
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2023) 14:1017–1026
https://doi.org/10.1007/s12652-021-03355-x

ORIGINAL RESEARCH

MulStepNET: stronger multi‑step graph convolutional networks
via multi‑power adjacency matrix combination

Xun Liu1 · Fangyuan Lei2,3 · Guoqing Xia1

Received: 3 September 2020 / Accepted: 22 June 2021 / Published online: 6 August 2021
© The Author(s) 2021

Abstract
Graph convolutional networks (GCNs) have become the de facto approaches and achieved state-of-the-art results for cir-
cumventing many real-world problems on graph-structured data. However, these networks are usually shallow due to the
over-smoothing of GCNs with many layers, which limits the expressive power of learning graph representations. The current
methods of solving the limitations have the bottlenecks of high complexity and many parameters. Although Simple Graph
Convolution (SGC) reduces the complexity and parameters, it fails to distinguish the feature information of neighboring
nodes at different distances. To tackle the limits, we propose MulStepNET, a stronger multi-step graph convolutional network
architecture, that can capture more global information, by simultaneously combining multi-step neighborhoods information.
When compared to existing methods such as GCN and MixHop, MulStepNET aggregates neighborhoods information at more
distant distances via multi-power adjacency matrix while fitting fewest parameters and being computationally more efficient.
Experiments on citation networks including Pubmed, Cora, and Citeseer demonstrate that the proposed MulStepNET model
improves over SGC by 2.8, 3.3, and 2.1% respectively while keeping similar stability, and achieves better performance in
terms of accuracy and stability compared to other baselines.

Keywords Graph convolutional networks · High complexity · Simple Graph Convolution · Multi-power adjacency matrix ·
Multi-step neighborhoods information · Multi-step graph convolutional network

1 Introduction

Graph convolutional networks (GCNs) (Zhang et al. 2018b;
Kipf and Welling 2017; Li et al. 2018; Yao et al. 2019) show
natural advantages for dealing with many real-world prob-
lems which can be modeled as graph networks (Bruna et al.
2014; Hamilton et al. 2017; Monti et al. 2017; Defferrard

et al. 2016). Each convolution in these GCNs is based on
one-step neighborhood aggregation scheme. GCNs directly
apply multiple graph convolution layers to obtain multi-step
neighborhoods information and learn graph representations.
Limited to the over-smoothing (Li et al. 2018) of GCNs with
more layers, GCNs are difficult to leverage the hierarchical
property of convolutional neural networks (CNNs) such as
AlexNet (Krizhevsky et al. 2012) and MACNN (Lai et al.
2020). Therefore, GCNs are usually shallow and generally
do not exceed four layers (Zhou et al. 2018). For instance,
there are only two layers in GCN (Kipf and Welling 2017).
This shallow mechanism limits the expressive power of
learning graph representations and label propagation (Sun
et al. 2020). To address the limitations, researchers propose
some approaches which are summarized in the following
two-fold.

1. To improve the expressive power, Li et al. (2019b) pro-
pose DeepGCNs with very deep networks using deep
CNNs concepts such as residual connections (He et al.
2016) and dense connections (Huang et al. 2017). Nev-

 * Fangyuan Lei
 leify@126.com

 Xun Liu
 liuxun.stf@gmail.com

 Guoqing Xia
 xgq@sise.com.cn

1 Department of Electronics, Software Engineering Institute
of Guangzhou, Guangzhou 510990, China

2 School of Electronic and Information, Guangdong
Polytechnic Normal University, Guangzhou 510665, China

3 Guangdong Provincial Key Laboratory of Intellectual
Property Big Data, Guangdong Polytechnic Normal
University, Guangzhou 510665, China

http://orcid.org/0000-0003-0368-7971
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-021-03355-x&domain=pdf

1018 X. Liu et al.

1 3

ertheless, deep networks with many parameters are
extremely hard to train on large graphs.

2. High-order graph convolution models (Abu-El-Haija
et al. 2019a, b; Luan et al. 2019) such as MixHop (Abu-
El-Haija et al. 2019b) directly capture the interaction
of neighboring nodes at different distances to achieve
performance improvement. As the number of order
increases, the parameters of these models will increase
and these models become more complex. This is hard to
train and may suffer from overfitting.

In order to reduce excess complexity and parameters, a
recent surge of interest has focused on Simple Graph Convo-
lution (SGC) (Wu et al. 2019). Wu et al. (2019) have shown
that by repeatedly removing the nonlinearities between graph
convolution layers of GCN and collapsing normalized adja-
cency matrices between consecutive layers, the complexity
of GCN is reduced. In addition, they significantly reduce
parameters through reparameterizing weight matrices into
a single weight matrix. Nevertheless, SGC has difficulty in
distinguishing the feature information of neighboring nodes
at various distances, which limits the expressive power.

To address the limits, we propose a novel architecture
of stronger multi-step graph convolutional network (Mul-
StepNET). Figure 1 shows the background and need for
designing our MulStepNET. As illustrated in Fig. 2, our
MulStepNET leverages multi-step neighborhoods informa-
tion by constructing multi-power adjacency matrix with
simple grouping and attention mechanism and applies the
attention mechanism to flexibly adjust the contributions of
neighboring nodes at various distances. Based on the multi-
power adjacency matrix, we design a stronger multi-step
graph convolution to aggregate more nodes features and
learn global graph structure. Further, we build an one-layer
network model with the fewest parameters to avoid over-
fitting and reduce complexity. Meanwhile, the model with
large k-steps (zero-step to k-step) graph convolution widens
the receptive field and improves the learning ability. Our
contributions are as follows:

• To enlarge the receptive field, we construct a multi-power
adjacency matrix with simple grouping and attention
mechanism by combining the adjacency matrices of
different powers. Based on the multi-power adjacency
matrix, we develop a new multi-step graph convolution
that can flexibly adjust the weights of neighboring nodes
at different distances. This may improve the learning
ability.

• To the best of our knowledge, it is the first work to pro-
pose an one-layer architecture with larger steps graph
convolution. Compared with prior methods, in terms of
complexity and parameters, our architecture performs as

well as SGC and outperforms other methods while cap-
turing more nodes and global information.

• We conduct extensive experiments on node classifica-
tion tasks. Experimental results show that the proposed
method compares favorably against state-of-the-art
approaches in terms of classification performance and
stability.

2 Preliminaries and related works

Graph convolutional networks are successfully applied to
non-Euclidean and Euclidean applications and are quickly
evolving (Wang and Ye 2018; Yao et al. 2019; Kampffmeyer
et al. 2019; Chen et al. 2018; Guo et al. 2019; Yu and Qin
2020). We mainly review the work most relevant to our
approach.

An undirected graph G with n vertices and e edges is
denoted as G = (�, �,A) , where � and � are respectively the
set of edges and vertices. The edge relationships of G can
be described by adjacency matrix A ∈ ℝ

n×n . We introduce
X ∈ ℝ

n×c0 to denote node feature matrix with c0 features per
node.

Fig. 1 Our MulStepNET background

1019MulStepNET: stronger multi‑step graph convolutional networks via multi‑power adjacency…

1 3

Similar to CNNs, the convolution of GCN (Kipf and Well-
ing 2017) is to learn the feature representation of nodes over
multiple graph convolution layers. At layer j, we denote the
adjacency matrix Aj and the node hidden representation Hj as
input, the output node representation Hj+1 can be written as:

where Ãj denotes a new adjacency matrix with self-loops,
with Ãj = Aj + Ij . Ij and D̃j are identity matrix and degree
matrix respectively. We describe H1 (j=1) as original input
feature matrix X and use gradient descent to train weight
matrix Wj . Stacking the layer twice, the two-layer GCNs can
be described as:

(1)Hj+1 = ReLU

(
D̃

−
1

2

j
ÃjD̃

−
1

2

j
HjWj

)
,

(2)

YGCN = softmax

(
D̃

−
1

2

j
ÃjD̃

−
1

2

j
ReLU

(
D̃

−
1

2

j
ÃjD̃

−
1

2

j
XW1

)
W2

)
,

where W1 and W2 are different weight matrices, softmax is a
normalization classifier.

Abu-El-Haija et al. (2019b) propose high-order graph
convolution (HGC) model to improve expressive power by
mixing multi-hop neighborhoods information. We normalize
the adjacency matrix Ãj into normalized adjacency matrix
Âj , with Âj = D̃

−
1

2

j
ÃjD̃

−
1

2

j
 . Then the model is as follow:

where Âk
j
 is the k power of Âj , and | denotes column concat-

enation. Lei et al. (2020) develop HGC model and reduce
the parameters of Abu-El-Haija et al. (2019b) via weight
sharing mechanism.

We write a K-layer GCN in general form as:

(3)Hj+1 = ReLU(Â1
j
HjW1|Â2

j
HjW2|⋯ |Âk

j
HjWj),

(4)Ŷ = softmax(ÂjReLU(⋯ÂjReLU(ÂjXW1)W2 ⋯)WK).

Fig. 2 Our MulStepNET architecture. This figure describes the archi-
tecture when k is 5. Our MulStepNET consists of an input layer, a
multi-step graph convolution layer, and an output layer. The multi-

step graph convolution includes three stages: multi-power adjacency
matrix, multi-step feature propagation, and multi-step linear transfor-
mation

1020 X. Liu et al.

1 3

According to the hypothesis of Wu et al. (2019), for the
K-layer GCN , we remove all ReLU functions and reparam-
eterize all weight matrices (W1,W2,…WK) into a single
weight matrix W via W = W1W2 ⋯WK . The K-layer GCN
becomes:

where ÂK
j

 denotes K power of Âj . The model is called as
Simple Graph Convolution (SGC) (Wu et al. 2019).
Although the model has fewer computations and parameters,
the model can not distinguish the features information of
neighboring nodes at different distances. This restricts the
ability of learning graph representations. There are many
other simple or linear models (Thekumparampil et al. 2018;
Cai and Wang 2018; Eliav and Edith 2018). By applying
these models to the tasks of Li et al. (2019a) and Al-Sharif
et al. (2020), these models are more powerful.

Recently, many graph attention models (Veličković et al.
2018; Thekumparampil et al. 2018; Zhang et al. 2018a) try
to assign suitable weights based on node features in the
graph and achieve better performance on graph learning
tasks. Nevertheless, these models with attention mechanism
bring the concerns of high complexity and nuisance param-
eters. There are many other researches (Zhou et al. 2018; Wu
et al. 2020) for comprehensive review.

3 The proposed method

We are committed to developing a method that can simulta-
neously capture neighboring nodes information at different
distances and global graph structure while fitting few param-
eters and being computationally efficient. In this section, we
propose a novel one-layer MulStepNET architecture. Fur-
ther, we introduce our multi-step graph convolution that can
simultaneously capture neighboring nodes information at
more distant distances and analyze the computational com-
plexity and parameters.

3.1 The overall architecture

In CNNs, we increase the expressivity of extracting features
via many and deeper convolutional layers, which enlarges
the scale of receptive field. However, GCN with multiple
layers (exceed 2 layers) can suffer from over-smoothing (Li
et al. 2018), which hurts classification performance on graph
learning tasks. To improve the performance, an effective way
is to use high-order graph convolutions with different weight
matrices to gather more neighborhoods information at vari-
ous distances (Abu-El-Haija et al. 2019b). As the number
of order increases, the parameters will significantly increase
and the model will lead to redundant computation. This is

(5)Ŷ = softmax(ÂK
j
XW),

hard to train and brings potential concerns of overfitting. For
SGC (Wu et al. 2019), although the simplified mechanism
speeds up model training and avoids the excess complex-
ity, SGC fails to adjust and distinguish the contributions
of neighboring nodes at different distances. This limits the
learning ability. Motivated by the above analyses, we pro-
pose our MulStepNET architecture (Fig. 2). A key innova-
tion of MulStepNET is a novel multi-step graph convolu-
tion layer. Instead of aggregating the information of one-step
neighboring nodes, our multi-step graph convolution com-
bines these neighborhoods information at different distances
and captures the high-order interaction between nodes.

We summarize the main differences of our MulStepNET
and the models most relevant to our approach as follows.
In SGC, the model applies the K power of the normalized
adjacency matrix Â to obtain the neighboring nodes that
are K-hops away. In our MulStepNET, we design a multi-
power adjacency matrix (the k powers of the Â , namely 0
power to k power of the Â , k > K , see Sect. 3.2) to obtain the
neighboring nodes that are k-hops away. In addition, we use
a new attention mechanism to distinguish the contributions
that may be important for classification. In MixHop, (1) the
model constructs high-order graph convolution using dif-
ferent weight matrices to capture the feature information of
neighboring nodes at different distances; (2) the model uses
column concatenation to combine these information; (3) the
model has a two-layer structure. In our MulStepNET, (1) we
propose the multi-step graph convolution based on single
weight matrix to capture the feature information of neigh-
boring nodes at more distant distances; (2) we consider these
information by the multi-power adjacency matrix, rather
than the column concatenation; (3) we construct an one-
layer structure with fewer computations and parameters; (4)
we can adjust the contributions via the attention mechanism.

3.2 Multi‑step graph convolution layer

Multi-step graph convolution has three stages: multi-power
adjacency matrix, multi-step feature propagation, and multi-
step linear transformation. We introduce each stage in detail
as follows.

Multi-power adjacency matrix We use adjacency matrix
A to describe the edge weights between nodes that are one-
step away in the graph. The adjacency matrix A fails to
denote the edge weights of k-step (k > 1) neighboring nodes.
The information propagation of graph is propagated among
edges in the graph. We introduce Ak (the k power of A) to
describe the k-step edge weights which indicate the rela-
tionship of k-step neighboring nodes in the graph. In order
to better capture more nodes and global graph information,
we combine different powers of A into a single multi-power
adjacency matrix Âok.

1021MulStepNET: stronger multi‑step graph convolutional networks via multi‑power adjacency…

1 3

where Âok denotes the multi-power adjacency
matrix. Â1 is normalized adjacency matrix, with
Â1= D̃

−
1

2ÃD̃
−

1

2 = D̃
−

1

2 (A + I)D̃
−

1

2 . Here I and D̃ denote iden-
tity matrix and the degree matrix of Ã , with D̃ii =

∑
j Ãij .

We provide a higher weight to nodes’s own features via
Â0 because the own features may be more important, with
Â0 = I . Furthermore, we utilize Â2, Â3,… , Âk to obtain two-
step and larger step neighbors information in the graph. In
order to consider more similarity of adjacent powers of Â
and distinguish the difference between other powers of Â , we
divide different powers of Â as multiple simple groups includ-
ing {Â0}, {Â1, Â2, Â3}, {Â2, Â3, Â4},… , {Âk−2, Âk−1, Âk} and
flexibly adjust the weights of these groups via a series of
attention multipliers �0, �13, �24,… , �(k−2)k ∈ R . By adjust-
ing the weights, we can adjust the contributions of neighbor-
ing nodes at different distances. Each group except Â0 lever-
ages and shares the information of same groups. This can be
regarded as an attention mechanism with simple grouping.
We combine all groups with these attention multipliers to
obtain much information and learn global graph topology.

Theorem 1 Multi-power adjacency matrix is an operator of
preserving graph topology.

P roo f L e t Â0 ∈ Rn×n (n n o d e s) , t h e n
 Â0 = I ∈ R

n×n, Â1, Â2,… , Âk ∈ R
n×n , and Â

ok
= 𝛽0Â

0 + 𝛽13(Â
1 + Â

2 + Â
3)

+𝛽24(Â
2 + Â

3 + Â
4) +⋯ + 𝛽(k−2)k(Â

k−2 + Â
k−1 + Â

k) ∈ R
n×n .

Equation (6) shows that multi-power adjacency matrix is ele-
ment-wise operation. Obviously, the spatial location of Âok
is the same as Â , thus preserving the topology of the graph.

Equation (6) and Theorem 1 show that our multi-power
adjacency matrix can capture more nodes and global graph
information while preserving the graph topology.

Multi-step feature propagation Given the node feature
matrix X, the feature propagation of graph convolution in GCN
is defined as follows:

Equation (7) shows that the feature propagation propagates
node information to one-step neighboring nodes as well as
the node itself via Â . However, the feature propagation fails
to obtain two-step and larger step neighboring nodes infor-
mation. To circumvent the limits, we design a novel multi-
step feature propagation scheme in Eq. (8).

(6)
Âok = 𝛽0Â

0 + 𝛽13(Â
1 + Â2 + Â3) + 𝛽24(Â

2 + Â3 + Â4)

+⋯ + 𝛽(k−2)k(Â
k−2 + Âk−1 + Âk),

(7)H1 = ÂX.

(8)Hok = ÂokX.

Instead of propagating one-step neighboring nodes infor-
mation, our multi-step feature propagation can capture the
information of k-steps nodes while keeping larger receptive
field.

Multi-step linear transformation After the multi-step
feature propagation, a multi-step linear transformation is
applied to the Hok by HokW .

where W denotes weight matrix which is shared among all
nodes.

Based on Eqs. (8) and (9), we conclude that our multi-
step graph convolution takes the following form:

Our algorithm is summarized in Algorithm 1. Existing con-
volutions generally only aggregate neighborhoods informa-
tion at up to four-steps distances, however our convolution
with large k-steps can simultaneously capture neighborhoods
information at more distant distances. Specifically, com-
pared with GCN’s convolution that can only capture one-
step neighboring nodes information, our multi-step graph
convolution can capture the high-order interaction informa-
tion between neighboring nodes. Compared with SGC’s con-
volution that can not distinguish the features information of
neighboring nodes at various distances, our multi-step graph
convolution can adjust the contributions of these features
information and obtain more nodes information and better
learn global graph topology.

3.3 Output layer

Similar to GCN, we predict the label of nodes using a soft-
max classifier. The output prediction YMulStepNET can be
expressed as:

We follow the loss function from Kipf and Welling (2017).

(9)Yok = HokW,

(10)Yok = ÂokXW.

(11)YMulStepNET = softmax(ReLU(Yok)).

1022 X. Liu et al.

1 3

3.4 Analysis of complexity and parameters

Since the calculation of Hok requires no weight, we calcu-
late Hok = ÂokX in a feature preprocessing step. That is, we
can regard Hok as a fixed feature extractor, then our calcula-
tion is very efficient. As described in Sect. 3.2, if Â ∈ ℝ

n×n ,
X ∈ ℝ

n×c0 , W ∈ ℝ
c0×c1 (c1 filters). Then Âok ∈ ℝ

n×n ,
Hok ∈ ℝ

n×c0 , Yok = HokW ∈ ℝ
n×c1 . In our model, c1 is the

number of classes. The proposed MulStepNET architec-
ture takes O(n × c0 × c1) computational time and O(c0 × c1)
parameters. The complexity and parameters are the same as
SGC. Obviously, our MulStepNET takes fewer computations
and parameters due to without hidden layer, when compared
to GCN. To the best of our knowledge, our MulStepNET and
SGC achieve the best performance in terms of computational
time and parameters.

4 Experiments

In this section, we perform experiments on citation network
datasets to evaluate the performance of our MulStepNET
in terms of prediction accuracy and stability. We compare
our MulStepNET against recent state-of-the-art approaches
including graph networks and high-order graph convolu-
tions in terms of classification accuracy, complexity, and
parameters on benchmark datasets. Further, we conduct
experiments using different k to investigate the relationship
between model width and prediction accuracy. In addition,
we prove that own node features are more important for
prediction. Lastly, we investigate the influence of attention
multipliers and show the significant trends of the proposed
method.

4.1 Datasets

To prove the expressive power of the proposed MulStepNET
to learn global graph topology, we evaluate on citation net-
work datasets chosen from benchmarks commonly used on
semi-supervised node classification tasks. The datasets are:
Pubmed, Cora, and Citeseer (Kipf and Welling 2017). Fol-
lowing Kipf and Welling (2017) and Yang et al. (2016), we
summarize the statistics of the datasets as shown in Table 1.

4.2 Baselines and experimental setting

In the performance comparison on semi-supervised node
classification tasks, we consider baselines based on graph
networks as well as recent high-order graph convolution
methods. These graph networks are: Diffusion Convolu-
tional Neural Networks (DCNN) (Atwood and Towsley

2016), Gated Graph Neural Networks (GGNN) (Li et al.
2015), Graph Convolutional Networks with Chebyshev
(ChebNet) (Defferrard et al. 2016), Message Passing Neu-
ral Networks (MPNN) (Gilmer et al. 2017), Graph Con-
volutional Network (GCN) (Kipf and Welling 2017), and
Graph Attention Networks (GAT) (Veličković et al. 2018).
These high-order graph convolution methods include
Adaptive Lanczos Network (AdaLNet) (Liao et al. 2019),
Learned MixHop (MixHop-learn) (Abu-El-Haija et al.
2019b), Lanczos Network (LNet) (Liao et al. 2019), and
Simple Graph Convolution (SGC) (Wu et al. 2019).

We run all experiments using Adam optimizer with the
learning rate. We now report the hyperparameters that are
optimized repeatedly. Instead of using dropout in GCN, we
remove dropout and set learning rate to 0.01 for Pubmed
and Citeseer. To improve stability and prediction accuracy,
the learning rate and dropout are set to 0.0003 and 0.95 on
Cora. Besides, we apply 0.005, 0.0005, 0.0008 L2 regu-
larization factors to avoid over-fitting on Pubmed, Cora,
and Citeseer. We train 290, 43,000, 2000 epochs on Pub-
med, Cora, Citeseer, respectively. We fine-tune the high-
est power (k power) of the adjacency matrix Â to achieve
better prediction performance on all datasets. We set k to
21, k to 8, k to 4 on Pubmed, Cora, and Citeseer, respec-
tively. In our MulStepNET, we set these attention multipli-
ers �0, �13, �24,… , �(k−2)k to suitable values, with �0 = 1.5 ,
�13 = 0.8 , �24 = 0.09 , �35 = 0.2 , �46 = 0.2 , �79 = 0.4 ,
�11⋅13 = 0.25 , �12⋅14 = 0.25 , �13⋅15 = 0.2 , �14⋅16 = 0.2 ,
�15⋅17 = 0.5 , other � = 0.3 on Pubmed, with �0 = 1.5 ,
�13 = 1.7 , �57 = 0.6 , �68 = 0.4 , other � = 0.3 on Cora, with
�0 = 0.8 , �13 = 0.925 , �24 = 0.5 on Citeseer. With the above
parameter settings, early stop is not adopted in all experi-
ments due to very stable experimental results.

4.3 Results analysis

Based on Eqs. (12) and (13), we obtain the average test
accuracy acc and standard deviation S of the proposed
models.

(12)acc =

∑m

i=1
acci

m
,

Table 1 Dataset statistics

Dataset Classes Nodes Features Edges Label rate

Pubmed 3 19,717 500 44,338 0.003
Cora 7 2708 1433 5429 0.052
Citeseer 6 3327 3703 4732 0.036

1023MulStepNET: stronger multi‑step graph convolutional networks via multi‑power adjacency…

1 3

where acc is the test accuracy of the ith run, and m is the
number of runs.

We compare our MulStepNET against graph networks
and high-order graph convolution methods on citation net-
works, and the results are summarized in Table 2. Based
on the results, we observe that our MulStepNET achieves
the best performance including classification accuracy and
stability among the state-of-the-art approaches (except
SGC) on all datasets. Our MulStepNET obtains the high-
est prediction accuracy of 81.1, 83.7, 73.4% and very low
standard deviation of 0.0, 0.1, 0.0% on Pubmed, Cora, and
Citeseer respectively. In terms of accuracy comparison on
all datasets, our MulStepNET improves over GCN by 2.7,
2.7, and 4.4%, improves over GAT by 2.7, 0.8, and 1.2%,
and improves over SGC by 2.8, 3.3, and 2.1% respectively.
Compared with SGC, our MulStepNET achieves competitive

(13)S =

�∑m

i=1
(acci − acc)2

m − 1
.

performance in terms of stability while significantly improv-
ing accuracy. Due to the smaller standard deviation in the
proposed model, our MulStepNET outperforms other base-
lines by a large margin in terms of stability. These results
demonstrate the effectiveness of MulStepNET for capturing
nodes information and global graph topology.

Similar to He and Sun (2015), we use theoretical time
complexity to describe the complexity, rather than the actual
running time, since the actual running time is sensitive to
hardware and implementations. Table 3 shows the results of
the proposed MulStepNET and competing methods in terms
of complexity and parameters (see Sect. 3.4 for analysis).
In terms of complexity and parameters, our MulStepNET
achieves as good performance as SGC, and consistently out-
performs other methods. These results show the superiority
for designing one-layer model.

To investigate the influence of model width and Â0 , we
conduct these experiments using different k for our Mul-
StepNET-a and MulStepNET-b on Pubmed, Cora, and Cit-
eseer datasets respectively. The results are summarized in
Fig. 3. We observe that our MulStepNET-a can improve

Table 2 Comparison with graph
networks and high-order graph
convolution methods on citation
networks (in percent)

Bold represents the best experimental results
To compare the stability, we report the average accuracy and standard deviation of GCN (see SGC), which
is denoted as GCN∗ . We list the results that are averaged over 10 runs

Method Pubmed Cora Citeseer

DCNN (Atwood and Towsley 2016) 76.8 ± 0.8 79.7 ± 0.8 69.4 ± 1.3

MPNN (Gilmer et al. 2017) 75.6 ± 1.0 78.0 ± 1.1 64.0 ± 1.9

GGNN (Li et al. 2015) 75.8 ± 0.9 77.6 ± 1.7 64.6 ± 1.3

ChebNet (Defferrard et al. 2016) 69.8 ± 1.1 78.0 ± 1.2 70.1 ± 0.8

GCN∗ (Kipf and Welling 2017) 79.0 ± 0.4 81.4 ± 0.4 70.9 ± 0.5

GCN (Kipf and Welling 2017) 79.0 81.5 70.3
GAT (Veličković et al. 2018) 79.0 ± 0.3 83.0 ± 0.7 72.5 ± 0.7

AdaLNet (Liao et al. 2019) 78.1 ± 0.4 80.4 ± 1.1 68.7 ± 1.0

LNet (Liao et al. 2019) 78.3 ± 0.3 79.5 ± 1.8 66.2 ± 1.9

MixHop-learn (Abu-El-Haija et al. 2019b) 80.8 ± 0.58 81.9 ± 0.40 71.4 ± 0.81

SGC (Wu et al. 2019) 78.9 ± 0.0 81.0 ± 0.0 71.9 ± 0.1

MulStepNET (ours) 81.1 ± 0.0 83.7 ± 0.1 73.4 ± 0.0

Table 3 Comparison of
computational complexity and
the number of parameters

Method Complexity Parameters

GCN (Kipf and Welling 2017) O(n × c0 × 16) O(c0 × 16)

MixHop-learn (Abu-El-Haija et al. 2019b) O(2 × n × c0 × 20) O(c0 × 60)

SGC (Wu et al. 2019) O(n × c0 × 3) (Pubmed) O(c0 × 3) (Pubmed)
O(n × c0 × 7) (Cora) O(c0 × 7) (Cora)
O(n × c0 × 6) (Citeseer) O(c0 × 6) (Citeseer)

MulStepNET (ours) O(n × c0 × 3) (Pubmed) O(c0 × 3) (Pubmed)
O(n × c0 × 7) (Cora) O(c0 × 7) (Cora)
O(n × c0 × 6) (Citeseer) O(c0 × 6) (Citeseer)

1024 X. Liu et al.

1 3

accuracy as model goes wider (increase k) until the width
(k) of 21, 5, and 4 on Pubmed, Cora, and Citeseer respec-
tively. Similarly, the width becomes 21, 8, and 4 for Mul-
StepNET-b on respective datasets. Since MulStepNET-a
and MulStepNET-b with wider model may mix the features
from different clusters, they hurt the performance. Compared

to MulStepNET-a, MulStepNET-b with Â0 significantly
improves performance in most cases. This proves that the
own features are more important for classification. Based on
the comparison results, we determine the best model width
and demonstrate the importance of own node features for
designing model.

We conduct experiments based on whether MulStep-
NET has Â0 . Table 4 lists the comparison results. We can
observe from the results that MulStepNET outperforms
MulStepNET without Â0 by margins of 1.1, 1.1 and 1.4%
on Pubmed, Cora, and Citeseer respectively, which further
demonstrates the contribution of own node features to per-
formance improvement.

To investigate the influence of attention multipliers, we
remove all attention multipliers from MulStepNET while
keeping other settings. Table 5 lists the comparison results
between MulStepNET with and without attention multipli-
ers. The results show that MulStepNET performs better.
This demonstrates the benefits of the attention multipliers.

Figure 4 shows the classification accuracy of Mul-
StepNET, MulStepNET without Â0 , and MulStepNET
without attention (�) on all three datasets, respectively.
It is obviously to see that MulStepNET outperforms Mul-
StepNET without Â0 and MulStepNET without attention
in terms of average accuracy and the overall trend of
MulStepNET is better than MulStepNET without Â0 and

Fig. 3 Influence of model width (the highest power of Â , namely k)
and own features (Â0) on node classification accuracy. MulStepNET-
a denotes MulStepNET without simple grouping, attention mecha-

nism, and Â0 , then Â0k = Â
1 + Â

2 +⋯ ,+Âk . MulStepNET-b denotes
MulStepNET without simple grouping and attention mechanism, then
Â0k = Â

0 + Â
1 + Â

2 +⋯ ,+Âk

Table 4 Comparison of MulStepNET with and without Â0

Bold represents the best experimental results
We list the results that are averaged over 10 runs

Method Pubmed Cora Citeseer

MulStepNET without Â0 80.0 ± 0.0 82.6 ± 0.0 72.0 ± 0.1

MulStepNET (ours) 81.1 ± 0.0 83.7 ± 0.1 73.4 ± 0.0

Table 5 Comparison of MulStepNET with and without attention
multipliers

Bold represents the best experimental results
� is the set of attention multipliers. In MulStepNET without attention
multipliers, Pubmed dataset is slightly sensitive to initializations. We
run the model 10 times and report the results for top 8 runs (sort by
the results)

Method Pubmed Cora Citeseer

MulStepNET without � 80.0 ± 0.1 83.0 ± 0.1 72.7 ± 0.1

MulStepNET (ours) 81.1 ± 0.0 83.7 ± 0.1 73.4 ± 0.0

Fig. 4 Results of MulStepNET, MulStepNET without Â0 , and MulStepNET without attention on citation network datasets

1025MulStepNET: stronger multi‑step graph convolutional networks via multi‑power adjacency…

1 3

MulStepNET without attention. On Citeseer, the accu-
racy of MulStepNET is 1.9% (average value) and 1.0%
(average value) higher than the classification result of
MulStepNET without Â0 and MulStepNET without atten-
tion, respectively. This further verifies the contribution
of own node features and the attention multipliers to per-
formance improvement.

5 Conclusion

In this paper, we propose a stronger multi-step graph con-
volutional network architecture, MulStepNET, on graph-
structured data. Notably, our MulStepNET can obtain more
nodes features information and enable adequate information
propagation via multi-power adjacency matrix. Further, by
precomputing the fixed feature extractor Hok , our computa-
tions are more efficient than GCN. Experiments on several
graph classification benchmarks show natural advantages
for capturing node features and entire graph structure infor-
mation. We observe that our MulStepNET with the few-
est parameters achieves better performance as compared to
baselines. In the future, we would apply the proposed model
to more application areas such as social networks.

Acknowledgements This work was partly supported by the Guang-
dong Provincial Key Laboratory of Intellectual Property and Big Data
(2018B030322016), Special Projects for Key Fields in Higher Edu-
cation of Guangdong, China (2020ZDZX3077), the National Natural
Science Foundation of China (U1701266), the Characteristic Innova-
tion Projects of Ordinary Universities in Guangdong Province, China
(2020KTSCX212, 2019KTSCX245), the Projects of South China Insti-
tute of Software Engineering of Guangzhou University (ky202012).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abu-El-Haija S, Kapoor A, Perozzi B, Lee J (2019a) N-GCN: multi-
scale graph convolution for semi-supervised node classification.
In: Uncertainty in artificial intelligence, pp 841–851

Abu-El-Haija S, Perozzi B, Kapoor A, Harutyunyan H, Alipourfard
N, Lerman K, Steeg G, Galstyan A (2019b) MixHop: higher-
order graph convolution architectures via sparsified neighbor-
hood mixing. In: International conference on machine learning,
pp 21–29

Al-Sharif Z, Al-Saleh M, Alawneh L, Jararweh Y, Gupta B (2020)
Live forensics of software attacks on cyber-physical systems.
Future Gener Comput Syst 108:1217–1229

Atwood J, Towsley D (2016) Diffusion-convolutional neural
networks. In: Neural information processing systems, pp
1993–2001

Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral networks
and locally connected networks on graphs. In: International con-
ference on learning representations, pp 1–14

Cai C, Wang Y (2018) A simple yet effective baseline for non-attrib-
ute graph classification. arXiv: 1811. 03508

Chen J, Ma T, Xiao C (2018) FastGCN: fast learning with graph con-
volutional networks via importance sampling. In: International
conference on learning representations, pp 1–15

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering.
In: Neural information processing systems, pp 3844–3852

Eliav B, Edith C (2018) Bootstrapped graph diffusions: exposing
the power of nonlinearity. ACM Measur Anal Comput Syst,
2(1):1–19

Gilmer J, Schoenholz S, Riley P, Vinyals O, Dahl G (2017) Neural
message passing for quantum chemistry. In: International con-
ference on learning representations, pp 1263–1272

Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based
spatial-temporal graph convolutional networks for traffic flow
forecasting. In: AAAI conference on artificial intelligence, pp
922–929

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. In: Neural information processing
systems, pp 1024–1034

He K, Sun J (2015) Convolutional neural networks at constrained
time cost. In: IEEE conference on computer vision and pattern
recognition. IEEE, pp 5353–5360

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: IEEE conference on computer vision and
pattern recognition. IEEE, pp 770–778

Huang G, Liu Z, Weinberger K (2017) Densely connected convolu-
tional networks. In: IEEE conference on computer vision and
pattern recognition. IEEE, pp 4700–4708

Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing E (2019)
Rethinking knowledge graph propagation for zero-shot learning.
In: IEEE conference on computer vision and pattern recogni-
tion. IEEE, pp 11487–11496

Kipf T, Welling M (2017) Semi-supervised classification with graph
convolutional networks. In: International conference on learning
representations, pp 1–14

Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification
with deep convolutional neural networks. In: Neural information
processing systems, pp 1097–1105

Lai Z, Chen R, Jia J, Qian Y (2020) Real-time micro-expression rec-
ognition based on ResNet and atrous convolutions. J Ambient
Intell Human Comput, pp 1–12

Lei F, Liu X, Dai Q, Ling B, Zhao H, Liu Y (2020) Hybrid low-order
and higher-order graph convolutional networks. Comput Intelli
Neurosci. https:// doi. org/ 10. 1155/ 2020/ 32838 90

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/1811.03508
https://doi.org/10.1155/2020/3283890

1026 X. Liu et al.

1 3

Li Y, Tarlow D, Brockschmidt M, Zemel R (2015) Gated graph
sequence neural networks. In: International conference on learn-
ing representations, pp 1–20

Li Q, Han Z, Wu X (2018) Deeper insights into graph convolutional
networks for semi-supervised learning. In: AAAI conference on
artificial intelligence, pp 3538–3545

Li D, Deng L, Gupta B, Wang H, Choi C (2019a) A novel CNN
based security guaranteed image watermarking generation sce-
nario for smart city applications. Inf Sci 479:432–447

Li G, Muller M, Thabet A, Ghanem B (2019b) DeepGCNs: can
GCNs go as deep as CNNs? In: IEEE/CVF international con-
ference on computer vision, pp 9267–9276

Liao R, Zhao Z, Urtasun R, Zemel R (2019) LanczosNet: multi-scale
deep graph convolutional networks. In: International conference
on learning representations, pp 1–18

Luan S, Zhao M, Chang X, Precup D (2019) Break the ceiling:
stronger multi-scale deep graph convolutional networks. In:
Neural information processing systems, pp 10943–10953

Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, Bronstein M
(2017) Geometric deep learning on graphs and manifolds using
mixture model CNNs. In: CVPR, pp 5115–5124

Sun K, Zhu Z, Lin Z (2020) Multi-stage self-supervised learning for
graph convolutional networks. In: AAAI conference on artificial
intelligence, pp 5892–5899

Thekumparampil K, Wang C, Oh S, Li L (2018) Attention-based
graph neural network for semisupervised learning. arXiv: 1803.
03735

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y
(2018) Graph attention networks. In: International conference
on learning representations, pp 1–12

Wang X, Ye Y (2018) Zero-shot recognition via semantic embed-
dings and knowledge graphs. In: IEEE conference on computer
vision and pattern recognition. IEEE, pp 6857–6866

Wu F, Zhang T, Souza J, Fifty C, Yu T, Weinberger K (2019) Sim-
plifying graph convolutional networks. In: International confer-
ence on learning representations, pp 6861–6871

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu P (2020) A comprehen-
sive survey on graph neural networks. IEEE Trans Neural Netw
Learn Syst 32(1):4–24

Yang Z, Cohen W, Salakhutdinov R (2016) Revisiting semi-super-
vised learning with graph embeddings. In: International confer-
ence on learning representations, pp 40–48

Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text
classification. In: AAAI conference on artificial intelligence,
pp 7370–7377

Yu W, Qin Z (2020) Graph convolutional network for recommenda-
tion with low-pass collaborative filters. In: International confer-
ence on learning representations, pp 1–13

Zhang J, Shi X, Xie J, Ma H, King I, Yeung D (2018a) GaAN: gated
attention networks for learning on large and spatiotemporal
graphs. In: Uncertainty in artificial intelligence, pp 339–349

Zhang M, Cui Z, Neumann M, Chen Y (2018b) An end-to-end deep
learning architecture for graph classification. In: AAAI confer-
ence on artificial intelligence, pp 4438–4445

Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2018)
Graph neural networks: a review of methods and applications. AI
Open 1:57–81

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/1803.03735
https://arxiv.org/1803.03735

	MulStepNET: stronger multi-step graph convolutional networks via multi-power adjacency matrix combination
	Abstract
	1 Introduction
	2 Preliminaries and related works
	3 The proposed method
	3.1 The overall architecture
	3.2 Multi-step graph convolution layer
	3.3 Output layer
	3.4 Analysis of complexity and parameters

	4 Experiments
	4.1 Datasets
	4.2 Baselines and experimental setting
	4.3 Results analysis

	5 Conclusion
	Acknowledgements
	References

