
nario. Multiple people in the same room do not increase the 
lower-bound, since that a motion sensor exhibits a binary 
behaviour (i.e., on/off) and can count only one person at a 
time. The same applies if the coloured vertices describe a 
non-independent set, as shown in the following example.

Example 2 (A Non-Independent Set) Adding a person to 
bedroom 1 in Fig. 7, as shown in Fig. 8, would introduce a 
doubt: is there really someone in bedroom 1, or a person in 
the hall triggering the motion sensor? In this case, the people 
count would remain 6, but this uncertainty can even decrease 
the guaranteed people count. The next example proves this 
possibility.

Example 3 (Another Non-Independent Set) If we take 
Fig. 7 and colour the living room, we obtain Fig. 9; a lot of 
different scenarios could explain this configuration. There 
might be one person per each room, or only one person in 
the living room that, in a specific position, is activating every 
motion sensor.

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Fig. 7  Ängen map as a graph, maximum independent set highlighted

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Fig. 8  With both bedroom 1 and hall coloured, it is impossible to tell 
if there is one person per each room, or if one person is triggering 
both motions sensors

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Fig. 9  In this situation, uncertainty is high. There could be one per-
son per each coloured room, or only one person in the living room 
that is triggering all the sensors
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Therefore, the maximum independent set provides a 
related lower-bound, the independence number �(G) , under 
the strict condition that the active sensors correspond to the 
maximum independent set. No information about eventual 
upper-bounds can be inferred.

If we take into account the extended Ängen graph in 
Fig. 6 and we analyse the maximum independent set shown 
in Fig. 10, the independence number grows from 6 to 7. It 
is worth noting that drawing 2 edges, from the living room 
to the 2 pressure sensors, does not change the independ-
ence number, in this specific scenario. This is because the 
living room would not be in the maximum independent set 
in any case, due to the edges that connect it to other rooms. 
However, even if it does not alter this specific final result, 
it is useful to explicit all the potential connections to depict 
a solid representation of a smart home. As discussed in the 
next section, the maximum independent set shown in Fig. 10 
is not the only maximum independent set. This graph has a 
second one, shown in Fig. 11.

The maximum independent set algorithm is a powerful 
approach, applicable beyond the goal of discovering the 
lower-bound for people counting. In case of a non-independ-
ent set configuration of n-vertices (i.e., that does not ensure a 
count of n-people), we can apply the maximum independent 
set algorithm and determine the minimum counting possible 
for the configuration. However, as we discuss later in this 
paper in Sect. 8, the maximum independent set algorithm is 
a NP-hard problem. Running this algorithm every time that 
a configuration corresponds to a non-independent set would 
be too expensive. In the next section, we show an approach 
that relies on maximal independent sets for listing succinctly 
and preemptively every configuration that ensures a mini-
mum counting. Furthermore, we discuss how this allows to 
transform a problem of independent set recognition into a 
more intuitive problem of set inclusion.

6  People counting and lower‑bounds 
for specific configurations

Identifying the maximum independent sets allows us to 
extrapolate the lower-bound of countable people in a smart 
home, and the optimal configurations that make it possible. 
Unfortunately, maximum independent sets do not answer 
another relevant question: does a specific set of active sen-
sors guarantee a minimum people count? In this section, we 
show that this question can be answered by verifying if a 
configuration is an independent set. Besides, we show that 
this can be done by comparing the observed configuration 
with the maximal independent sets of the topology, since 
that listing the maximal independent sets is a succinct way 
of listing every possible independent set of a graph. In fact, 
we argue that determining the maximal independent sets 
is a form of preprocessing, which provides deterministic 
boundaries to counting reasoners and relieves part of their 
runtime computational burden.

For example, it is expected that a person moving in the 
kitchen, a person moving in the bathroom, and one in the 
balcony would guarantee a count of 3 people. The sensors 
are positioned far away from each other, and there is no 
possibility for less than 3 people to activate them, simulta-
neously. This counting is neither reflected in Fig. 10, nor in 
Fig. 11. The same goes if a person is moving in bedroom 1 
and another one is moving in the living room: it is expected 
to be possible to distinctly count 2 people, but this possibil-
ity is not depicted in any of the 2 maximum independent 
sets.

Referring to the same topology defined in Fig. 6, it is 
easy to see that a number of other independent sets can be 
defined, apart from the maximum independent set. First 
of all, we can swap the colouring of bedroom 1 and hall, 
achieving another maximum (and maximal) independent 
set, as shown in Fig. 11. As aforementioned, we can count 

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Pressure 2

Pressure 1

Fig. 10  Ängen map as a graph, kitchen pressure sensors added, maxi-
mum (and maximal) independent set coloured
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Fig. 11  Ängen map as a graph, maximum (and maximal) independent 
set coloured
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at least n people when n coloured vertices (i.e., the active 
sensors) identify an independent set of the graph. The same 
does not apply to non-independent sets, as m < n people 
might activate n sensors simultaneously. Intuitively, list-
ing every independent set allows to define every case that 
leads to certain minimum counting. Therefore, instead of 
analysing every new configuration from the ground up for 
determining if it is an independent set, it is sufficient to 
compare the configuration to every independent set. In case 
of positive matching, the configuration is confirmed to be 
an independent set and the minimum counting guaranteed 
equals to the number of vertices in the configuration (i.e., 
the active sensors). However, the number of independent sets 
can explode even for small graphs. For example, a simple 
Claw graph of 4 vertices has 8 independent sets. Therefore, 
it is necessary to find a more succinct way of listing the 
independent sets.

Let us recall the definition of a maximal independent set. 
An independent set is maximal if, and only if, it is not a 
subset of another independent set. Every independent set is 
either a maximal independent set, or a subset of a maximal 
independent set, and every subset of a maximal independent 
set is an independent set. As a consequence, listing all the 
maximal independent sets is a concise way of listing all the 
configurations that ensure a certain minimum count. If n 
sensors are active at the same time and they correspond to a 
set I, such that I is a maximal independent set, or a subset of 
a maximal independent set M (where M ⊆ V ,G = (V ,E) ), 
we can achieve a count of n people. In other terms, we can 
guarantee that there is at least one person per each active 
sensor.

This observation has relevant implications. Assuming a 
configuration I of n active sensors, it is possible to quickly 
determine that at least n occupants are certainly present in 
the environment, if the active sensors belong to one of the 
maximal independent sets. This spares the computational 
expense of continuously reevaluating if a configuration is 
an independent set or not, every time that sensors activate/
deactivate and form a new configuration. In other words, 
detecting maximal independent sets allows to transform a 
problem of set independency recognition, into a problem 
of set inclusion over a list of maximal independent sets, 
precomputed at deployment time. Even though finding every 
maximal independent set is computationally demanding, the 
sensors’ topology is static, hence the process must be under-
taken only once. Therefore, listing the maximal independent 
sets is effectively a preprocessing phase that moves part of 
the computational burden from execution time to deploy-
ment time.

This could be beneficial for other approaches, such 
as the probabilistic reasoner proposed by Renoux et al. 
(2018). Knowing that an observed configuration of m verti-
ces corresponds to an independent set (i.e., it is a maximal 

independent set, or a subset of a maximal independent set) 
guarantees that at least m people are currently performing 
relevant actions. This knowledge would provide a baseline 
threshold to the probabilistic reasoner which, instead of 
reasoning over an assumed starting range of [0,∞) , would 
be able to restrict the acceptable solution to [m,∞) , with 
m > 0 . On the contrary, whenever the active sensors define 
a configuration which is not an independent set, a counting 
of m cannot be guaranteed and the context reasoner must 
work through the uncertainty.

The Ängen running case study provides some relevant 
examples, which demonstrate the usefulness of listing 
preemptively every maximal independent set.

Example 4 (Kitchen and Bedroom 1) Let us assume that 2 
people are moving in the first bedroom and in the kitchen, 
respectively. The motion sensors in these Ängen rooms are 
active at the same time, while every other sensor is off. This 
configuration of 2 active motion sensors is a subset of a 
maximal independent set of this topology, shown in Fig. 12. 
Following the observations described earlier in this section, 
these 2 active sensors compose an independent set and guar-
antee a counting of 2 people, at least.

Intuitively, these motion sensors are not in line of sight 
and are far away from each other (i.e., no edge connects the 
vertices). It is not feasible for a single person to activate 
both sensors at the same time, and this looks clear in Fig. 4. 
Therefore, it is reasonable to conclude that there must be at 
least one moving person per room, for a total of at least 2 
people.

Notably, the scenario in Example 4 is not captured by 
the maximum independent sets, nor by any other maximal 
independent set of the topology, apart the maximal inde-
pendent set shown in Fig. 12.

HallBedroom 1

Living Room
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Fig. 12  Ängen map as a graph, maximal independent set coloured
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Example 5 (Kitchen, Bathroom, and Balcony) At the 
beginning of this section, we assumed that 3 people were 
moving in the kitchen, the bathroom, and the balcony, 
respectively. While these 3 vertices are not a subset of any 
of the maximum independent sets, we can easily verify that 
they are a subset of the maximal independent set shown in 
Fig. 13. These sensors, given their positions, cannot be acti-
vated together by less than 3 people, hence the counting of 
3 people is correct.

Example 6 (Bedroom 1 and Living Room) Suppose that 2 
motion sensors are contemporaneously active; one sensor 
is in the first bedroom and the second is in the living room. 
These two motion sensors are not in line of sight, nor close 
enough to be activated by one person moving from one room 
to another. Again, the vertices that represent these sensors in 
the Ängen topology, correspond to the maximal independent 
set shown in Fig. 14. Consequently, we infer that at least two 
people are in the smart home and that the rooms are hosting 
at least one person each.

Example 7 (Hall, Living Room, and Closet) In this exam-
ple, the observed configuration is the triplet <hall,living 
room,closet>, which is a non-independent set composed of 
3 vertices. By definition, this configuration do not guarantee 
that at least 3 people sit in the house: a single person moving 
in the living room could trigger all sensors at once. The sim-
ple way to verify that this set is not independent, would be 
to to analyse the neighbourhood of each vertex, in search for 
one of the other vertices of the configuration. This process 
can be simplified, knowing the maximal independent sets.

First, the configuration is composed of 3 vertices, mean-
ing that the maximal independent set of 2 vertices, shown in 
Fig. 14, can be excluded a-priori. Then, one of the vertices 
that compose the triplet is the hall. This vertex appears only 
in Fig. 10 and in Fig. 13, which entails that the other maxi-
mal independent sets are also excluded. The second vertex of 
the triplet is the living room, which is not part of Fig. 10 nor 
Fig. 13. Therefore, we can conclude that the configuration 
<hall,living room,closet> is not an independent set and it 
does not guarantee a minimal count of 3.

Example 8 (Eight Active Sensors) Last, let us assume that 
the observed configuration is composed of 8 active sensors. 
After the preprocessing phase of the maximal independent 
sets, we know that it is possible to obtain at maximum an 
independent set of 7 vertices for this scenario. Therefore, it 
is possible to immediately determine that the current con-
figuration is not an independent set, and that a minimum 
counting of 8 people cannot be guaranteed.

7  Tightening the assumptions

In the previous sections, we made two assumptions: a motion 
sensor might pick activities from adjacent rooms, which is 
likely to happen when sensors are placed near doors or in 
small rooms, and it might exhibit significant delays.

Let us tighten these assumptions, assuming that the sen-
sors do not exhibit any delay, and that the motion sensors are 
deployed in such a way that only in-room activities are iden-
tified. Assumed this, the edges connecting every motion sen-
sor can be safely removed, leading to the situation depicted 
in Fig. 15. Because the pressure sensors are situated in the 
kitchen and we assume that no movement in the kitchen can 
trigger the living room motion sensor, we can also remove 
the edges between the two pressure sensors and the living 
room.

Finding the lower-bound of countable people can be 
reduced to identifying the maximum independent set across 
multiple disconnected graphs. In this particular case, the 
independence number would grow up to �(G) = 9 , which 
entails that under optimal conditions the smart home can 
count up to 9 different people, no more than that. Notably, 
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Fig. 13  Ängen map as a graph, maximal independent set coloured
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Fig. 14  Ängen map as a graph, maximal independent set coloured
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leaving the edge between the kitchen and the living room 
would not lead to a lower independence number �(G) . Add-
ing or removing the edge does not change the lower-bound 
of 9 countable people, in this particular example.

This is more clear if we focus our view on the living room 
and the kitchen, as shown in Fig. 16. If we deploy perfectly 
the motion sensors, we can remove the dashed edge between 
the kitchen and the living room. The maximum number of 
people that can be counted is 3, and this would happen with 
2 people sitting in the kitchen and a third one moving in the 
living room. If we suppose a misplaced sensor, we draw 
the dashed edge between the vertices. However, 3 people 
could be still counted, in case that 2 people are sitting in the 
kitchen without activating the motion sensor, and another 
person is moving in the living room. Whether there is an 
edge between the kitchen and the living room or not, the 
lower-bound of countable people remains 3.

In general, deploying the motion sensors to remove as many 
edges as possible is helpful, because it minimises sources of 
uncertainty. We have shown that leaving or removing the 
dashed edge in Fig. 16 is irrelevant for the lower-bound, in 
that specific scenario. However, if the dashed edge is left and 

the two motion sensors are activated simultaneously, the rea-
soner is unable to tell whether two different people are moving, 
or both sensors are detecting the same person. In conclusion, 
separation of vertices allows a better understanding of on-
going events and, in some cases, can increase the theoretical 
lower-bound for people counting.

8  Tractability of independent sets

This work relies on various independent set problems. Some 
of them admit simple solutions, others not. In this section, 
we provide a brief overview of the tractability of these prob-
lems, such as the independent set finding problem, the maxi-
mum independent set problem, and the maximal independent 
set problem.

First of all, for any graph G, in the worst case scenario 
a simple greedy algorithm can find a maximal independent 
set in O(v), where v is the number of vertices. With parallel 
algorithms, the performance increases considerably.

The problem of finding all the maximal independent sets 
of an undirected graph is equivalent to the problem of find-
ing all the cliques in its complementary graph. This prob-
lem is commonly known as the clique problem. According 
to Moon and Moser (1965), every graph contains at most 
3

n

3 maximal independent sets (and cliques). The Bron-
Kerbosch algorithm (Bron and Kerbosch 1973) is the most 
known for solving the clique problem, and it runs in O(3

n

3 ) . 
More efficient algorithms exist for graphs that contain less 
cliques than 3

n

3 , which is the case for many graphs. However, 
matching the upper bound number of 3

n

3 cliques per graph, 
the Bron-Kerbosch algorithm is efficient in the worst-case 
scenario.

Last, the maximum independent set problem is known to 
be in the NP-hard class of problems, as well as a difficult one 
to approximate. A number of algorithms and heuristics have 
been proposed, e.g. Tarjan and Trojanowski (1977) and Rob-
son (1986), and recently it has been proven to be generally 
solvable in O(1.1996n) time and polynomial space by Xiao 
and Nagamochi (2017). For limited degree graphs MIS-i, 
where i = �(G) , the time further decreases (e.g., down to 
O(1.0836n) for MIS-3 graphs). The maximal independent 
set problem can be seen as a subroutine for the maximum 
independent set problem, where all maximal independent 
sets are listed and the largest ones are marked as maximum 
and stored.

9  Conclusion

Smart homes composed by simple sensors allow for count-
ing a limited number of people, when relying upon snapshot 
observation of active sensors. However, the question about 

HallBedroom 1

Living Room

BathroomBedroom 2

Kitchen

Closet

Balcony

Pressure 2

Pressure 1

Fig. 15  Ängen map as a graph, edges between rooms removed (i.e., 
motion sensors carefully deployed), maximum independent set col-
oured

Living RoomKitchen
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Fig. 16  Restricted view on kitchen and living room. Adding or 
removing the dashed edge does not affect the number of people that 
can be counted
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how many people can be exactly counted was left unan-
swered. In this paper, we proposed a simple technique based 
on graph theory, which helps to map a smart home and dis-
cover the lower-bound of simultaneously countable people, 
under certain conditions.

First, we proved that every independent set of n vertices, 
of an undirected graph G, represents a minimum count of n 
people, and vice versa. Then, we proved that the minimum 
number of simultaneously countable people equals to the 
independence number �(G) . We defined this as certain count 
and we showed that the configuration that allows so, corre-
sponds to the maximum independent set(s) of such G graph.

As a consequence of our first proof, we showed that 
identifying all the maximal independent sets of a graph G 
provides a succinct and efficient way to depict every com-
bination of active sensors that ensure minimum count. We 
provided notable examples using our Ängen running case 
study, showing which information can be gathered from dif-
ferent configurations. Then, we showed that our approach 
can help to identify and optimise a suboptimal deployment 
of sensors, so that the assumptions can be tightened and the 
theoretical lower-bound can be improved.

Our work highlights challenges and directions for future 
works. For example, it is of great interest to assess the scal-
ability of our approach with growing numbers of vertices 
and different degrees of graph connectivity. Further inves-
tigations are also warranted for evaluating the applicability 
of our graph representation to different sensors, whether 
they are alternative binary sensors or devices that allow for 
multiple counting. Future research should analyse the intro-
duction of new graph entities for representing temporal and 
geographical information linked to binary sensors, such as in 
the case of memory-retaining break-beam sensors placed at 
entrance doors. New graph entities might be also necessary 
for representing hybrid approaches that include personal 
devices, such as WiFi smartphones and wearable Bluetooth 
devices, for performing people counting. This is a question 
for future research to explore.

In conclusion, the broad implication of our work is that, 
with the proper tools, it is possible to reason preemptively 
on the counting capabilities of a framework, to detect inher-
ent bounds, and lift some burden off the online reasoners.
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