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Abstract
The paper deals with a model of electricity spot prices. The proposed dynamics of electricity spot prices is driven by a 
mean reverting diffusion with jumps having hyperexponential distribution. The analytical formula for the forward contract’s 
price is derived in a crisp case. Inasmuch as the model parameters are considered to be evaluated imprecisely, their fuzzy 
counterparts are introduced. With usage of the fuzzy arithmetic, the analytical expression for the forward contract’s price is 
derived. Several numerical examples highlighting attributes of the fuzzy forward electricity prices are brought out.
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1  Introduction

The liberalization of electricity markets in Europe was a 
process which started in the early 1990s. Before, all mar-
ket activities were performed by state-owned monopolists. 
The establishment of the internal market in electricity in 
many countries was a consequence of an implementation 
of the Directive 96/92/EC by the European Union on 19th 
December 1996. The aim of the new legislation was to open 
the electricity market to free competition accompanied by 
the unbundling of the sector. Moreover, there was a need 
to develop electricity production, transportation and distri-
bution sectors, simultaneously enlarging security of supply 
and participation of renewable energy sources in the market. 
These aspects were usually involved with the necessity to 
create a power exchange in the country which was initiating 
the changes.

The time series of electricity spot prices (related to a day-
ahead market), in contradiction to, e.g., share market’s prices 
paths, is characterized by existence of weekly and yearly 
seasonality to which the price process immediately reverts 
after abrupt jumps of prices. These sudden spikes may be 

due to failure of a transmission network or a power plant, 
rapid temperature change, power losses, turning off power 
blocks, low levels of water or droughts, changing possibili-
ties of exploitation of renewable energy sources (wind and 
photovoltaic generations are variable), etc. – combined with 
inelasticity of supply and demand (since electricity cannot 
be effectively stored).

In 1973, Black and Scholes derived the European option 
pricing formula, using a geometric Brownian motion for 
description of dynamics of the underlying asset prices. 
However, the Black–Scholes approach suffers some draw-
backs and therefore many alternatives to it have been pro-
posed. Among them Levy processes have been proposed 
to describe log-prices of underlying assets, including the 
mixed-exponential jump-diffusion (MEM) of Cai and 
Kou (2011) and the models of Barndorff-Nielsen (1998); 
Madan and Seneta (1990). In Nowak (2011); Nowak 
and Romaniuk (2014) Levy jump-diffusions and various 
sources of uncertainty on the financial market were consid-
ered, using semimartingale characteristics, see e.g. Nowak 
(2002). Markov-modulated Levy processes were used by 
Deelstra and Simon (2017) for the valuation of exchange 
options and quanto options. Bao and Zhao (2019) valued 
vanilla, binary, and exchange options, whose underlying 
assets are driven by Markovian regime switching expo-
nential Levy processes and interest rates are modelled by 
Markovian regime switching Hull–White process. Feng 
et al. (2020) considered the European option pricing model 
with pure jumps, assuming that volatility and interest rate 
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are driven by the CIR processes. The Vasicek stochastic 
interest rate model and a general Levy process, describing 
the underlying asset, were studied by Tan et al. (2020), 
who obtained the options pricing formulas under the 
equivalent martingale measure. This approach includes 
the jump-diffusion model and the infinite activities Levy 
model as special cases.

Non-fuzzy financial models usually make use of classi-
cal statistical methods of estimation of parameters. How-
ever, markets dynamically fluctuate, in particular it refers to 
exceptionally volatile energy markets. Therefore, crisp finan-
cial models are complemented by their fuzzy counterparts 
and estimation methods are substituted by expert knowledge 
who can judge based on market fundamentals. This is why 
the motivation of our work is to create a model of dynamics 
of electricity spot prices and valuation of forward contracts 
in a fuzzy environment. Thus we propose a crisp stochastic 
model which is realistic and enables to compute the for-
ward price analytically. Additionally, we would like to use 
a method of pricing which takes into consideration hidden 
quantities, that is, the market prices of risk. Simultaneously, 
the existing crisp analytical formula will enable the valua-
tion of forward contracts also in the fuzzy case with applica-
tion of the fuzzy arithmetic.

In the paper, a mean-reverting jump-diffusion process 
of electrical energy spot prices is proposed. The distinctive 
properties of the energy prices’ time series are taken into 
consideration. Our model belongs to the class of one-factor 
continuous-time models which are characterized by good 
adaptivity to data, existence, not infrequently, of analytical 
solutions to numerous provided issues. In practice, it is often 
impossible to use statistical estimation of the market and 
model parameters and obtain them in the crisp form, since 
the market fluctuates (see, e.g. Wu 2004). The mentioned 
type of uncertainty is modelled in the paper by fuzzy num-
bers. Thus, we combine a stochastic and fuzzy approach in 
the proposed pricing method.

The summary of main contributions of the paper is pre-
sented below.

–	 We propose to choose the hyperexponential jump-size 
distribution, since this distribution can approximate dis-
tributions from a large class, including the long-tailed 
Pareto and Weibull, arbitrarily closely, see Feldmann and 
Whitt (1998).

–	 The complete derivation of the analytical formula for 
the forward price which allows for pricing of forward 
contracts in a crisp case. To derive this formula, we use 
the Esscher transformed equivalent probability measure, 
which requires application of advanced stochastic meth-
ods.

–	 Obtaining the analytical expression for the forward con-
tract’s price in the fuzzy environment.

–	 Featuring quantitative properties of the fuzzy forward 
contracts by providing numerical examples with real-life 
parameters values applying a proposed method of cali-
brating the market prices of risk to the observed prices 
on the market.

–	 Conceptualization of the decision-making algorithm 
applied for the energy forward contracts enriched by 
real-life case studies.

2 � State of art

2.1 � Electricity spot prices models

The basic, initial model of the spot prices evolution was 
introduced by Lucia and Schwartz (2002) in which the 
authors decomposed the signal to a seasonality and a mean-
reverting to zero diffusion process. However, they did not 
take the possibility of jumps in prices into account.

Cartea and Figueroa (2005) introduced a mean-reverting 
jump-diffusion model with normally distributed jumps. 
There is a possibility of deriving the analytical formula for 
the forward price. Unfortunately, the jump-size distribution 
very rarely is normal.

An interesting approach was presented in a threshold 
model of Geman and Roncoroni (2006) where the mean-
reverting diffusion was combined with a time-inhomogene-
ous Poisson process of a truncated exponential distribution 
of jumps. Moreover, to allow for downward, reverting to the 
mean jumps, the authors introduced a characteristic func-
tion indicating a sign of a jump which depends on a current 
value of a price. The proposed switching threshold is a con-
stant positive spread over a seasonality. Notwithstanding, 
the model has some drawbacks as well. Benth et al. (2011) 
criticizes the choice of the truncated exponential distribution 
because of the fact that jumps higher than some predefined 
threshold are disallowed. There is also noted that two con-
secutive jumps of the same sign are impossible to occur and 
after estimating the model’s parameters the magnitude of the 
speed of mean-reversion appears to be inadequate simultane-
ously for both the base and jump regimes.

Another interesting subclass of one-factor models are 
regime-switching models. They are very popular nowadays 
and also in the field of electrical energy prices modelling 
they are widely applicable. The reason is that one can define 
separate forms of dynamics for all substantially different 
ranges of prices values, usually there are three of them: two 
spike regimes when the prices achieve anomalous values 
after the upward and downward jumps, and a normal, base 
regime. There is also a transition matrix which links the 
regimes by indicating how much the transition from one 
state to another is probable. Estimation of regime-switch-
ing models’ parameters is not straightforward, inasmuch as 
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regimes are latent variables (not observable directly). For 
details, see Janczura and Weron (2010); de Jong and Huis-
man (2002); Lindstrom and Regland (2012).

An alternative to all above-mentioned approaches may 
be a model in which a diffusion generated by a Wiener pro-
cess is superseded by very frequent and small jumps (rep-
resenting typical, daily movements of prices) generated 
by a Levy process of infinite activity. The Levy process is 
also responsible for big jumps in prices (substitution for the 
Poisson process). The model was described by Benth and 
Saltyte-Benth (2004). It must be noted that estimation of the 
parameters of �–stable non-Gaussian or generalized hyper-
bolic distributions is cumbersome and requires sophisticated 
numerical methods, because there is no closed-form formu-
las for the density and distribution functions.

There is no possibility to obtain the analytical formula for 
the forward price in the latter three models. We consider it as 
a big disadvantage, inasmuch as this formula not only allows 
for a precise valuation of any forward or futures contract, 
which are the most popular energy derivatives, but also it 
is a basis for calibration of the model to observed prices on 
the market.

A significant feature that should be expressed by an 
electricity price dynamics model is the commonly noticed 
inverse leverage effect, see, e.g. Nomikos and Soldatos 
(2010). That is, with bigger prices, the supply stack curve 
becomes more sloped, causing relatively higher price 
changes and greater volatility, which in turn “widens” the 
right tail of the spot price log-returns distribution. As a 
result, the distribution is skewed to the right, and the right 
tail is heavier compared to the log-normal distribution.

A recent comparison of electricity spot price modelling 
for pricing of derivatives and risk management was per-
formed by Canakoglu and Adiyeke (2020).

2.2 � Pricing derivatives in a fuzzy environment

Recently, the literature concerning financial derivatives valu-
ation in a fuzzy environment has been developed.

A fuzzy approach, similar to the one proposed in this paper, 
to European options pricing for the traditional Black–Scholes 
model one can find in Wu (2004). Fuzzy estimation of the 
volatility in the Black–Scholes model was introduced by 
Chrysafis and Papadopoulos (2009). Thiagarajah et al. (2007) 
used adaptive fuzzy numbers in the Black–Scholes setting. 
The paper of Xian-Dong and Jian-Min (2014) was devoted to a 
fuzzy reload option pricing problem. Another method of Euro-
pean option pricing was presented by Yoshida (2003), where 
the rational expected option price depending on a fuzzy goal 
was applied. Zhang et al. (2015) applied the stochastic and 
fuzzy approach to the valuation of geometric Asian options. 
An improvement of the fuzzy version of the Black–Scholes 
option pricing formula using triangular approximations was 

proposed by de Andres-Sanchez (2018). The papers mentioned 
above concern the case, where a geometric Brownian motion 
drives the underlying asset.

The approach of Wu (2004) was further extended and 
developed by Nowak and Pawłowski (2017, 2019); Nowak 
and Romaniuk (2010, 2013b, 2014) to the case, where a Levy 
process with jumps describes the primary financial instrument. 
Applications of some jump-diffusion models were discussed 
by Liu and Li (2013); Xu et al. (2013); Zhang et al. (2012). A 
geometric Levy process was used by Wang and Hea (2016) 
for n-fold compound option pricing in the fuzzy framework. 
The same stochastic process was applied by Wu et al. (2017) 
to price the total return swap, which is a credit derivative. The 
problem of European options pricing in a fuzzy environment, 
based on an infinite pure jump Levy process, was discussed 
by Zhang and Watada (2018a, b).

Combining the stochastic and fuzzy methods, Biancardi 
and Villani (2017) valued the R&D compound option. Tolga 
(2017) used Type-2 fuzzy logic to real option valuation.

Worth mentioning is also a multiperiod binomial model for 
options pricing in a vague world, considered by Muzzioli and 
Torricelli (2004). In turn, Zmeskal (2010) proposed a hybrid 
fuzzy-stochastic binomial model for pricing the American real 
option. Finally, Anzilli et al. (2018) dealt with the valuation of 
the minimum guarantee option embedded in equity-linked life 
insurance, applying fuzzy binomial-tree model for the descrip-
tion of the asset price evolution.

Some new option pricing methods in fuzzy environment, 
using advanced techniques of fuzzy mathematics, have been 
recently introduced. In this context, it is worth noticing a meth-
odology for option pricing, applied in Li et al. (2018), where 
a nonlinear fuzzy-parameter PDE model is built for obtaining 
option prices and dominating optimal hedging strategies are 
developed. Qin et al. (2020) considered the fractional Brown-
ian motion to model the stock price in the binary option pric-
ing problem, taking into account the long memory property of 
financial markets. Furthermore, a new approach to valuation 
of portfolio and options in the Black–Scholes model in fuzzy 
environment, involving fuzzy geometric Brownian motion, 
fuzzy lognormal distribution, as well as fuzzy Ito integral, is 
discussed by Dash et al. (2021).

To the authors’ best knowledge, the problem of pricing for-
ward contracts on the electricity market, with an application 
of a mean-reverting jump-diffusion to the description of the 
underlying asset, has not been studied in a fuzzy environment 
yet.
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3 � Dynamics of electricity spot prices 
within the model

In this section dynamics of our model is presented. The 
idea of the hyperexponential distribution is drawn from 
Feldmann and Whitt (1998) (where the authors analyze 
network performance models). In contrast to modelling 
equities’ prices, applying the hyperexponential jump-size 
distribution to the mean-reverting jump-diffusion process 
of the dynamics of electricity prices is novel. This distri-
bution has a distinctive property that it can approximate 
distributions from a large class, including the long-tailed 
Pareto and Weibull, arbitrarily closely.

Let T = [0, T∗] , T∗ > 0 be a finite time horizon. Let (
�,F,

(
Ft

)
t∈T

,ℙ
)
 be a filtered probability space, satisfy-

ing the usual assumptions, on which all the below used 
processes and random variables are defined.

� represents the set of scenarios that can occur in the 
financial market, �-algebra F  of subsets of � contains all 
possible events, and probability measure ℙ ∶ F → [0, 1] 
assigns a probability belonging to [0, 1] to each event. 
Finally, filtration 

(
Ft

)
t∈T

 is an increasing family of �-alge-
bras included in F  . For each t ∈ T  , �-algebra Ft is inter-
preted as the information known at time t.

The spot price process St is composed of the following 
constituents:

where g(t) is a deterministic seasonality estimated from his-
torical data, � and � are positive constants, 

(
Wt

)
t∈T

 is a 
(F,ℙ) Wiener process, 

(
Jt
)
t∈T

 is a (F,ℙ) compound Poisson 
process of the form 

Jt =
∑Nt

i=1
Zi, t ∈ T,

 where Nt is a Pois-

son process with constant intensity �, {Zi}i∈ℕ are i.i.d. jump 
magnitudes of the hyperexponential distribution, i.e. with 
density

where 
pi ≥ 0,

∑n

i=1
pi = 1, 𝜉i > 0, z ≥ 0.

From Ito’s lemma, it follows that St is described by the 
stochastic differential equation

where �(t) = 1

�

(
dg(t)

dt
+

1

2
�2
)
+ g(t), Z0 = 0.(

Ft

)
t∈T

 is generated by W and J and augmented to 
encompass ℙ-null sets from the �-field F = FT∗.

(1)St = exp(g(t) + Xt),

(2)dXt = − �Xtdt + �dWt + dJt,

(3)f (z) =

n∑
i=1

pi�i exp(−�iz),

(4)dSt = �(�(t) − ln St)Stdt + �StdWt + St(e
ZNt − 1)dNt,

4 � Pricing forward contracts with crisp 
parameters

Let (It)t∈T  be an independent increments process with sem-
imartingale characteristics (� ,C, l(du, dz)) under ℙ . The risk-
neutral measure ℚ , equivalent to ℙ , is given by the Esscher 
transform, i.e.

where 𝜃(t) = (𝜃̂(t), 𝜃̄(t)) is a 2-dimensional vector of ℝ-val-
ued continuous functions on T ,

for some c ∈ ℝ+ , and

The equivalence of ℙ and ℚ on (�,F) means that impossible 
events defined by them are the same, i.e.

We will use the following proposition proved by Benth and 
Sgarra (2012) in a more general case.

Proposition 1  Process Wℚ

t
= Wt − ∫ t

0
𝜃̂(s)ds, t ∈ T  , is a ℚ

-Brownian motion and with respect to ℚ the independent 
increments process I has drift

and predictable compensator measure e𝜃̄(t)zl(dz, dt).

Definition 1  (Forward price) A forward price Fℚ(t, T) at 
time t is a conditional expected value, with respect to the 
risk-neutral measure ℚ, of a spot price in the future time T:

In this paper we assume that the risk-neutral measure 
is given by the Esscher transform (5) for processes W and 
I = J  , under assumptions that 𝜃̂ ≡ 𝜃̂0 ∈ ℝ , 𝜃̄ ≡ 𝜃̄0 ∈ ℝ , 

(5)
dℚ

dℙ

||||Ft

= Ẑ𝜃(t)Z̄𝜃(t),

Ẑ
𝜃(t) = exp

(
�

t

0

𝜃̂(s)dWs −
1

2 �
t

0

𝜃̂2(s)ds

)
,

Z̄
𝜃(t) = exp

(
�

t

0

𝜃̄(s)dIs − 𝜙
(
0, t, 𝜃̄(⋅)

))
,

sup
t∈T

|𝜃̄(t)| ≤ c and �
T
�

∞

1

{ecz − 1}l(dz, du) < ∞

𝜙
(
0, t, 𝜃̄(⋅)

)
= ∫

t

0

𝜃̄(u)d𝛾(u) +
1

2 ∫
t

0

𝜃̄2(u)dC(u)

+ ∫
t

0
∫
ℝ

{
e
𝜃̄(u)z − 1 − 𝜃̄(u)z𝟙|z|<1

}
l(dz, du).

ℙ(A) = 0 ⟺ ℚ(A) = 0, A ∈ F.

𝛾(t) + ∫
t

0 ∫|z|<1
z
{
e𝜃̄(u)z − 1

}
l(dz, du) + ∫

t

0

𝜃̄2(u)dC(u)

(6)Fℚ(t, T) = 𝔼
ℚ[ST |Ft].
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usually called the market price of diffusion risk and 
the market price of jump risk, respectively, and that 
max(𝜃̄0 + 1, |𝜃̄0|) < min1≤i≤n 𝜉i.

Theorem 1  The forward price in a crisp case within the 
model defined in “Dynamics of electricity spot prices within 
the model” by (1, 2 and 3) is described by the following 
analytical formula:

where mt,T = e−�(T−t) , 𝜉ℚ
i
= 𝜉i − 𝜃̄0 , pℚ

i
=

pi
�i

�ℚ
i

n∑
i=1

pi
�i

�ℚ
i

 , and 

�ℚ = �
n∑
i=1

pi
�i

�ℚ
i

.

Proof  Let us revise the Eq. (4). We use Ito’s lemma for the 
process Yt = ln(St) and change the physical measure ℙ to 
the equivalent risk-neutral measure ℚ , given by the Esscher 
transform. Applying Proposition 1, we obtain

where 𝜌ℚ(t) = 1

𝜇

dg(t)

dt
+ g(t) +

𝜎𝜃̂0

𝜇
 , Nℚ is a ℚ-Poisson process 

with the intensity 𝜆ℚ = 𝜆 ∫
ℝ
e𝜃̄0zf (z)dz = 𝜆

n∑
i=1

pi
𝜉i

𝜉ℚ
i

 , inde-

pendent from Wℚ , and 
{
Zℚ

i

}
i∈ℕ

 are independent identically 
distributed random variables with the hyperexponential dis-
tribution with respect to ℚ , having density

After multiplying both sides of (8) by mt,T and integrating 
from t to T,  the equation converts to

Because

(7)

Fℚ(t, T) = 𝔼
ℚ[ST �Ft] = eg(T)

�
St

eg(t)

�mt,T

⋅

exp

⎡⎢⎢⎢⎢⎣

𝜎
�
1 − mt,T

��
𝜎
�
1 + mt,T

�
+ 4𝜃̂0

�
+ 4𝜆ℚ

n∑
i=1

pℚ
i
ln

𝜉ℚ
i
−mt,T

𝜉ℚ
i
−1

4𝜇

⎤⎥⎥⎥⎥⎦
, t ∈ T,

(8)dYt = �(�ℚ(t) − Yt)dt + �dWℚ

t
+ Zℚ

Nℚ

t

dNℚ

t
,

(9)fℚ(z) =
e𝜃̄0zf (z)

∫
ℝ
e𝜃̄0zf (z)dz

=

n∑
i=1

pℚ
i
𝜉ℚ
i
exp(−𝜉ℚ

i
z), z ≥ 0.

(10)

T

∫
t

ms,TdYs =

T

∫
t

ms,Tdg(s) +

T

∫
t

𝜇ms,Tg(s)ds

−

T

∫
t

𝜇ms,TYsds

+

T

∫
t

𝜎𝜃̂0ms,Tds +

T

∫
t

𝜎ms,TdW
ℚ

s
+

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s
.

and

we may write

Applying the Dynkin lemma and a technique similar as in 
Nowak and Romaniuk (2013a), we obtain the following 
equality

Using (13, 14), the fact that ST = eYT  and denoting 
G(t) = eg(t),

(11)−

T

∫
t

�ms,TYsds = mt,TYt − YT +

T

∫
t

ms,TdYs

(12)

T

∫
t

�ms,Tg(s)ds = g(T) − mt,Tg(t) −

T

∫
t

ms,Tdg(s),

(13)

YT = g(T) + (Yt − g(t))mt,T +

T

∫
t

𝜎𝜃̂0 ms,Tds

+

T

∫
t

𝜎ms,TdW
ℚ

s

+

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s
.

(14)

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

�ms,TdW
ℚ

s

+

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞⎟⎟⎠

�����
Ft

⎤⎥⎥⎦

= 𝔼
ℚ

⎡⎢⎢⎣
exp

⎛⎜⎜⎝

T

∫
t

�ms,TdW
ℚ

s

⎞⎟⎟⎠

�����
Ft

⎤⎥⎥⎦

𝔼
ℚ

⎡⎢⎢⎣
exp

⎛⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤⎥⎥⎦
.
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inasmuch as

Following the considerations of Cartea and Figueroa (2005) 
(part A of Appendix), we may write

The latter exponent may be explicitly calculated. For this 
purpose, first of all we calculate

(15)

Fℚ(t, T) = 𝔼
ℚ[ST �Ft]

= G(T)

�
St

G(t)

�mt,T

exp

⎛⎜⎜⎝

T

∫
t

𝜎𝜃̂0 ms,Tds

⎞⎟⎟⎠
⋅

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

𝜎ms,TdW
ℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

= G(T)

�
St

G(t)

�mt,T

exp

⎛⎜⎜⎝

T

∫
t

𝜎ms,T

�
1

2
𝜎ms,T + 𝜃̂0

�
ds

⎞⎟⎟⎠
⋅

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

= G(T)

�
St

G(t)

�mt,T

exp

�
𝜎
�
1 − mt,T

�
4𝜇

�
𝜎
�
1 + mt,T

�
+ 4𝜃̂0

��
⋅

𝔼
ℚ

⎡⎢⎢⎣
exp

⎛⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞⎟⎟⎠

�����
Ft

⎤⎥⎥⎦
,

(16)

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

�ms,TdW
ℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

= exp

⎛⎜⎜⎝
1

2

T

∫
t

�2e−2�(T−s)ds

⎞⎟⎟⎠
.

(17)

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

= exp

⎛⎜⎜⎝

T

∫
t

�
𝔼
ℚ

�
e
ms,TZ

ℚ

Nℚs

�
− 1

�
�ℚds

⎞⎟⎟⎠
.

𝔼
ℚ

[
e
ms,TZ

ℚ

Nℚs

]
.

The straightforward calculation yields

Thus,

which finishes the proof.

Definition 2  (Forward contract) A forward contract with 
delivery of electricity during days T1 < … < TN ∈ T  and a 
delivery price K is a derivative instrument which enables to 
receive electricity on delivery days for K,  therefore finan-
cially (for a purpose of pricing) it pays the difference

Let Fℚ

t
 denote the value of this forward contract. Thanks 

to Theorem 1, pricing of forward contracts is made analyti-
cally. To this end, we calculate

and for each element of the sum we adapt the formula (7).

Definition 3  (Forward price of a forward contract) A for-
ward price Kt of a forward contract calculated at time t is 
such a value of a delivery price K introduced in Definition 2, 

that Fℚ

t
=

1

N

N∑
i=1

Fℚ(t, Ti) − Kt = 0.

5 �  Pricing forward contracts with fuzzy 
parameters

In this section, we derive the fuzzy version of the forward 
price. Some details concerning fuzzy numbers as well as 
fuzzy and interval arithmetic can be found in Nowak and 
Pawłowski (2017); Wu (2004). We introduce necessary 
notations.

(18)𝔼
ℚ

[
e
ms,TZ

ℚ

Nℚs

]
=

n∑
i=1

pℚ
i

�ℚ
i
e�(T−s)

�ℚ
i
e�(T−s) − 1

.

(19)

𝔼
ℚ

⎡
⎢⎢⎣
exp

⎛
⎜⎜⎝

T

∫
t

ms,TZ
ℚ

Nℚ
s

dNℚ

s

⎞
⎟⎟⎠

�����
Ft

⎤
⎥⎥⎦

= exp

� T

∫
t

n�
i=1

pℚ
i

�ℚ
i
e�(T−s)

�ℚ
i
e�(T−s) − 1

�ℚds − �ℚ(T − t)

�

= exp

�
�ℚ

�

n�
i=1

pℚ
i
ln

�ℚ
i
− mt,T

�ℚ
i
− 1

�
,

(20)1

N

N∑
i=1

STi − K.

(21)F
ℚ

t
= 𝔼

ℚ

[
1

N

N∑
i=1

STi
− K

|||Ft

]
=

1

N

N∑
i=1

F
ℚ(t, Ti) − K
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We use symbols ℝ , B(ℝ) , and 𝔽 (ℝ) to denote the set of 
real numbers, the �-field of Borel subsets of ℝ , and the set 
of fuzzy numbers, respectively.

Let ã ∈ 𝔽 (ℝ) . We denote by 𝜇ã ∶ ℝ → [0, 1] its member-
ship function. Its �-level sets, for arbitrary � ∈ [0, 1] , are 
denoted by ã𝛼 = [ãL

𝛼
, ãU

𝛼
] , where −∞ < ãL

𝛼
≤ ãU

𝛼
< ∞.

Let L,R ∶ [0, 1] → [0, 1] be continuous and strictly 
decreasing funct ions such that  L(0) = R(0) = 1 , 
L(1) = R(1) = 0 and let a1, a2, a3 ∈ ℝ satisfy the inequality: 
a1 < a2 < a3 . ã ∈ 𝔽 (ℝ) is called an L-R (left-right) fuzzy 
number if its membership function has the form:

In particular, ã is called a triangular fuzzy number (denoted 
by ã = (a1, a2, a3) ) if L(y) = R(y) = 1 − y.

Let (�,F) be a measurable space. A function 
X̃ ∶ 𝛺 ↦ 𝔽 (ℝ) is a fuzzy random variable (see, e.g. Puri 
and Ralescu 1986) if for each � ∈ [0, 1]

We denote by ⊕ , ⊖ , ⊗ and ⊘ the arithmetic operations 
between fuzzy numbers, defined with application of the 
Extension Principle (see, e.g. Zadeh 1975a, b, c) and cor-
responding standard arithmetic operations +,−,×,∕ between 
real numbers, respectively.

Moreover, we use symbols ⊕int , ⊖int , ⊗int and ⊘int to 
denote the arithmetic operations between closed intervals.

As it was presented by Nowak and Pawłowski (2017); 
Wu (2004), �-level sets of results of fuzzy arithmetic 
operations between fuzzy arguments correspond to inter-
val arithmetic operations between �-level sets of these 
arguments.

Since the parameters of the model considered in this 
paper are uncertain, we assume that they have the form of 
L-R fuzzy numbers. Their values can be obtained i.a. using 
expert knowledge (see, e.g. Buckley and Eslami 2007; Gil-
Lafuente 2005; Nowak and Pawłowski 2017). The symbol 
∼ , used above fuzzy parameters in the following part of this 
paper, indicates their fuzziness.

A similar approach to pricing in a fuzzy environment was 
the first time used by Wu (2004) in the case of European 
options.

The model parameters � , � , � , � =
{
�i
}n

i=1
 are replaced 

by their L-R fuzzy counterparts 𝜇̃, 𝜎̃, 𝜆̃ , 𝜉 =
{
𝜉i
}n

i=1
 . 

For each t ∈ T  , the value of the process S̃t has the form 
of a fuzzy random variable. We assume that 𝜇̃, 𝜎̃, 𝜆̃ , 
𝜉1 ⊖ 𝜃̄0 ⊖ 1, 𝜉2 ⊖ 𝜃̄0 ⊖ 1,… , 𝜉n ⊖ 𝜃̄0 ⊖ 1 , and S̃t , t ∈ T  , are 
positive, i.e. their membership functions are positive only for 
positive arguments.

𝜇ã(x) =

⎧
⎪⎨⎪⎩

L
�

a2−x

a2−a1

�
for a1 ≤ x ≤ a2

R
�

x−a2

a3−a2

�
for a2 ≤ x ≤ a3

0 otherwise

.

{
(𝜔, x) ∶ X̃(𝜔)(x) ≥ 𝛼

}
∈ F × B(ℝ).

Let � be the set of symbols � = {L,U} and � ∶ � → � 
the operator given by: L� = U , U� = L.

Theorem 2  The fuzzy forward price within the model defined 
in “Dynamics of electricity spot prices within the model” by 
(1, 2 and 3) is described by the following analytical formula:

where

Moreover, for arbitrary � ∈ [0, 1] and � ∈ �

where

(22)

F̃ℚ(t, T)

= exp
[
m̃t,T ⊗ ln S̃t ⊕ g(T)⊖ g(t)

⊗m̃t,T ⊕ 𝛤t,T ⊘ M̃
]
, t ∈ T,

(23)

m̃t,T = e−(T−t)⊗𝜇̃, M̃

= 4⊗ 𝜇̃, 𝜉ℚ
i
= 𝜉i ⊖ 𝜃̄0, 𝜆̃

ℚ

= 𝜆̃ ⊗

n⨁
i=1

pi ⊗ 𝜉i ⊘ 𝜉ℚ
i
,

(24)

p̃ℚ
i
=
(
pi ⊗ 𝜉i ⊘ 𝜉ℚ

i

)

⊘

(
n⨁
i=1

pi ⊗ 𝜉i ⊘ 𝜉ℚ
i

)
, i ∈ {1, 2, ..., n},

(25)
𝛤t,T = 𝛤1,t,T ⊕ 𝛤2,t,T , 𝛤1,t,T = 𝛾̃1,1,t,T

⊗ 𝛾̃1,2,t,T ,

(26)
𝛾̃1,1,t,T = 𝜎̃ ⊗

(
1⊖ m̃t,T

)
, 𝛾̃1,2,t,T = 𝜎̃

⊗
(
1⊕ m̃t,T

)
⊕ 4⊗ 𝜃̂0,

(27)

𝛤2,t,T = 4⊗ 𝜆̃ℚ ⊗ 𝛾̃2,t,T , 𝛾̃2,t,T

=

n⨁
i=1

𝛬̃�
i,t,T

,

(28)
𝛬̃�

i,t,T
= p̃ℚ

i
⊗ 𝛬̃i,t,T , 𝛬̃i,t,T

= ln
((
𝜉ℚ
i
⊖ m̃t,T

)
⊘

(
𝜉ℚ
i
⊖ 1

))
, i ∈ {1, 2,… , n}.

(29)

(
F̃ℚ(t, T)

)𝛯
𝛼
= exp

[(
m̃t,T

)𝛯
𝛼
ln(S̃t)

𝛯
𝛼

+g(T) −
(
g(t)⊗int

(
m̃t,T

)
𝛼

)𝛯 �

+
((
𝛤t,T

)
𝛼
⊘int M̃𝛼

)𝛯]
, t ∈ T,

(30)

(
m̃t,T

)𝛯
𝛼
= e−(T−t)𝜇̃

𝛯�

𝛼 , M̃𝛯
𝛼
= 4𝜇̃𝛯

𝛼
,
(
𝜉ℚ
i

)𝛯
𝛼

=
(
𝜉i
)𝛯
𝛼
− 𝜃̄0,
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Proof  Formula (7) can be written in the following form:

w h e r e  mt,T = e−�(T−t)   ,  𝜉ℚ
i
= 𝜉i − 𝜃̄0   , 

pℚ
i
=

pi
�i

�ℚ
i

n∑
i=1

pi
�i

�ℚ
i

, i ∈ {1, 2,… , n} , and �ℚ = �
n∑
i=1

pi
�i

�ℚ
i

 . Therefore 

(22–28) hold.
Functions exp (x) and ln (x) are increasing. Additionally 

they fulfill the assumptions of Proposition 2.3 from Wu 
(2004). Thus, for arbitrary fuzzy number ã

(31)
(
𝜆̃ℚ

)𝛯
𝛼
= 𝜆̃𝛯

𝛼

n∑
i=1

pi
(
𝜉i
)𝛯
𝛼
∕
(
𝜉ℚ
i

)𝛯 �

𝛼
,

(32)

�
p̃ℚ
i

�𝛯
𝛼

=
pi
�
𝜉i
�𝛯
𝛼
∕
�
𝜉ℚ
i

�𝛯 �

𝛼

n∑
i=1

pi
�
𝜉i
�𝛯 �

𝛼
∕
�
𝜉ℚ
i

�𝛯
𝛼

, i ∈ {1, 2, ..., n},

(33)

(
𝛤t,T

)𝛯
𝛼

=
(
𝛤1,t,T

)𝛯
𝛼
+
(
𝛤2,t,T

)𝛯
𝛼
,
(
𝛤1,t,T

)𝛯
𝛼

=
((
𝛾̃1,1,t,T

)
𝛼
⊗int

(
𝛾̃1,2,t,T

)
𝛼

)𝛯
,

(34)

(
𝛾̃1,1,t,T

)𝛯
𝛼

= 𝜎̃𝛯
𝛼

(
1 −

(
m̃t,T

)𝛯 �

𝛼

)
,
(
𝛾̃1,2,t,T

)𝛯
𝛼

= (𝜎̃)𝛯
𝛼

(
1 +

(
m̃t,T

)𝛯
𝛼

)
+ 4𝜃̂0,

(35)

(
𝛤2,t,T

)𝛯
𝛼

= 4
((
𝜆̃ℚ

)
𝛼
⊗int

(
𝛾̃2,t,T

)
𝛼

)𝛯
,
(
𝛾̃2,t,T

)𝛯
𝛼

=

n∑
i=1

(
𝛬̃�

i,t,T

)𝛯

𝛼
,

(36)

(
𝛬̃�

i,t,T

)𝛯

𝛼

=
((
p̃ℚ
i

)
𝛼
⊗int

(
𝛬̃i,t,T

)
𝛼

)𝛯
,
(
𝛬̃i,t,T

)𝛯
𝛼

= ln

(
𝜉ℚ
i

)𝛯
𝛼
−
(
m̃t,T

)𝛯 �

𝛼(
𝜉ℚ
i

)𝛯 �

𝛼
− 1

,

i ∈ {1, 2,… , n}.

Fℚ(t, T) = exp

�
mt,T ln St + g(T) − mt,Tg(t)

+

𝜎
�
1 − mt,T

��
𝜎
�
1 + mt,T

�
+ 4𝜃̂0

�
+ 4𝜆ℚ

n∑
i=1

pℚ
i
ln

𝜉ℚ
i
−mt,T

𝜉ℚ
i
−1

4𝜇

�
,

and for arbitrary positive fuzzy number b̃

Since 𝜇̃ and 𝜉i ⊖ 𝜃̄0 ⊖ 1 , i ∈ {1, 2,… , n} , are positive, 
1⊖ m̃t,T and 𝜉ℚ

i
⊖ m̃t,T , i ∈ {1, 2,… , n} , are also positive 

fuzzy numbers. By straightforward computations, applying 
(37) and (38), we obtain

and

Thus, formulas (29–32) hold. In a similar way, we obtain 
(33–35). Finally, equality (38) implies (36), which finishes 
the proof.

Fuzzy-valued functions and constants m̃t,T , 𝛤t,T , 𝛤1,t,T , 𝛤2,t,T , 
𝛾̃1,1,t,T , 𝛾̃1,2,t,T , M̃ , 𝜆̃ℚ , 𝜉ℚ

i
 , p̃ℚ

i
 , 𝛬̃′

i,t,T
 , 𝛬̃i,t,T for i ∈ {1, 2,… , n} , 

as well as their �-level sets, introduced in the above theorem, 

(37)
(
eã
)
𝛼
=
[
eã

L
𝛼 , eã

U
𝛼

]

(38)
(
ln b̃

)
𝛼
=
[
ln b̃L

𝛼
, ln b̃U

𝛼

]
.

�
m̃t,T

�𝛯
𝛼

= e−(T−t)𝜇̃
𝛯�

𝛼 , M̃𝛯
𝛼

= 4𝜇̃𝛯
𝛼
,
�
𝜉ℚ
i

�𝛯
𝛼
=
�
𝜉i
�𝛯
𝛼
− 𝜃̄0,�

p̃ℚ
i

�𝛯
𝛼

=

�
pi ⊗ 𝜉i ⊘ 𝜉ℚ

i

�𝛯
𝛼�

n⨁
i=1

pi ⊗ 𝜉i ⊘ 𝜉ℚ
i

�𝛯 �

𝛼

=
pi
�
𝜉i
�𝛯
𝛼
∕
�
𝜉ℚ
i

�𝛯 �

𝛼

n∑
i=1

pi
�
𝜉i
�𝛯 �

𝛼
∕
�
𝜉ℚ
i

�𝛯
𝛼

, i ∈ {1, 2,… , n},

�
𝜆̃ℚ

�𝛯
𝛼

= 𝜆̃𝛯
𝛼

�
n�
i=1

pi ⊗ 𝜉i ⊘ 𝜉ℚ
i

�𝛯

𝛼

= 𝜆̃𝛯
𝛼

n�
i=1

pi
�
𝜉i
�𝛯
𝛼
∕
�
𝜉ℚ
i

�𝛯 �

𝛼
,

(
F̃ℚ(t, T)

)𝛯
𝛼

= exp
[
m̃t,T ⊗ ln S̃t ⊕ g(T)⊖ g(t)⊗ m̃t,T ⊕ 𝛤t,T

⊘(4⊗ 𝜇̃)]𝛯
𝛼

= exp
[(
m̃t,T ⊗ ln S̃t

)𝛯
𝛼
+ g(T)

−
(
g(t)⊗ m̃t,T

)𝛯 �

𝛼
+
(
𝛤t,T ⊘ M̃

)𝛯
𝛼

]

= exp
[(
m̃t,T

)𝛯
𝛼
ln
(
S̃t
)𝛯
𝛼
+ g(T) − (g(t)

⊗int

(
m̃t,T

)
𝛼

)𝛯 �

+
((
𝛤t,T

)
𝛼
⊘int M̃𝛼

)𝛯]
.
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are auxiliary. They are used to simplify the fuzzy forward price 
formula.

A straightforward consequence of Theorem 2 is the follow-
ing corollary.

Corollary 1  The fuzzy forward price K̃t of a forward contract 
calculated at time t is given by the following formula:

Moreover, for arbitrary � ∈ [0, 1] and � ∈ �

6 � Decision making in fuzzy environment

We apply a modified version of a method of investment deci-
sion-making, which was used, i.e. by Nowak and Pawłowski 
(2017, 2019) and the first time by Piasecki (2014) in another 
context.

We assume that t ∈ [0, T] . Let K̂t be the market price of 
the considered forward price of a forward contract calculated 
at time t. We denote by V = {�,�, �} the set of investment 
decisions: � (to buy; when the contract is undervalued), � 
(to hold; when the contract is fairly valued), and � (to sell; 
when the contract is overvalued). The advice choice function 
� ∶ ℝ2

→ 2V has the form:

From the Zadeh Extension Principle, one can obtain the 
extended advice choice function 𝛬̃ ∶ [0, 1]ℝ ×ℝ → [0, 1]V . 
If the symbol l̃ denotes the membership function of 
𝛬̃
(
K̃t, K̂t

)
 , then

where for x̂ ∈ ℝ:

(39)K̃t =
1

N
⊗

N⨁
i=1

F̃ℚ(t, Ti).

(40)
(
K̃t

)𝛯
𝛼
=

1

N

N∑
i=1

(
F̃ℚ(t, Ti)

)𝛯
𝛼
.

�∈𝛬
(
Kt, K̂t

)
⇔ K̂t < Kt;

�∈𝛬
(
Kt, K̂t

)
⇔ K̂t = Kt;

�∈𝛬
(
Kt, K̂t

)
⇔ K̂t > Kt.

l̃(�) = min
(
𝛿K̃t

(
K̂t

)
,
(
1 − 𝛽K̃t

(
K̂t

)))
;

l̃(�) = min
(
𝛿K̃t

(
K̂t

)
, 𝛽K̃t

(
K̂t

))
;

l̃(�) = min
(
𝛽K̃t

(
K̂t

)
,
(
1 − 𝛿K̃t

(
K̂t

)))
,

To compute values of the membership function 𝜇K̃t
 , one can 

use the bisection search (see, e.g. Wu 2004). The obtained �
-level set 𝛬̃

(
K̃t, K̂t

)
𝛼
 contains recommendations for a finan-

cial analyst.

7 � Numerical examples

According to Theorem 1, one may compute the forward 
price in a closed-form. It allows to calibrate the model to 
the observed on the market prices of forward contracts by 
disambiguating values of the market price of diffusion and 
jump risks, i.e. uniquely determine the risk-neutral measure 
ℚ . Thanks to pinning down the risk neutral measure out of 
uncountable many possibilities, the model is suited to how 
the market players perceive the future levels of prices at the 
moment of calibration. Afterwards, one obtains the form 
of the whole forward curve and therefore valuation of non-
standardized, over-the-counter contracts, is feasible.

Traditional, non-fuzzy models require point estimation 
of their parameters. It is widely known that on exception-
ally volatile energy markets values of observed, implied or 
hidden parameters may rapidly change, they are themselves 
extremely volatile. Their estimators based on historical data 
are dependent on the range of data selected to the analysis. 
What is more, the market implied (e.g. from exchange price 
quotations of liquid forward contracts or options) parameters 
are correct only for some short period of time, inasmuch as 
energy markets evolve dynamically. Moreover, point estima-
tion by its nature may be encumbered with errors. Therefore, 
it is often more adequate to rely on some set of values rather 
than on a single estimator.

This is why our approach goes one step further. “Pricing 
forward contracts with fuzzy parameters” illustrates how 
to introduce fuzziness into the model. We assume that the 
parameters described therein are triangular fuzzy numbers 
which may be obtained from experts or market practitioners 
who indicate the smallest, greatest and most probable val-
ues of the parameters (which uniquely constitute triangular 
fuzzy numbers). Experts, not infrequently, are guided by 
statistical methods to set the modal values and ends of the 
fuzzy numbers.

Theorem 2 with Corollary 1 outline the forms of the 
fuzzy forward prices of forward contracts and their �-level 

𝛽K̃t
(x̂) = sup

{
𝜇K̃t

(x) ∶ x ≤ x̂
}

=

{
𝜇K̃t

(x̂) for
(
K̃t

)L
0
≤ x̂ ≤ (

K̃t

)L
1
;

1 otherwise

𝛿K̃t
(x̂) = sup

{
𝜇K̃t

(x) ∶ x ≥ x̂
}

=

{
𝜇K̃t

(x̂) for
(
K̃t

)U
1
≤ x̂ ≤ (

K̃t

)U
0
;

1 otherwise.
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sets. The following section exemplifies different properties 
of the fuzzy forward prices on real-life trading cases.

7.1 � Price’s ̨ ‑level sets, membership function, 
sensitivity analysis

Let us assume that the crisp parameters, modal values and 
ends of the triangular fuzzy numbers have been estimated by 
experts from some historical data (see Table 1).

For t = 0, gt = 4.6, p1 = 0.4, p2 = 0.6 the market price 
of diffusion risk 𝜃̂0 and the market price of jump risk 𝜃̄0 
have been calibrated to the set of observed on the mar-
ket liquid forward contracts with quoted prices 114, 116, 
112, 116.75 (on the exchange one can see only forward 
prices of the respective forward contracts, cf. Defini-
tion 3) and respective values of the seasonality param-
eter gT  equal to 4.75, 4.73, 4.74, 4.76, corresponding to 
the three monthly contracts with delivery of electricity 
during T ∈ [0,

1

12
], T ∈ [

1

12
,

2

12
], T ∈ [

2

12
,

3

12
] and one quar-

terly with T ∈ [
3

12
,

6

12
], by minimizing the mean square 

error calculated for the analytical crisp forward prices of 
forward contracts (cf. Theorem 1 and formula (39)) and 
for the observed on the market prices of liquid forward 
contracts. As a result, 𝜃̂0 = −0.95, 𝜃̄0 = −10.45.

Having calibrated the model, let us assume that we 
want to price the non-standardized forward contract with 
T ∈ [

1

48
,

1

24
]. The relationship between the �-level sets of 

the fuzzy price of the forward contract and the value of � is 
shown in Fig. 1. The crisp value of the forward contract is 
111.92 for gT = 4.72.

Figure 2 presents the membership function 𝜇K̃0
 of the 

fuzzy forward price of the forward contract with the afore-
mentioned parameters.

One may draw interesting conclusions from the sensitiv-
ity analysis of 0.9-level sets of the fuzzy forward contract’s 
price with respect to the fuzzy speed of mean reversion of 
the price, i.e. 𝜇̃. As shown in Fig. 3, the bigger the modal 
values of 𝜇̃ (the length of the support does not change), the 
narrower the supports of the 0.9-level sets of the fuzzy for-
ward contract’s price, whereas the level of its modal values 
does not change. Intuitively, with the increasing pace of 
mean reversion, the underlying asset’s price is less volatile 
(more ”centered” around its seasonality) which results in 
more stable valuation of the fuzzy forward contract’s price.

Another valuable illustration of the model properties is 
an analogous sensitivity analysis, but with respect to the 
intensity 𝜆̃ of the jump process, see Fig. 4. One may note that 
inasmuch as we allow positive jumps only, increasing the 
modal value of the lambda fuzzy parameter (with values of 

Table 1   Fuzzy parameters 
chosen for the fuzzy forward 
contracts’ price analysis

S̃ (95, 100, 105)
𝜇̃ (110, 115, 120)
𝜎̃ (1.9, 2.2, 2.5)
𝜆̃ (20, 22.5, 25)

𝜉1 (10, 10.5, 11)

𝜉2 (14, 14.5, 15)

1.0 0.9 0.8 0.7 0.6 0.5 0.4

108

110

112

114

116

Alpha

Price

Fig. 1   �-level sets’ ends (circles: right ends, triangles: left ends) of the forward contract’s price depending on the membership degree �
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other parameters unchanged)—making big jumps of the spot 
price occur more frequently – the fuzzy forward contract’s 
price increases as well.

7.2 � Forward curve in the fuzzy environment

Following the calibration of the model to the prices of 
liquid forward contracts quoted on the exchange presented 

109 110 111 112 113 114 115

0.5

0.6

0.7

0.8

0.9

1.0

Price

Membership degree

Fig. 2   The membership function of the fuzzy forward contract’s price

95 105 115 125 135

110.5

111.0

111.5

112.0

112.5

113.0

113.5

Modal values of mu fuzzy parameter

Price

Fig. 3   Sensitivity analysis of 0.9-level sets of the fuzzy forward contract’s price to changing triangular number of the parameter � (circles: right 
ends of the prices’ intervals, triangles: left ends of the prices’ intervals)
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in “Price’s α-level sets, membership function, sensitiv-
ity analysis” and assuming the same set of values of the 
fuzzy parameters (see Table 1) we price four consecu-
tive weekly and one two-week non-standardized forward 

contracts with respective values of the seasonality param-
eter gT : 4.73, 4.72, 4.77, 4.75 and 4.74 by using formulas 
(39) and (40). In Fig. 5 one can observe the beginning of 

7.5 12.5 17.5 22.5 27.5 32.5 37.5

110.5

111.0

111.5

112.0

112.5

113.0

113.5

Modal values of lambda fuzzy parameter

Price

Fig. 4   Sensitivity analysis of 0.9-level sets of the fuzzy forward contract’s price to changing triangular number of the parameter � (circles: right 
ends of the prices’ intervals, triangles: left ends of the prices’ intervals)

0 10 20 30 40

11
0

11
2

11
4

11
6

11
8

12
0

Time (days)

Forward price

Fig. 5   Fuzzy forward contracts’ prices (solid line: crisp valuation, dashed line: left and right ends of the fuzzy prices’ 0.9-level sets ends)
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the forward curve (as described above) obtained by crisp 
valuation enriched with ends of 0.9-level sets ends.

7.3 � Application of the method—increased jump 
intensity

Let us discuss the real-life application of the fuzzy pric-
ing on electricity market. Assume that we valuate the 
non-standardized forward contract described in “Price’s 
α-level sets, membership function, sensitivity analysis” 
which has a crisp price equal to 111.92 and that the mar-
ket participants start to anticipate a period of increased 
frequency of jumps (encapsulating the energy delivery 
period for T ∈ [

1

48
,

1

24
] ) in spot electricity prices being the 

result of high probability of a drought causing turning off 
power blocks cooled by water from rivers. Nevertheless, 
the modal values of the fuzzified model parameters have 
been statistically estimated (e.g., from historical data) and 
the market prices of risk have been calibrated to the last 
observed, quoted prices of liquid forward contracts, cf. 
“Price’s α-level sets, membership function, sensitivity 
analysis”. In such a situation, after consulting an expert, 
the right end of the fuzzy intensity parameter 𝜆̃ may be 
adequately shifted to reflect the maximum predicted num-
ber of spot price spikes within the period of delivery of 
energy (we can assume, e.g., ten times increased inten-
sity), simultaneously leaving the left end and the modal 
value of the fuzzy number unchanged (reflecting the base, 
i.e., without outages, scenario). Then, 𝜆̃ = (20, 22.5, 250) 
and the 0.85-level set of the fuzzy price of this forward 
contract is equal to [110.97, 113.8],  where the other fuzzy 
parameters are set as in Table 1. By contrast, for 𝜆̃ = (20, 
22.5, 25) the 0.85-level set is equal to [110.97, 112.88]. 
The value 113.8 indicates the reasonable forward price 
which may be observed on the market prior to delivery, if 
the extreme frequency of spikes in the spot prices scenario 
assumed by analysts comes true.

7.4 � Automatized investment decision‑making

Let us assume the same set of the fuzzy parameters as in 
Table 1 and consider the situation in which the market price 
of the forward contract with delivery period T ∈ [

3

12
,

4

12
] dif-

fers from the modal value of the fuzzy forward price of this 
contract equal to 115.26 for gT = 4.75 (which is usually the 
case because the fuzzy parameters are expert based while the 
market prices evolve continuously). An investor fixes � at 0.9 
level, so that he selects recommendations from the 0.9-level 
set 𝛬̃

(
K̃t, K̂t

)
0.9

 which depend on the actual market forward 
contract price K̂t – see Table 2 with three exemplary market 
price situations and resulting investment decisions.

8 � Conclusions

In the paper, the authors have introduced the new model for 
the electricity spot, taking into account all the specificity of 
the electrical energy prices. To this end, we have proposed 
the mean-reverting jump-diffusion process of the deseason-
alised logarithms of electricity prices with the hyperexpo-
nential jump-size distribution.

The analytical formulas for the forward contracts’ prices 
have been derived both in crisp and fuzzy cases. In the crisp 
case, the derivation required applying an advanced proba-
bilistic method based on Esscher transformation for change 
of probability measure. At this stage, identifying the form of 
the price process with respect to the risk-neutral probability 
measure plays a crucial role. The obtained analytical formula 
incorporates the market prices of diffusion and jump risks. 
In turn, in the fuzzy case, the derivation of the pricing for-
mulas involved the usage of elements of fuzzy sets theory.

The theoretical results have been followed by numeri-
cal illustrations of selected properties of the fuzzy prices. 
Triangular shapes of both the membership function and �
-level sets’ ends of the fuzzy forward prices (as a function 
of � ), calculated and presented for the sample configuration 
of the model’s parameters, are preserved (as compared to 
the triangular fuzzy model’s parameters), acknowledging the 
stability of the method, cf. “Price’s α-level sets, member-
ship function, sensitivity analysis”. Similarly, outcomes of 
the performed sensitivity analysis of the �-level sets of the 
fuzzy forward contract’s price with respect to the selected 
model’s parameters are concordant with the anticipated 
model’s behaviour.

“Forward curve in the fuzzy environment” has given an 
image of what the forward curve might look like in a fuzzy 
environment.

“Application of the method—increased jump intensity” 
has been provided to exemplify one of the possible real-life 
applications of the fuzzy pricing and the influence of incerti-
tude about some model’s parameter on the value of the fuzzy 
price of a forward contract.

The investment decision-making procedure for forward 
contracts based on the relation between their theoretical 

Table 2   Automatized decision-making for three market forward con-
tract prices’ scenarios and the modal value of the fuzzy forward price 
equal to 115.26

K̂t
l̃(�) l̃(�) l̃(�)

112.5 recommendations 1
B: yes

0
H: no

0
S: no

115 recommendations 0.091
B: no

0.909
H: yes

0
S: no

118.25 recommendations 0
B: no

0.048
H: no

0.952
S: yes
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fuzzy valuation and market quotes has been presented 
on real-life examples, cf. “Automatized investment 
decision-making”.

Possible future work directions include valuation of 
options on delivery of electricity and creation of a new 
multi-factor model of dynamics of deseasonalised loga-
rithms of electricity prices with stochastic volatility in the 
fuzzy environment.
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