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Abstract
Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic compo-
nents. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces 
ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires precise-
ness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison 
with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The 
implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in dif-
ferent scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared 
to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, 
which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption 
by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a 
heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy 
presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. 
This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs 
to be collected and stored.
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1 Introduction

Approximately 29 years ago, Weiser introduced the concept 
of “ubiquitous computing”, which predicted a world where 
computer devices would be present in objects, environments, 
and embedded in the people themselves (Weiser 1991). 10 
years later, Satyanarayanan reinforced the concept that these 

devices would naturally interact with users without being 
noticed (Satyanarayanan 2001).

Ubiquitous computing presents context awareness as 
one of the most prominent aspect for dealing with informa-
tion (Barbosa 2015). Context characterizes any information 
related to people (e.g., individuals or groups) such as vital 
signs (e.g., heart rate or blood pressure) and information 
related to things, in particular, wearable devices and compu-
tational resources. Contexts have attributes, such as an iden-
tity (i.e., unique identification), status, date, and time. All 
these information help to determine the chronological order 
in which the events occurred and this chronological order 
composes the context histories (Rosa et al. 2015; D’Avila 
et al. 2020).

The current context may not provide the full amount of 
data needed to obtain relevant information from the user, 
so context histories can be used to obtain more information 
on the entity (Barbosa et al. 2018; Dupont et al. 2019). This 
type of information helps an application to adapt according 
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to the user. The adaptation depends on information from the 
context where the user is, in addition to the frequent moni-
toring of these contexts.

With the world’s population aging (United Nations 
Department of Economic and Social Affairs 2017), the 
search for better health services has increased. This is 
because when people get older, they are more susceptible to 
need medical care. Therefore, mobile solutions play a stra-
tegic role in collecting data to monitor the patient and also 
help reduce medical service costs. Computational resources 
can be used to automate repetitive tasks that otherwise need 
a healthcare professional to perform them, allowing these 
professionals to spend their time doing more important 
activities.

The development of health monitoring devices, the min-
iaturization of electronic devices, and the increasing avail-
ability of wireless networks have enabled the development 
of mobile health solutions. These solutions provide oppor-
tunities to improve the quality of health services for patients 
and healthcare professionals (Dias et al. 2020; Bavaresco 
et al. 2020). The mobility of wearable devices and their 
integration with smartphones help to monitor users’ infor-
mation. However, the energy consumption of these devices 
is a recurring problem that requires the users to constantly 
recharge them (Baig et al. 2019).

The interpretation of vital sign values usually requires 
a professional to evaluate any changes and decide the next 
action in the treatment of the monitored patient. Without 
the correct information about the patient’s vital sign values, 
however, the correct action may be delayed or may not occur 
at all, especially if the patient is not in a clinical or hospi-
tal environment. An adaptive collection through wearable 
devices could be an alternative to optimize the acquisition 
of this information.

Adaptation could optimize the collection of the physi-
ological and non-physiological information of the user, gen-
erating a history of the patient’s health data when the patient 
shows a change in their regular health situation. In this case, 
non-physiological information refers to data that can be col-
lected from users’ profiles, such as age and gender, and data 
from their routines, such as activity level and geographic 
location. Adaptation may optimize the battery life of devices 
that collect health information and generate a more consider-
able amount of data during times of greatest need.

Adaptive systems are usually interactive systems. The 
systems need to interact with the context where they are 
inserted and learns how to allocate resources appropriately 
(Weibelzahl et al. 2020). Decisions are made taking the 
context into account, such as network connection type, the 
health status of a patient, potential time, and cost of exe-
cuting the application or service. Adaptive systems using 
mobile devices allow the system to be more aware of the 

context through ubiquitous computing techniques (Nawrocki 
et al. 2020).

An ontology is used to describe requirements specifica-
tion documents and formally represent requirements knowl-
edge. An ontology representation can be an important step 
during the software design phase in order to represent all 
the instances and classes that systems may have (Komninos 
et al. 2016; Sun et al. 2020). This work proposes an ontology 
to describe the user, with the aim of representing the classes, 
subclasses, and instances of the user condition.

Systematic mapping helped to explore the related litera-
ture (Aranda et al. 2020), and the review highlighted vari-
ous considerations and opportunities regarding this subject. 
For example, vital signs collection systems tend to use the 
Internet of Things (IoT) resources through wearable devices, 
and most of the proposed works use indoor communication 
techniques. Another issue is the limitation of the battery 
autonomy of the devices that collect this data.

The development of ODIN occurred after identifying 
resources that were not present in the related works. ODIN 
is a model that can be used in any environment to optimize 
vital signs collection to ensure applications run for as long as 
possible. Therefore, this article’s main scientific contribution 
is an adaptive collection of vital signs contexts that allow for 
the optimized composition of context histories.

The remainder of this article is organized as follows. The 
Sect. 2 provides a review of the literature and related works. 
The Sects. 3 and 4 describe the proposed model and its eval-
uation, respectively. The Sect. 5 presents a discussion about 
the work, and the Sect. 6 presents the final considerations.

2  Related works

The selected papers are related to the collection of vital 
signs, ubiquitous computing, and adaptive collection and 
were obtained through a systematic mapping study (Aranda 
et al. 2020). The mapping process involved three stages: 
identification of research questions; elaboration of the search 
process; and definition of the criteria for filtering the results. 
Using snowball sampling, more articles were included in the 
full list of reviewed works (Cooper 2016), and the related 
works were updated to include papers published in the last 
year, such as the work of Casalino et al. (2020).

The literature review identified 5,870 articles published 
in the last 12 years up until July 2020, and the final selection 
resulted in 10 articles. The final selection criteria meant that 
only the articles that included a collection, communication, 
and analysis of health data were selected. The research ques-
tions used in the systematic mapping study were seven, and 
they encompass three general questions, two specific ques-
tions, and two statistical questions.
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The questions are as follows: (I) How are smart environ-
ments using physiological data for healthcare? (II)  What 
are the most common techniques and/or technologies for 
communication of collected physiological data in smart 
environments? (III) What are the most common techniques 
and/or technologies for the analysis of physiological data in 
smart environments? (IV) What are the most common types 
of vital signs collected? (V) Was the user profile considered 
in the analysis of physiological data?(VI) Where were the 
studies published? (VII) How many publications occurred 
per year?

The search process prioritized health and computer sci-
ence research databases. The systematic mapping study 
used seven databases (ACM Digital Library, IEEE Xplore, 
Science Direct, Willey Online Library, PubMed, JMIR, and 
Springer Link). These databases had previously been used 
in recent systematic review studies (Goncales et al. 2014; 
Vianna and Barbosa 2017; Dias et al. 2018; Dalmina et al. 
2019).

The studies were filtered to select the papers related to the 
subject and the research questions. Definition of exclusion 
and inclusion criteria allowed filtering the papers found in 
the research process. The inclusion criteria are: (IC 1)the 
study must have been published in a conference, workshop, 
or journal; (IC 2) the study should be related to the pro-
posed theme – smart environments, as well as analysis and 
the collection of physiological data; (IC 3) the study should 
be a complete paper;

The exclusion criteria are: (EC 1) studies published prior 
to 2008. (EC 2) studies not written in English. (EC 3)studies 
published as dissertations or theses. (EC 4) studies that did 
not include data collection or analysis for smart environ-
ments. (EC 5) studies that did not have a relationship with 
the research questions.

First, the papers found in the research process are 
removed through exclusion criteria EC 1, EC 2, and EC 
3. The next filter remove papers according to the title and 
keywords of the reviewed papers; finally, selected works 
were filtered according to the content of the abstract of the 
mapped papers. The next filter represents an approach called 
the three-pass method (Keshav 2016). Finally, the last filter 
consists of reading the full text, observing exclusion criteria 
EC 4 and EC 5.

The mapping verified the most common trends and tech-
nologies and most analyzed physiological data technique. 
Similar reviews have already focused on data collection 
rather than techniques for analyzing this information. This 
denotes an opportunity for further studies in the area of vital 
sign analysis.

Furberg et  al. (2017) introduced a model to monitor 
policemen on duty. The model identified possible stressful 
situations, allowing the commander of the mission to track 
the physiological data of their subordinates. Habib et al. 

(2017) developed work based on vital signs collection and 
prioritization of sensor data packets through an optimized 
strategy of data transmission. The evaluation consisted of a 
collection of employee signal measurements within a com-
pany. The constant collection of vital signs helped monitor 
employee stress levels to avoid accidents in the workplace.

Said et al. (2018) proposed an approach based on deep 
learning for the collection of vital signs and the compres-
sion of these data during transmission and decompression 
when the data reached the system server. This compression 
was made possible through an adaptive methodology and 
indicated a potential for reducing energy consumption and 
computational resources.

The framework proposed by Fernandes and Lucena 
(2017) allowed temperature and heart rate to be monitored 
via Bluetooth, and data analysis by a multi-agent architec-
ture sent alerts in case of a detected risk. The alerts were 
based on a previously parameterized limit. Swaroop et al. 
(2019) presented the design of a real-time health monitoring 
system that stores patients’ health parameters. The data can 
be made available to a medical practitioner as an alert and 
for monitoring a specific health condition. Yin et al. (2019) 
proposed a self-adjustable domain adaptation (SADA) strat-
egy to prevent unlabeled health data. The paper enlarged the 
database of ECG and radar data with actual records acquired 
from several testers. Utilizing unlabeled data, SADA com-
bined self-organizing maps with transfer learning to predict 
labels. Finally, SADA integrated the one-class classification 
with domain adaptation algorithms.

Pazienza et  al. (2020) investigated the most suitable 
machine learning (ML) technique for the prediction of clin-
ical risk classes of a continuously monitored patient in a 
particular condition where a limited number of vital param-
eters are available. Casalino et al. (2020) proposed a mobile 
health solution to self-measure the blood oxygen saturation 
through a smartphone camera. This work allow the users 
to monitor their blood oxygen saturation at home without 
the use of medical devices. Due to COVID-19 where peo-
ple must reduce social contact, this work contributes to the 
social distancing. Choi and Shin (2018) developed a person-
alized service for healthcare using IoT devices, and personal 
health records (PHR) to store user health data. This service 
can determine risks in real-time. Finally, Hassan et al. (2019) 
proposed a hybrid real-time monitoring framework for users 
with chronic diseases. They employed a hybrid algorithm to 
analyze heartbeat, blood pressure, and respiratory flow and 
detect risks in real-time.

Among the papers found through systematic mapping, 
ten works that collected and analyzed health data were com-
pared with the ODIN model (Furberg et al. 2017; Habib 
et al. 2017; Fernandes and Lucena 2017; Said et al. 2018; 
Choi and Shin 2018; Hassan et al. 2019; Swaroop et al. 
2019; Yin et al. 2019; Pazienza et al. 2020; Casalino et al. 
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2020). The following aspects allowed the analysis of the 
related works: consider and collect non-physiological data 
from the user context; optimize the vital sign collection to 
reduce the effort to store the data; and save computational 
resources of the involved systems in the collection and anal-
ysis of vital signs.

Three papers partially fulfill the first aspect (Said et al. 
2018; Choi and Shin 2018; Casalino et al. 2020). In these 
works, only contextual data were collected and these data 
were not correlated with physiological data. Therefore, 
ODIN’s scientific contribution consists of the adaptive col-
lection of vital sign contexts that allow for the optimized 
composition of context histories.

Vital sign analysis may support health-related decision 
making. In this sense, the vital signs collected by applica-
tions can be formatted as contexts (D’Avila et al. 2020), 
stored in chronological databases (Vianna and Barbosa 2019, 
2020), and used for context predictions (da Rosa et al. 2016; 
Filippetto et al. 2021). Based on these databases, researchers 
can design tests of analytical techniques to verify their real 
effectiveness in assisting health systems. The next section 
describes the main concepts related to the ODIN model, 
which approach the specification of the vital signs collec-
tion and organization of the rules proposed to fill the gaps.

3  ODIN model

The ODIN model aims to perform adaptive collections of 
vital signs to optimize the generation of context histories. 
This optimization occurs since the model obtains more 
information from the patient in situations of risk and less 
information when the patient has regular vital signs. For 
this, the central part of the model is the multi-agent system 
that comprises adaptive rules. ODIN can acquire heart rate, 
temperature and body pressure (manually inserted) data. 
These vital signs were chosen based on data collected on a 
triage process when a patient goes to a hospital (Kuriyama 
et al. 2017). Odin also collects data from the smartphone 

accelerometer of the user. The following sections detail 
model’s architecture, the multi-agent approach, besides the 
organization and elaboration of rules.

3.1  Model architecture

Figure 1 shows the architecture of the ODIN based on 
SAP’s Technical Architecture Modeling (TAM) standard 
(SAP 2007). ODIN’s components consist of four modules: 
Mobile Device Agents, Backend, Frontend and Database. 
The Mobile Device Agents module is related to interaction 
with vital signs collection devices, while Backend is the con-
troller of rules, notifications, and vital signs. This control-
ler allows access to context histories stored in a Database 
module. Frontend has the Views of rules, vital signs, and 
warnings that, are responsible for displaying the information 
to users. Finally, Database module stores the users’ con-
text histories and personal information, as well as the rules, 
which are represented through a flowchart and an ontology.

3.2  Multi‑agents system

By definition, agents perform computational tasks autono-
mously, making decisions based on rules or parameters 
(Long et al. 2019). Figure 2 illustrates the agents overview 
diagram, in which agents are described with their percep-
tions, actions, and messages. ODIN’s agents were modeled 
using the Prometheus methodology (Larioui 2020).

The four agents are: Physiological Collection, Context 
Collection, Notifier, and Adaptivity. Physiological Collec-
tion agent communicates with vital sign sensors, making 
the collected data available to other agents. Context Col-
lection agent is responsible for collecting information from 
the current context where the user is inserted, which can 
be related to the user’s activity or location. This agent per-
forms the collection through sensors such as accelerometers, 
gyroscopes, and GPS, which can be on the smartphone or 
on the wearable device. Notifier agent displays notifications 
to the user according to the adaptations being made by the 

Fig. 1  ODIN’s architecture 
with four modules and their 
relationship
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Adaptivity agent. The parameter setting of the vital signs 
collection is adapted for each user and can be defined by a 
health professional.

Adaptivity agent makes two types of adaptations. The 
first occurs by changing the collection time parameter and 
is called Wait-Time Adaption (WTA). If the vital signs val-
ues go outside of the pre-established regular thresholds, the 
agent changes the periodicity of the collection of the sensor 
to a higher frequency. If these values continue to move away 
from the regular values, the waiting time between collections 
is further reduced. In contrast, the closer the values are to 
regular levels, the longer the waiting time is between col-
lections. The collection reaches the maximum waiting time 

when the values are within the regular threshold. All these 
changes are made automatically by the Adaptivity agent.

The second type of adaptation consists of activating one 
or more secondary sensors that may be in a state of pause. 
This adaptation is called Context Adaptation (CA). If the 
user has a wearable device with more than one type of vital 
signs sensor, one or more of these sensors can be defined 
as Main Sensors (MS) and the remainder as Secondary 
Sensors (SS). This allows an SS to be triggered only when 
an MS is outside of the threshold of regular vital signs. The 
C A will automatically start or pause an S S according to 
the user’s physiological context. If the connection with the 
server is not available, the data is stored in a local cache. 
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Fig. 2  Overview diagram of ODIN’s multi-agent distribution
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Once the connection is reestablished, the agent sends the 
previously cached data to the server.

3.3  Adaptivity rules

Figure 3 illustrates the rules represented using a flowchart 
based on event, condition, and action. The event is based 
on the collection of vital signs, and the condition is then 
checked through inference in rules. This inference occurs 
in three stages.

The first stage verifies the user’s condition, i.e., at rest or 
in movement, whereas the second verifies the user’s profile 
by identifying the person’s age (e.g., adult, child, or elder) 
and gender (Spångfors et al. 2019). Based on this informa-
tion, the third stage selects the correct pattern of the user’s 
physiological conditions.

Once the user’s physiological condition has been deter-
mined, the condition can be classified as regular or alert, 
with the latter referring to changes in vital signs outside the 
normal threshold. Figure 4 shows the physiological condi-
tions of a user represented through an ontology with classes, 
sub-classes, and instances. The ontology demonstrates how 
each user’s profile can use a different set of rules to deter-
mine their risk status. Each profile analyzed in the rule 
stream detects the appropriate risk for its current context.

The User class represents an individual and has two sub-
classes: Male and Female. These subclasses are divided 
into three more subclasses according to the user’s profile. 
Male is divided into MaleChild, MaleAdult, and MaleElder, 
while Female is divided into FemaleChild, FemaleAdult, and 
FemaleElder subclasses. For the MaleAdult subclasses, for 
instance, MABodyTemperature, the initial “MA” contextu-
alizes the Male Adult inheritance, whereas “ME” refers to 
Male Elder and “MC” refers to Male Child. The same is for 
the Female subclasses, as FA means Female Adult, FE is 
Female Elder, and FC refers to Female Child. This organiza-
tion of hierarchical classes is because each user has different 
physiological values according to the profile, characterized 

by gender and age (Voss et al. 2015). For example, the tachy-
cardia of an elder person has different threshold than a child 
or an adult.

The aforementioned classes have subclasses that contem-
plate a user’s physiological conditions. The status types for 
each condition are added as instances. Hence, according to 
the user’s profile, each BodyTemperature subclass represents 
a physiological condition and this subclass has the follow-
ing instances: Fever (high body temperature), Hypothermia 
(low body temperature), and RegularBodyTemperature. The 
BloodPressure subclass presents the instances of Hyperten-
sion (high blood pressure), Hypotension (low blood pres-
sure), and RegularBloodPressure. Finally, the HeartRate 
subclass has Tachycardia (high heart rate), Bradycardia 
(low heart rate), and RegularHeartRate as instances. The 
standardization of the values inside these instances repre-
senting values of vital signs follows the definitions proposed 
by the NHS (National Early Warning Score Development 
and Implementation Group in the NHS 2012).

The mapping of physiological conditions in the form 
of rules allows the user’s health condition to be inferred. 
Equation 1 describes the level of the user’s condition, which 
calculates the difference in the value of the measured vital 
signs to the normal threshold of that type of vital sign. These 
thresholds may vary according to the user’s profile data, e.g. 
their age and gender (Voss et al. 2015).

The obtained value is a real number from 0 to 1, where 0 
corresponds to a value exactly equal to the threshold, and 1 
is a critical value. For the calculation and inference of the 
rules, more information may be relevant, such as the user’s 
state of activity or their degree of sedentarism. Studies have 
warned the importance of exercise to good mental health 
(Morres et al. 2018; Johnson et al. 2019), which means that 
the information about the user’s lifestyle becomes a piece of 
relevant contextual information.

(1)

adaptiveVitalSign =
collectedVitalSign − vitalSignThreshold

vitalSignThreshold

Fig. 4  Ontology of physiologic condition
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This information is quite subjective and requires precise-
ness. Hence, one approach would be to express a numerical 
value for these conditions correlating with vital sign val-
ues. Therefore, instead of using a Boolean set of rules cor-
responding to only two outputs, true or false, whether the 
vital signal value is a real value between 0 or 1, this would 
result in a number with a more accurate amount of risk and 
alertness.

In order to use this logic to determine a user’s activity level, 
the Adaptivity agent calculates the difference in milliseconds 
from one incidence of movement to another. This incidence 
can be obtained through an accelerometer present in wearable 
devices or smartphones. For example, a user on a moderate 
walk will have a high millisecond value, while a user who is 
running will have a low number due to the greater intensity 
of the activity.

An example of an activity incidence could be the time 
difference in milliseconds of two steps taken by a user. The 
estimate of how many incidences are made per minute cor-
responds to the ratio of 60,000 (1 minute in milliseconds) by 
the time difference between the steps. The number of steps 
per minute defines the intensity of the activity (Gil-Rey 
et al. 2019). For this, a threshold was used where 0 refers to 
a stopped user and 1 refers to users at maximum intensity. 
Equation 2 represents this calculation.

These two pieces of information enable the detection of false 
positives. A user with a heart rate above 100 can be con-
sidered tachycardic. If the individual is in movement, the 
intensity of the activity is considered, through a weighted 
average calculation between the values. This prevents the 
inference of the rule generating an alert or making an adjust-
ment when vital sign values are normal. The verification of 
these rules is replicated for each vital sign measured by the 
user at a given time.

The risk of stress can be retrieved by the average of adap-
tiveActivity and adaptiveVitalSign values. Planned adaptations 
are based on the risk of stress value.

In the case of this work, each output is a different adapta-
tion. The higher the stress level, the more secondary sensors 
are activated, enabling more information collection. The val-
ues from the table vary from 0 to 1, or 0% to 100%. This value 
is obtained with the average value of the results of equations 1 
and 2. The more close to the 1 (or 100%) farther from thresh-
old the vital sign is. Table 1 presents the proposed adaptations.

Specialized parameters could provide better solutions to 
specific problems according to the user’s needs. These param-
eters can be inserted as rules, allowing a gain in the analy-
sis and adaptation of the collection of vital signs data. In the 
following section, relevant aspects of ODIN’s evaluation are 

(2)adaptiveActivity =
60000∕stepsDifference

activityThreshold

presented, in particular, the implementation of the prototypes 
and the obtained results.

4  Evaluations and results

This work considers three evaluations. The first comprises 
three scenarios approaching simulated user cases with vital 
signs data. The purpose of this assessment was to monitor a 
user in their daily life, besides collecting the data of a user 
who practices sports, and demonstrate how adaptation in 
data collection can improve the security of operators of an 
industry. The second evaluation used vital signs data from 
a real physiological database that was collected from a user 
in real-life. The third evaluation presents two more experi-
ments, one using a prototype of vital signs collection and 
another using a cardiac monitoring chest belt available on 
the market. In both cases, a control application without the 
request adaptation rules was used to compare the perfor-
mance of the adaptivity approach proposed by the ODIN 
model. The following sections detail the aforementioned 
types of evaluation and show how this work fills the gaps 
in the literature.

4.1  Simulations

Scenarios can be used for the evaluation of ubiquitous appli-
cations and context-aware systems (Wagner et al. 2014; Bar-
bosa et al. 2018; Carpentieri et al. 2020). Using this strategy, 
ODIN’s evaluation involved an app called the ODIN app, 
which collected and adapted the data.

For the development of adaptive and control apps, the 
chosen programming languages were JAVA (Android) and 
C# (Xamarin). This app requires a server to access and 
store the history of vital sign contexts through an SQL 
database. The system uses a relational database to work 
with the ODIN app properly. The user’s condition is veri-
fied on the monitoring screen, and if the main sensor is 
outside the determined standards, the adaptivity warning 

Table 1  Collected data accordingly with the decision table

Adaptive value Collected data

0–20% Heart rate variability (HRV)
21–40% Heart rate (HR) and HRV
41–60% HR, HRV and indoor/outdoor location
61–80% HR, HRV and indoor/outdoor location 

and arterial pressure (manually 
inserted)

80–100% HR, HRV and indoor/outdoor loca-
tion, arterial pressure (manually 
inserted)

and alert sending
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is turned on, alerting the user and starting the collec-
tion of data by the secondary sensors. Figures 5 and 6 
illustrate the monitoring screen, which displays the app 
with and without the adaptations triggered. Figure 5 dis-
plays a regular collection according to the user stress level 
(17.7%), while Fig. 6 shows a higher stress level (44.2%) 
that triggers the other adaptations (WTA and CA).

The ODIN app allows the alteration of the collection 
parameters (waiting time, and minimum and maximum 
values of vital signs) by the user or by a health specialist. 
Each collection of vital signs consumed 0.1% of the bat-
tery. The waiting time was 30 seconds for a normal vital 
sign value and one second for a condition outside the 
normal vital sign threshold (alertness). These were the 
parameters in the three simulations; however, as stated 
above, these values can be changed by the user or a health 
professional.

The first scenario simulates a user who just wants to 
monitor his vital signs data. For that, the user utilized 
the ODIN app. Scenarios 1 and 2 start the simulation 
with values of 80 beats per minute for heart rate (HR) 
and 750ms for heart rate variability (HRV). Vital sign 
values, in addition to activity detection, were generated 

once a second. This generation occurred through the cur-
rent value plus a random number that could be -10, 0, or 
10 for HRV. Therefore, the change in vital signs occurred 
linearly, avoiding sudden changes in the collection.

4.1.1  Scenario 1

Scenario 1 comprised a user simulation that sought to map 
the user’s stress levels only and aimed to monitor a user’s 
daily life without applying a specific context. The results 
showed that the adaptation permitted a long battery life 
and the collection of less data. The description of the sce-
nario and the results are as follows.

“Steve, 66, would like to monitor his stress level dur-
ing his daily life. Steve uses a wearable device with a HR 
monitor that works with the ODIN app on his smartphone. 
During the day, Steve faces stressful situations that are 
mapped by the ODIN app. When analyzing these situations 
at the end of the day, Steve checks the context within which 
the stressful situations occurred. This allows him to adjust 
these contexts to better manage his stress day by day.”

The user can be notified when a variations of his stress 
level changes, with the application of this scenario. 
Through the notifications, the physician and the user can 

Fig. 5  App screen with the adaptivity off Fig. 6  App screen with the adapativity on
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follow the health situation in real-time, enabling better 
decision-making when choosing a treatment.

The simulation collected 1,000 requests in this scenario. 
As a result, for the control app without adaptivity, the 
battery lasted 2 hours, 14 minutes, and 39 seconds. With 
adaptivity, the battery lasted 4 hours, 48 minutes, and 38 
seconds. This represents an increase of 114%.

4.1.2  Scenario 2

The second scenario involved a user who took part in physi-
cal activities and wanted to monitor her performance during 
these activities.

“Linda, 27, usually practices running almost every day. 
Unfortunately, Linda has already suffered injuries due to 
the intense practice of her sport. The user has a wearable 
cardiac monitoring device, which also monitors her HRV. 
Stressful situations can cause injury, and Linda uses her 
wearable device in conjunction with the ODIN app. When 
Linda starts running, her stress levels gradually increase. 
When her stress levels get too high, Linda stops running to 
protect herself and prevent an injury. In addition, the adap-
tation of the collection of vital signs increases the battery 
life of the wearable device, reducing the need to charge it.”

In this scenario, the user can verify when she is in a pos-
sibly stressful situation due to physical exercise. In addition 
to being alerted about a possible risky situation, the user 
will also be able to monitor their progress over time once 
the collected data is stored.

The second scenario also involved 1,000 requests. As a 
result, due to the physical activity of the user, the battery 
life was shorter than in scenario 1. Without adaptivity, the 
battery lasted 56 minutes and 38 seconds. With adaptivity, 
the battery lasted 2 hours, 29 minutes, and 56 seconds. This 
represents an increase of 164%.

4.1.3  Scenario 3

Scenario 3 involved monitoring the vital signs that can indi-
cate changes in employee stress levels in an Industry 4.0 
environment. Conceptually, this environment consists of 
several entities (e.g., environment, machinery, and people) 
generating data over time and feeding the context histories 
(Sharpe et al. 2019). The data obtained from users within 
this industrial environment considers the physiological col-
lection to obtain the users’ health information, such as stress. 
This type of monitoring can be called Smart Connected 
Workers (Oh and Park 2016).

Stress monitoring can be an important factor in under-
standing and mitigating problems within an industry. Stud-
ies have already been carried out showing the influence of 
stress on workers’ attention to daily tasks (Jiang et al. 2020; 

Cahlíková et al. 2020). A lack of attention can make work-
ers vulnerable to accidents at work (Leung et al. 2016), and 
such accidents can lead to financial losses for the company 
and physical issues for the workers and can negatively affect 
company efficiency (Soegoto and Narimawati 2017).

The industrial environment used in scenario 3 consisted 
of four different areas. The vital signs of four employees 
were simulated so the app could measure their stress levels 
while they performed certain tasks. In addition to the collec-
tion of vital sign values, each user was given a determined 
route of movement within the factory.

This scenario was based on the real functioning of a com-
pany. As this company preferred to remain anonymous, it is 
referred to as Ind. LLC. This company had a plant that was 
around 500 meters wide and 100 meters long that was in use 
24 hours a day, 7 days a week.

Due to a high number of accidents at work, a task force 
was deployed at Ind. LLC. One of the main reasons for these 
accidents was a lack of communication between the more 
than 500 company employees. Accidents often happened in 
one shift and were not reported to the next shift in the same 
area. In addition, the company also detected that there were 
many “near misses” where an operator was close to getting 
hurt. This type of situation was called a work incident, while 
a fall or a situation that caused some kind of damage to the 
operator was called an accident. To improve communication 
between employees and reduce the risk to the operators, both 
accidents and incidents were reported on paper forms that 
were deposited into a box. The work safety team read the 
forms in the box and took action.

When a risky situation occurred in a specific location 
of the manufacturing plant, a rule was created and repli-
cated for all other operators where the closer the worker was 
to the risk area, the more context data was collected. The 
company’s work safety team determined when the situation 
had been mitigated and the rule could be excluded from the 
system, thus avoiding false positives. Hence, this scenario 
was based on a real industrial environment to get informa-
tion from the operator and the environment. Figure 7 shows 
that the simulation considered where the users were located 
(Barbosa et al. 2016, 2018). The locations of the users were 
based on the sector and function of the operator.

Despite moving between different areas, employees spent 
most of their time in their own sectors. Environment 1 con-
sisted of a manufacturing area with exposure to high tem-
peratures and constant loud noise from industrial machinery. 
Environment 2 had a high temperature and loud noises that 
were sporadic rather than constant. Environment 3 consisted 
of a production control room that was air-conditioned but 
still vulnerable to noise due to the proximity of environments 
1 and 2. In contrast, environment 4 was an air-conditioned 
and noise-free administrative environment. Scenario 3 is 
described as follows:
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“Alan, Martina, Josh, and Jessica work at Ind. LLC. 
The plant has several employees and has suffered from its 
employees leaving due to mental health problems or work 
accidents. This factory is divided into several environments, 
some with greater exposure to stressful situations. To miti-
gate these problems, the ODIN app was used in conjunction 
with a wearable device in an indoor location. There was a 
moment when Alan was in a stressful situation, and the app 
alerted both Alan and his supervisor Josh. Josh and Jes-
sica, even though they do not work all the time in factory 
environments, also mapped their stress levels during the day. 
As they move between all environments, it is feasible for 
them to leave the environments with a higher incidence of 
stress to normalize their physiological data. The users’ loca-
tion information includes the room temperature and noise 
level. Therefore, in a situation where a user’s vital signs are 
outside the normal threshold, ODIN begins to collect this 
data. When the user returns to normal vital sign thresholds, 
the app adapts again to only acquire physiological data. In 
the case of an accident at work, one of the employees can 
indicate the location of the accident so a rule can be cre-
ated where more data is collected when the users approach 
a risk area. This allows other interested parties to under-
stand the factors that caused the accident and even prevent 
new operators from suffering damage due to a problem that 

has already occurred. When Alan is alerted of a risk in the 
environment, he moves to environment 3, allowing the work 
safety team to investigate the risk and reopen the area.”

In the simulation, the location was generated automati-
cally for each user, and it was found that the changes in vital 
signs were greater in more stressful environments and lower 
in environments without high temperatures or machinery 
noise. In environments 1 and 2, HRV changes were -20, 0, 
or 20, while HR changes were -2, 0, or 2. In environments 
3 and 4, the variations were the same as those found in sce-
narios 1 and 2. When stress was detected, users would be 
informed of the situation via their smartphones, leaving it up 
to them to decide whether to rest for a few minutes or leave 
the environment.

The collected context data refers to machinery data and 
consisted of equipment in operation (true or false), the pres-
sure of the internal engines of the machinery (in bars), and 
equipment temperature (in ◦C ). In addition, environmental 
information like temperature (in ◦C ) and noise level (in deci-
bels) was monitored. This information was collected by Ind. 
LLC in their manufacturing unit, which is why that context 
data was selected for the simulation. This information is 
important for preventing accidents. If the machinery has 
very high pressure, a hose could blow and burn a nearby 
user, while very low pressure could indicate a leak, which 
could cause a user to slip and fall.

Table 2 represents the movement of users and the collec-
tion of data from their environments. Their stress levels and 
the risk level of the machinery in their environment were 
also collected. The risk levels were obtained by a calculation 
based on the normal internal pressure of the equipment, with 
1.5 bar considered an ideal value. Values above and below 
this threshold could have posed a risk to users. There was 
no machinery in environments 3 and 4.

The third scenario also involved 1,000 requests before 
the battery died. As a result, without adaptivity, the battery 
duration was 1 hour, 13 minutes, and 19 seconds. With adap-
tivity, the battery duration was 2 hours, 12 minutes, and 3 
seconds. This represent an increase of 96%. Figure 8 shows a 
weekly estimate of how much time would be spent charging 
a wearable device with and without adaptivity.

4.2  Evaluation with patient data from a dataset

The vital signs dataset enabled the analysis and adaptability 
through real physiological data (Liu et al. 2011). The regu-
lar threshold of vital signs takes into account the reference 
standard proposed by the NHS (National Early Warning 
Score Development and Implementation Group in the NHS 
2012).

The time between collections may vary. While monitoring 
in an Intensive Care Unit (ICU) can involve data collection 
being performed every few milliseconds (Sen-Gupta et al. 

Fig. 7  Ambient screen monitoring
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2019), the manual collection of vital signs by health profes-
sionals can only be done only a few times a day (Macapagal 
et al. 2019).

In the dataset used, the user’s physiological context col-
lection lasted three hours. The time between collections was 
set to 10 seconds for stress below 20% and one second for 
stress above 20%. The MS was the HRV, while the HR and 
blood pressure sensors were SS.

The data monitored in this dataset consisted of HR, 
HRV, and blood pressure. Real data provides more realistic 
changes in vital signs and allows for a better assessment of 
data adaptivity. As a result, with adaptation 3,590 requests 
were made between the data collection device (a wearable 
device) and the smartphone, while 10,761 requests were 
made without adaptation, representing a reduction of 66%.

Seven changes in the user’s state were detected within 
the three-hour collection period. These changes influenced 
the user’s stress levels, triggering the adaptations provided 
for the set of rules. The reduction in data collection requests 
was proportional to the time that the user was in a situation 
that did not indicate risk.

4.3  Evaluation using a prototype

The third type of evaluation involved two experiments: a 
prototype using an Arduino, which aimed to verify the fea-
sibility of the proposed model and its operation within a real 
environment, and an experiment with the HR chest belt Polar 
H7. The following sections describe the results.

4.3.1  Employment of arduino

The hardware prototype evaluation used an Arduino Uno, a 
Bluetooth ESP32 shield, and a 4MD69 HR sensor to collect 
vital signs. Communication libraries with Bluetooth Low 
Energy (BLE), an Arduino Uno, an Arduino Node MCU 
ESP8266, and an Arduino ESP32 that already had the BLE 
feature were used in the development of the prototype. An 
AA battery holder with four rechargeable batteries was used 
to power the device.

Figure 9 depicts the connections made between the sen-
sors and Arduino. This evaluation used the adaptivity app 
twice and the control app twice. Table 3 shows the results 
obtained by comparing the two data collection methods. As 
a result derived from the comparison of these two collec-
tions, there was an increase of about 20% in the battery life 
of the device. On the other hand, the number of requests was 
109% lower compared to the experiment without adaptation.

4.3.2  Employment of Polar H7

Polar H7 is a cardiac chest belt that must have contact with 
the skin. For the evaluation using this wearable device, only 
the battery life of the smartphone was measured as Polar H7 
does not provide access to its total battery.

Two tests were carried out with adaptation and two were 
carried out without adaptation. The sensor request value 
represents the number of times the Polar H7 sent data to the 
smartphone. A high number of sensor requests means less 

Table 2  Movement list and data 
collected for scenario 3

User Stress
level (%)

Environment Machinery
risk (%)

Ambient
tempera-
ture ( ◦C)

Noise
level (dB)

Timestamp

Alan 19 1 5 37 80 23/03/2020 14:43:57
Alan 26 1 50 39 80 23/03/2020 14:44:27
Alan 17 3 0 23 n/a 23/03/2020 14:44:28
Martina 15 2 2 33 73 23/03/2020 14:44:59
Martina 17 2 8 32 74 23/03/2020 14:45:29
Martina 14 4 0 23 n/a 23/03/2020 14:45:59
Josh 16 3 0 23 n/a 23/03/2020 14:46:29
Josh 15 3 0 23 n/a 23/03/2020 14:46:59
Jessica 13 4 0 22 n/a 23/03/2020 14:47:29
Jessica 13 4 0 22 n/a 23/03/2020 14:47:59

Fig. 8  Scenarios comparison
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battery life. As a result derived from the comparison of the 
adaptivity with the control tests, the battery life increased 
by 22%, while the number of requests was 56% lower in 

comparison to the control app. Table 4 shows these results 
obtained by comparing the two methods of data collection.

The experiment demonstrated data collection in real-time 
and how much battery life can be saved in a practical situa-
tion. When analyzing the data, it was observed that in a real 
situation, the energy expenditure may be greater than what 
is found during a simulation.

5  Discussion

The main advantage of this work is the focus on the user. 
When looking for a preventive solution, wearable sensors 
could be useful for indicating a health problem before it 
occurs. On the other hand, when the problem already exists, 
a better solution is to use consolidated medical equip-
ment. Other advantage in this work is the possibility of the 
user change the parameters and rules of the collection, in 
the smartphone through the ODIN app, allowing it to be 
personalizable.

The model is dependent on the sensors of the devices. 
If the user is not wearing their smartphone or the wearable 
device, the proposed adaptations will not occur. In addi-
tion, many wearable devices have limitations regarding their 
manipulation, and the parameters of their sensors cannot be 

Fig. 9  Connections of the hardware prototype

Table 3  Collection with and without adaptivity using the Arduino

Sensors requests Prototype bat-
tery autonomy 
(HH:MM)

Test 1—With adaptivity 31,245 27:12
Test 2—With adaptivity 30,747 26:48
Test 1—Control 64,398 22:06
Test 2—Control 65,491 22:54

Table 4  Data collection with and without adaptivity using a Polar H7 
HR belt

Sensors requests Battery 
autonomy 
(HH:MM)

Test 1—With adaptivity 16,531 15:13
Test 2—With adaptivity 18,176 14:11
Test 1—Control 26,580 12:05
Test 2—Control 27,589 11:51
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changed. In these cases, only the sensors of smartphones 
can be adapted and battery and data generation savings are 
reduced. However, data collection from the user’s current 
context is still feasible, which allows a better understanding 
of their condition when correlating physiological data.

In a real situation, normal smartphone consumption can 
interfere with battery saving. The constant use of the collec-
tion device can also mean that the batteries do not always 
perform the same. It was observed that the battery life in 
the simulations had an average gain of 119% compared to 
the same solution without adaptation. When real data was 
used, the consumption gain was 66%, and when a proto-
type was used, the average gain was 21%. This difference 
between battery life gains occurred because of the different 
user contexts. In the two first scenarios, the simulation only 
considered the energy consumption of vital sign collection 
sensors. In the third scenario, the simulation considered the 
battery expenditure required to determine the user’s location. 
In this case, as they are everyday situations, the maximum 
and minimum time between collections may be greater.

In the evaluation that used patient’s ICU data, the chance 
of risk was theoretically higher. Therefore, the maximum 
and minimum values of the collection times should be lower. 
This would cause more instances of data collection, consum-
ing more of the battery power of the devices.

Additionally, during real situations there are factors that 
influence the battery consumption of devices that did not 
appear in the first two evaluations. For example, the amount 
of smartphone screen usage, incoming calls/notifications, 
and communication problems, all of which increase the 
energy consumption of the smartphone.

The times between collections used in this work are for 
evaluation purpose only, and the user can change them in the 
settings of the ODIN app. When changing these values, it 
was observed that the longer the time between collections, 
the greater the potential for battery savings. However, long 
periods between collections could allow some changes in 
vital signs to go unnoticed. Therefore, it is up to the user to 
define the amount of time between collections that it best 
suited to their goals.

There may be cases where the vital signs of a user at rest 
remain outside the values considered regular. Users who live 
in warmer environments may experience a change in skin 
temperature, registering a higher value, without affecting the 
health condition of the user. Just as users who practice sports 
at rest may have a reduced heart rate. In these cases, there 
may be a false positive, where the Odin app may be locked 
in a state of danger due to the context of the user. Although 
this only occurs in specific situations, and at this point the 
objective of ODIN is to be feasible for the majority of the 
users, specific cases will be treated at future works.

6  Conclusion

This work presented a model for collecting vital signs 
called ODIN that uses adaptive strategies based on adap-
tive rules. The proposed model potentially fills the gaps 
identified in the related works. ODIN performs real-time 
analysis of physiological data to monitor the health con-
ditions of users based on the parameters for collecting 
vital signs. The context histories are analyzed, allowing 
the collection of data to adapt to the current situation. 
The adaptation of vital signs collection involves making 
more collections when there are notable changes in vital 
signs and fewer collections when the user is in a situation 
without risk.

According to the user’s physiological context, vital sign 
sensors and context sensors can be made active or returned 
to a paused state automatically. Based on the literature 
review presented in the related works section, the contri-
bution of ODIN’s scientific approach is the adaptation of 
the collection of physiological sensors for optimal gen-
eration of vital sign context histories. For the evaluation 
of the model, the issue of mapping stress contexts was 
addressed. These contexts consist of the user’s vital signs 
and the context information occurring at that moment as a 
level of physical activity or geolocation.

The reduction in requests by wearable devices and 
mobile devices can positively impact the battery life of 
these devices. However, these savings cannot always be 
precisely measured. More in-depth studies are needed con-
cerning the best usage of energy by these devices through 
adaptive sending of data packages or similar solutions.

Future works should look at the model’s scalability. 
The proposed solution should not affect the application’s 
performance with multiple users. The adaptive collection 
proposal could also be useful in conjunction with IoT tech-
nologies or Industry 4.0 as these technologies are dynamic 
and can benefit from an adaptive approach.

In some specific cases, the system can be locked in a 
“danger” state. This occurs because of the user context 
(e.g., warmer places may increase the skin temperature). 
The use of a self-adapting agent will mitigate this problem 
as future work. This agent will standardize the threshold 
of vital signs for the user after a certain period (weeks, 
months). In case the vital sign values remain in this pat-
tern, the system will change its rules to this new threshold, 
preventing the system from being stuck in a false positive.
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