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Abstract
In a number of applications the data will be represented in an interval format. We consider here a nested representation of 
uncertain information in intervals using Dempster–Shafer evidence approaches. These representations can be used in vari-
ety of applications including spatial and temporal reasoning and economic cost valuations. Two representations of nested 
intervals, RP1 and RP2, are defined and used in the paper. Basically an inner interval represents the more certain data and 
is nested in the outer less certain interval. We illustrate how the specificity measure could be used to evaluate such nested 
Dempster–Shafer intervals. We then consider Gini information measures applicable to the RP1 representation. We describe 
an example using our interval approach to COVID contact tracing in epidemiology. Finally examples of aggregation of 
intervals are provided. It is seen that an aggregated result can be evaluated and shown to increase the specificity of the result. 
Additionally, it is not always the case that aggregation increases specificity. An example is given illustrating such a case.

Keywords Dempster–Shafer evidence · Nested intervals · Specificity measures · Information measures · COVID · Contact 
tracing

1 Introduction

Uncertainty problems and issues arise in almost all domains 
of human interests. This was realized commonly by the 
developments of statistics and probability modeling to man-
aging uncertainty. However some information and data are 
often represented by human language like “about 50 km”, 
“roughly 39 °C”, “approximately 100 lbs.”, “young”, and 
“large”. There are many other approaches for representing 
linguistic, subjective uncertainty in particular in the com-
putational intelligence domain (Kruse et al. 2016). These 
can include fuzzy sets and possibility theory (Parsons 
2001), rough sets (Zhang et al. 2016) and evidence (Demp-
ster–Shafer) theory (Liu and Yager 2008).

There are many areas for which subjective interpreta-
tion of intervals can use Dempster–Shafer approaches, such 
as, for example, expert estimates of the ranges for poten-
tial prices of real estate property. Also in large commodity 
trading markets such as in Chicago, issues of the ranges of 
values of various commodities involve essential uncertainty 
issues (Varangis and Larson 1996) and can be modeled by 
these sorts of intervals. Also spatial and temporal data has 
been represented by such intervals (Elmore et al. 2017a, b).

In this paper we are treating uncertainty in data repre-
sentation by nested intervals,  Ij, corresponding to focal ele-
ments in evidence theory. The uncertainty is modeled using 
evidence theory (Dempster–Shafer theory) (Shafer 1987) by 
basic probability assignment,  bpj, associated to each inter-
val. These bp values are typically subjective judgments as 
to the probability of a variable of interest’s value lying in a 
particular interval.

In the paper’s organization, we first provide a background 
of Dempster–Shafer theory and specificity and informa-
tion measures. Next there is an overview of the basics of 
the interval approach and alternative representations. We 
then show how to use specificity measures and information 
theory based metrics to assess the uncertainty in the nested 
intervals (Yager 1983, 2018). An application in the area 
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of epidemiology for infection contact tracing is described. 
Finally we describe an approach to aggregation of Demp-
ster–Shafer intervals and use measures to determine if an 
aggregated interval lowers uncertainty, i.e. is more specific.

2  Objectives and contribution

Our objective is to continue our investigations of repre-
sentations and processing of uncertainty in data. We have 
previously carried out research with fuzzy sets, possibility 
theory and Dempster–Shafer evidence approaches. In par-
ticular we want to explore ways to measure and quantify 
such uncertainty.

So in this paper our contribution is the development of 
nested representations of uncertain information in intervals 
using Dempster–Shafer evidence approaches. Two represen-
tations of nested intervals, RP1 and RP2, are defined and 
used in the paper. Basically an inner interval represents the 
more certain data and is nested in the outer less certain inter-
val. We illustrate how specificity measures could be used to 
evaluate such nested Dempster–Shafer intervals. We then 
consider Gini information measures applicable to the RP1 
representation. An application in the area of epidemiology 
for infection contact tracing is also described. Contact trac-
ing has been used extensively during the Covid pandemic 
and our nested interval representations can provide con-
sistency for these efforts as the uncertainty is specifically 
captured. Finally examples of aggregation of intervals are 
developed. It is seen that an aggregated result can be evalu-
ated and shown to increase the specificity of the result. Addi-
tionally, it is not always the case that aggregation increases 
specificity and this is illustrated as it affects decision-making 
(Yager and Petry 2016).

3  Background

3.1  Dempster–Shafer evidence theory

Dempster–Shafer (D–S) theory is a well-known approach to 
modeling uncertainty (Liu and Yager 2008), providing rep-
resentation of non-specific forms of uncertainty. A Demp-
ster–Shafer belief structure consists of a collection of non-
empty crisp subsets of a space X called focal elements:  R1, 
…,  Rq. The mass or basic probability, bp, is used to assign 
a belief to each element of the power set:

Thus our knowledge of the value of a variable is inex-
act. For focal set,  Ri ⊂ X, however, bp(Ri) indicates the 

bp ∶ 2X → [0, 1].

probability that the value is in  Ri. Two important properties 
of bp are: 1. basic probability of the empty set is zero,

and 2. the bps of the remaining elements of the power 
set sum to 1,

Two commonly used measures for a Dempster–Shafer 
belief structure are measures of belief (best case) and plau-
sibility (worst case). The belief for a specific set S, Bel (S), 
is the sum of the basic probabilities of all subsets of S:

The plausibility, Pl(S), is the sum of the bps of the sets 
 Ri that intersect S:

3.2  Uncertainty evaluation measures

Our methodology for uncertainty evaluation is to use meas-
ures such as the Shannon entropy, the Gini index and speci-
ficity as extended to Dempster–Shafer uncertainty (Yager 
2018) in order to judge the usefulness of interval-based 
uncertain information.

3.2.1  Shannon entropy and Gini index

The Shannon measure of information, or Shannon entropy 
 Ssh(P) is a well-known and widely used measure of infor-
mation content (Cover and Thomas 2006). For a probability 
distribution, P = (p1,  p2, ….,  pn),

Another measure related to information content is a dis-
persion measure, the Gini index, G(P). It has been widely 
used in economics (Giorgi and Gigliarano 2017; Berger and 
Balay 2019) and for decision trees in machine learning tech-
niques such as random forests (Breiman 2001). This index 
can be given by:

1. bp (Φ) = 0

2.
∑

Ri∈2
X

bp
(
Ri

)
= 1

Bel (S) =
∑

Ri⊆2
X

bp
(
Ri

)

Pl(S) =
∑

Ri∩S≠∅

bp
(
Ri

)

Ssh(P) = −

n∑

j=1

pjln
(
pj
)
.

G(P) = 1 −

n∑

j=1

p2
j
.
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G(P) is functionally related to  Ssh (P) (Yager 1995). G(P), 
may be used instead of  Ssh (P) more conveniently in analysis 
since it does not involve logarithms as does  Ssh (P).

3.2.2  Specificity measure

For possibility theory, the concept of specificity has a 
measure that is analogous to probability entropy measures. 
One approach uses a linear measure that can be viewed as 
an intuitive measure for a possibility distribution’s speci-
ficity (Pedrycz and Gomide 1996; Dubois 2006). Consider 
possibility distribution Π = π1, … πn). If πm = 

n

Max
k = 1

πk, then 
specificity is formulated as the max value, πm, minus the 
average of the rest of the possibility distribution (Yager 
1992),

Specificity has also been extended and can be used for 
Dempster–Shafer evidence theory (Yager 1983).

3.3  Interval representations

Now we must realize that, in representing uncertainty of 
information such as spatial or temporal data, we are really 
interested in an interval representation as opposed to a set 
representation. Intervals can be used to represent such data 
ranges, so we provide approaches to the use of data intervals 
(Moore et al. 2009; Kreinovich and Shary 2016) as needed. 
Interval arithmetic has been used previously for Demp-
ster–Shafer applications (Lee and Zhu 1992; Auer et al., 
2010) and was used in our previous approaches for calcula-
tions with spatial and temporal relations.

Let X be the space which forms a frame of discernment. 
Intervals, I, will be represented by the lower and upper 
bounds,  y*, y*:

We have previously considered D–S intervals for both 
spatial and temporal data. Interval representations are 
described as a basic approach to represent such uncertainty 
for data. With spatial data (Elmore et  al. 2017a), basic 
definitions of imprecise coordinates, points and lines were 
developed. Dempster Shafer spatial representations can be 
applied to location recommendations based on users’ needs 
(Kosmides et al. 2016). Temporal uncertain events were 
represented by nested intervals (Elmore et al. 2017b). This 
allows computation of interesting factors such as durations 
and time between events.

Sp(Π) = �m −

(
n∑

k=1,≠m

πk

)/
n.

I =
[
y∗, y ∗

]
= v ∈ X | y∗ ≤ v ≤ y∗ }

4  Dempster–Shafer intervals

4.1  Interval representation

In this section our general methodology is to consider pos-
sible alternative interval structures using Dempster–Shafer 
uncertainty approaches. In particular an interval I will have a 
structure in which an inner interval is considered as the more 
certain data. The outer parts of the interval are then considered 
as possible but not as certain as the inner interval (Fig. 1).

The inner interval is denoted as  I1, and its certainty as  bp1. 
The rest of the interval I ( I—I1) is denoted as  I2 and has asso-
ciated basic probability  bp2 and is called the outer interval.

With this approach, we can treat uncertainty in data repre-
sentation by nested intervals, using evidence theory as basic 
probability assignment,  bpj, associated to each interval. These 
bp values are typically subjective judgments as to the prob-
ability of a variable of interest’s value lying in a particular 
interval; these intervals correspond to focal elements in evi-
dence theory.

Here we consider two representations for our Demp-
ster–Shafer interval structure. The end points are labeled in 
Fig. 1, so the entire interval I is [a, d]. Depending on the appli-
cation semantics, the inner and outer interval can be treated 
differently. First we consider the potential interpretation that 
the inner interval  I1 is strictly considered to be a subset of the 
outer interval  I2:

The second the possibility we can allow is that the outer 
interval  I2 is disjoint from the inner interval  I1:

Representation 1(RP1) ∶ I1 = [b, c] and I2 = [a, d] so I1 ⊆ I2.

Representation 2 (RP2) ∶ I2 = [a, b) (c, d], so I2 ∩ I1 = �.

Fig. 1  Dempster–Shafer interval structure
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4.2  Interval specificity

In the following section our methodology is to consider 
approaches to evaluate each alternative representation 
using specificity and then information theoretic measures 
(Xiao 2018). A number of approaches to specificity have 
developed (Pedrycz and Gomide 1996; Song et al. 2016) 
including measures of discord and non-specificity. In par-
ticular, here, we use (Yager 1983) for a belief structure B, 
 SpB, given by

For the nested interval belief structure, we will use the 
length of an interval to be equivalent to the set cardinality 
for our discrete domains, |Ij| = Length  (Ij). Then, we have

4.2.1  Representation 1

In RP1 the total length of the uncertain outer interval,  I2, 
is greater than the inner interval  I1. But for RP2 it is quite 
possible that |I2|  ≤ |I1|, and we will have to consider all 
such possibilities.

To be semantically meaningful as a discrete interval, 
we assume |I1 |≥ 1, i.e. there is a most certain interval, 
 bp1 > 0.5. For the outer interval as well |I2 |≥ 1 except 
where for the inner interval  bp1 = 1, is totally certain, then 
 bp2 = 0, i.e. there is no outer possible interval. First for 
RP1 we have

and

Note where R = 1,  SpB = (1 + bp1( 1–1))/1|I1| = 1/|I1|. 
That is, there is only the one certain interval so the speci-
ficity is just dependent on that.

Next we can analyze cases for  SpB as a function of the 
basic probability using  bp1 + bp2 = 1.

Case 1:  bp1 → 1. So we have

That is as the inner interval becomes more certain then 
the specificity depends only on the extent of that interval 
and not the outer one since  bp2 → 0. As the inner interval 

SpB =
∑

A⊂ X, A≠∅

bpA∕|A|.

SpB =
(
bp1∕

|| I1|| + bp2∕
|| I2||

)
.

|| I2|| = R ∗ || I1||, R ≥ 1

SpB = (( bp1∕ | I1| + (1−bp1)∕ R| I1| )
= ((R bp1 + (1 − bp1) ) ∕ R| I1|)
= ( (1 + bp1( R − 1)) ∕ R| I1| )

SpB ≈ 1∕ || I1||.

narrows the specificity increases and is 1 when |I1| = 1, i.e. 
we know the exact value.

Case 2: The other extreme case is for  bp1 ≈  bp2 = 1/2. 
Then

So now we must take into account the outer interval 
as well since it has an almost equal basic probability. For 
example if the outer interval is twice as large, |I2| = 2 * 
|I1|, R = 2,

then

Then as |I2| becomes larger, R → ∞,  SpB → 1/2 (1/|I1|).

4.2.2  Representation 2

For representation 2, we must consider the possible rela-
tionships between the inner and outer intervals, i.e. R > 1 
or R < 1. To illustrate we consider an example for each case

a: R = 2 as above (|I1| = 1/2|I2|), and
b: R = 1/2 (|I1| = 2|  I2|).
a.  SpB = (1 + bp1( 2–1))/2|  I1| (1 + bp1)/2|I1|
b.  SpB = (1 + bp1( 1/2–1)/(|I1|/2) = 2(1  −  1/2  bp1)/|I1| 

(2 − bp1)/|I1|
Now we consider as before the bounding case for  bp1 = 1
a.  SpB = (1 + 1)/2|I1|1/|I1|
b.  SpB = (2 − 1)/|I1| /|I1|
Then for  bp1 = 1/2
a.  SpB = (1 + 1/2)/2|I1|3/4|I1|
b.  SpB = (2 − bp1)/|I1|3/2|I1|

4.3  Intervals information measures

We have used information theory for uncertainty of infor-
mation in fuzzy and rough databases (Buckles and Petry 
1983; Beaubouef et al. 1998). Information measures have 
also been developed for Dempster–Shafer belief structures 
(Deng et al. 2016; Jiang and Wang 2017; Jiroušek and She-
noy 2018). In particular Yager (2018) considers the case of a 
consonant belief structure in which the focal elements form 
a nested subset structure. Now for RP1 we have a nested 
subset structure,  I1 ⊆ I2 and so using the Gini entropy for 
this belief structure has the following bounds on informa-
tion value

SpB = (1 + 1∕2 ( R − 1))∕ R|| I1||
= (1∕2 + R∕2) ∕ R|| I1||
= 1∕2

(
(1 + R)∕ R| I1|

)

SpB = 1∕2
(
(1 + 2)∕2| I1|

)
= 3∕4

(
1∕ | I1|

)

G ∶
[
0, 1−

(
bp2

1
+ bp2

2

) ]
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The Dempster Shafer information model of Klir (2006), 
G*, has a formulation that considers the size of the nested 
intervals. G* lies in the Yager’s interval G (Yager 2018) 
and so we demonstrate how this occurs for our given belief 
structure with the inner and outer intervals

Since  I1 ⊆ I2,|I1 ∩ I1| = |I1 ∩ I2| = |I2 ∩ I1| = |I1| and |I2 ∩ I2| = 
|I2|. So

where

Now we assess if the range of G* satisfies the interval 
G = [0, 1 −   (bp1

2 + bp2
2)].

First for complete certainty for  I1,  bp1 = 1,  bp2 = 0 
and H = 1 so G* = 0. Next we note H > bp1

2 + bp1
2 so 

1 − H < 1 − (bp1
2 + bp2

2). Clearly then G* ⊆ G.

5  Epidemiology application example

In this section we will show how our D–S intervals approach 
can be used in the area of epidemiology for contact tracing. 
Then we will discuss how we use aggregation of these sort 
of intervals to enhance decision-making.

5.1  Contact tracing

Now we describe the epidemiology problem involving dis-
ease contact tracing and how our intervals can be used for this 
problem. Epidemiology involves analysis of disease distribu-
tion (who, when, and where) and patterns (Porta 2014; Fos 
et al. 2018). It is basic to public health, and informs health 
policy decisions and evidence-based practice by specifying 
risk factors of diseases and objectives of disease prevention. 
In particular we consider the uncertainties involved in contact 
tracing, the process of identifying persons who may have come 
into contact with a person who is infected. This will involve 
both spatial and temporal determinations and has been used 
extensively in disease spread such as the recent SARS and 
COVID pandemics. For COVID in particular the CDC (Center 
for Disease Control and Prevention 2020) gives the guidelines 

G∗ = 1 −

2∑

j=1

bpj

(
2∑

k=1

(|IjIk|∕|Ij|)bpk
)

G∗ = 1 − [ bp1
((|| I1||∕ | I1|

)
bp1 +

(|| I1||∕ | I1|
)
bp2

)

+ bp2
((|| I1||∕ | I2|

)
bp1 +

(|| I2||∕|| I2|| bp2
) ]

= 1 −
[
bp1∗bp1 + bp1∗bp2 + bp2

(|| I1|| ∕ | I2|
)
bp1

+bp2∗bp2
)
] = 1 − H

H = bp2
1
+ bp2

2
+ bp1bp2

(
1 + | I1|

)
∕ ||I2||).

as being within 6 ft of a person who was infectious for a 15 or 
more total minutes over a 24-h period. It furthermore specifies 
that it is difficult to precisely define close contact. The basic 
approach starts with the infected individual who is interviewed 
to learn about their recent activities, and with whom they may 
have been in close contact. Depending on the disease and the 
context of the infection, family members, health care provid-
ers, and anyone else who may have knowledge of the case’s 
contacts may also be interviewed (Hellewell et al. 2020).

We can illustrate this with a generalized example of a 
specification of distance and time when it was not possible 
to exactly determine the exact distance and the information 
was even possibly solicited from multiple sources or persons. 
Obviously it is important to make this decision as carefully 
as possible. If we commit to no close contact then we may 
face a false negative and consequently risk further infectious 
exposures. However a false positive also comes with costs, as 
by requiring isolation because of exposure, an individual may 
not be able to work which can be an impact economically.

Here are two examples in which we use normalized dis-
tance ranges. Let the max range here be 10 ft past which con-
sideration of exposure is irrelevant. The core exposure range 
of concern is then half of this so that distances below 5 ft may 
be of most concern. An example is shown in Fig. 2.

In the following we consider two sources of information 
obtained by the contact tracing. We analyse these two cases 
and compare their specificity.

Case A:

So for case A the total specificity is 0.225.
Case B:

Case B gives a total specificity is 0.20 which is less than 
the contact information specificity in Case A. This can be 
interpreted to conclude that the first case is more appropriate 

bp1 = .7;|| I1|| = 4;SpB = .7∕4 = 0.175;

bp2 = .3;|| I2|| = 6;SpB = .3∕6 = 0.05

bp1 = .6;|| I1|| = 5;SpB = .6∕5 = 0.12;

bp2 = .4;|| I2|| = 5;SpB = .4∕5 = 0.08

Fig. 2  COVID contact tracing distance example
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for making a decision about exposure and isolation. We note 
that we will be considering in Sect. 5.2 regarding how to 
aggregate these sort of intervals in order to provide a uni-
form approach.

We believe that representations like those in the two cases 
above can then provide a consistent approach to contact trac-
ing efforts as the uncertainty is specifically captured. Fur-
thermore such representations can then eventually provide 
a data set to guide future decisions.

5.2  Interval aggregation

As discussed for contact tracing there may be more than 
just one specification of the data in the intervals. In this 
section we discuss how to deal with this using aggregation 
approaches.

There are many fusion and aggregation techniques for 
uncertainty that have been developed and studied (Beliakov 
et al. 2007; Ribeiro et al. 2014; Dubois et al. 2016) However 
while effective decision-making should be able to make use 
of all the available, relevant information about such com-
bined uncertainty, assessment of the value of an aggregation 
result is critical. Does the aggregation produce an interesting 
or valuable result? We have previously developed a number 
approaches to aggregations of uncertain information—prob-
ability and possibility distributions (Petry et al. 2015; Ander-
son et al. 2016). To assess the effectiveness of these aggrega-
tion results we applied information and specificity measures 
(Elmore et al. 2020; Petry et al. 2015). Here, in order to use 
these measures for nested interval aggregations, we have to 
consider restricted cases to illustrate that the specificity met-
ric can determine if an aggregation produces a more specific 
and potentially useful result.

We consider a scenario in which contact tracing has 
occurred and the information may be from more than one 
source. Our aggregation approach for these evaluations has 
two components, first an average of the basic probabilities 
and then the computation of the aggregate inner interval 
location.

To be well defined in the aggregation, we only con-
sider the case where one inner interval is contained in 
the other. Otherwise partial overlapping would entail 
intersection overlap with the outer intervals, which have 
different basic probabilities. Our aggregation result then 
uses the smaller of the inner intervals, as it is most spe-
cific in the sense of size.

Next we will illustrate an example in which this sort 
of aggregation can produce a more specific result such 
as would be desired for contact tracing.

Case 1:  bp11 = 0.6; |I11| 4;  SpB = 0.6/4 = 0.15
Case 2:  bp21 = 0.9;|I21|8;  SpB = 0.9/8 = 0.1125

Now we use our aggregation approach. Since we are 
considering the case where  I11 ⊆ I21 then |Iagg1| = |I11|4. 
Then taking the average of the basic probabilities we can 
determine the specificity of the aggregated inner interval 
structure:

So the specificity of the aggregated inner interval is 
greater than either Case 1 or Case 2. However we must eval-
uate the overall specificity of the interval I being evaluated 
by also computing the specificity of the outer intervals. We 
will let the size of the overall interval be, |I| 10. Then |I12|6, 
|I22|2, |Iagg2|6. So we have

Then the overall specificities for I are:

Thus for this example an aggregation as described can 
produce a more specific result. This is a desirable outcome, 
however, this is not true in general. If we have an exam-
ple case that is already fairly specific then aggregation may 
not be an improvement and indeed can be worse. Consider 
in the above example if  bp11 = 0.9 (so more specific) and 
 bp21 = 0.6. Then the aggregation specificity would not 
change but the specificity of Case1 would be greater

This result means that aggregation is not an improvement; 
based on the specificity measure, case 1 should be used.

6  Conclusions and future research

We have considered issues related to evaluation of uncertain 
information as captured by Dempster–Shafer nested inter-
vals. Two representations of nested intervals, RP1 and RP2, 
were defined and used in the paper. We illustrated how the 
specificity measure could be used to evaluate such nested 
Dempster–Shafer intervals.

We then considered Gini information measures applicable 
to these representations. Finally examples of aggregation 

bpagg1 =
(
bp11 + bp21

)
∕2 = (6. + .9) ∕2 = .75

Spagg1 = .75∕4 = 0.1875

Sp12 = 1 − .6∕6 = 0.067;

Sp22 = 1 − .9∕8 = 0.0125;

Spagg2 = 1 − .75∕6 = 0.042

Sp1 = .15 + .067 = .2167;

Sp2 = 0.1125 + 0.0125 = .125;

Spagg = 0.1875 + .042 = .2295

Sp1 = .25 + .0167 = .24167
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of intervals were provided. It was seen that an aggregated 
result could be evaluated and shown to increase the specific-
ity of the result. Additionally it is not always the case that 
aggregation increases specificity, and an example was given 
illustrating this case.

In our future research we will explore other health care 
applications for our approaches. In particular in collabora-
tion with colleagues in the public health area (Fos and Petry 
1995), the economic problems of decision making under 
uncertainty for limited health care resources in underserved 
populations and developing countries are being explored.

We also will explore new extensions to our interval 
approaches (Xiao 2020). In particular Dempster–Shafer 
theory allows the specific representation of ignorance. As 
opposed to probability theory the sum of the basic probabili-
ties can be less than one and this difference is considered as 
the degree of ignorance. Using this can potentially permit 
greater flexibility in many applications.
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