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Abstract
Eating difficulties and the subsequent need for eating assistance are a prevalent issue within the elderly population. Besides, a 
poor diet is considered a confounding factor for developing chronic diseases and functional limitations. Driven by the above 
issues, this paper proposes a wrist-worn tri-axial accelerometer based food and drink intake recognition system. First, an 
adaptive segmentation technique is employed to identify potential eating and drinking gestures from the continuous accel-
erometer readings. A posteriori, a study upon the use of Convolutional Neural Networks for the recognition of eating and 
drinking gestures is carried out. This includes the employment of three time series to image encoding frameworks, namely 
the signal spectrogram, the Markov Transition Field and the Gramian Angular Field, as well as the development of various 
multi-input multi-domain networks. The recognition of the gestures is then tackled as a 3-class classification problem (‘Eat’, 
‘Drink’ and ‘Null’), where the ‘Null’ class is composed of all the irrelevant gestures included in the post-segmentation gesture 
set. An average per-class classification accuracy of 97.10% was achieved by the proposed system. When compared to similar 
work, such accurate classification performance signifies a great contribution to the field of assisted living.

Keywords Gesture recognition · Accelerometer · Deep learning

1 Introduction

Eating difficulties are those that alone or combined, ham-
per the preparation or the intake of food and/or beverages 
(Westergren 2001), with major causes including cognitive 
impairment, poor appetite or feeding dependency. Inciden-
tally, a poor diet can contribute to weight loss and malnutri-
tion, leading to potential functional limitations, metabolic 
abnormalities and diminished immunity (Payette and Shat-
enstein 2005). Recent statistics outline eating difficulties as 
a prevalent issue among the elderly population. For instance, 
the survey conducted in Westergren et al. (2002) with 520 
elderly patients in hospital rehabilitation, reveals 82% of 

the patients exhibit some form of eating difficulty. The sur-
vey conducted in Lohrmann et al. (2003), including 3000 
patients from 11 different hospitals, acknowledge 21.1% of 
the patients younger than 80, and 36.4% of those aged 80 or 
older require eating assistance.

As of now, dietary behaviour is generally monitored by 
the use of self-assessment questionnaires. Though, two 
major shortcomings are found on the use of these conven-
tional approaches. First, the data entry process may result 
cumbersome, since normally the questionnaires have to be 
filled manually by the subjects. Second, various studies indi-
cate self-reported estimates of daily activities are subjective 
and variable (Smith et al. 2005; Rush et al. 2008).

The rapid technological development in ubiquitous com-
puting seen in recent years is translating into an increas-
ing research attention towards Human Activity Recognition 
(HAR) (Lee et al. 2011; Gayathri et al. 2015; Adama et al. 
2018; Ortega-Anderez et al. 2019; Anderez et al. 2020; 
Casella et al. 2020). Current portable or wearable devices 
such as smart-phones and smart-watches already integrate 
a broad array of sensors (i.e. accelerometers, magnetom-
eters, gyroscopes), allowing for human behaviour analy-
sis and monitoring in applications such as health care and 
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well-being monitoring. In line with this, this paper proposes 
a two-fold wrist-worn accelerometer based food and drink 
intake recognition system in support of elderly well-being.

First, the Crossings-based Adaptive Segmentation Tech-
nique (CAST) (Anderez et al. 2018b, 2020) is employed for 
spotting potential eating and drinking gestures from the con-
tinuous accelerometer readings. Despite the sparse occur-
rence of food and drink intake gestures, this segmentation 
technique has shown the capability of retrieving 100% of 
the eating and drinking gestures embedded within acceler-
ometer signals. Once the segment set containing potential 
eating and drinking gestures is built, a 1D CNN fed with 
the raw accelerometer data is parametrically optimised and 
proposed as a benchmark classification model. A posteriori, 
various multi-input-multi-domain networks are proposed on 
top of the benchmark model for classification performance 
comparison purposes. These include the employment of 
three different time series to image encoding frameworks, 
namely the signal spectrogram, the Markov Transition Field 
(MTF) and the Gramian Angular Field (GAF), as well as a 
31-dimensional hand crafted feature vector. The problem 
is ultimately tackled as a 3-class supervised classification 
problem (‘Drink’, ‘Eat’ or ‘Null’), where the ‘Null’ class 
embodies all the irrelevant gestures retrieved by the signal 
segmentation technique. That is, any gesture which is not an 
eating or a drinking gesture.

The main contributions of this paper are as follows. First, 
we provide a thorough investigation upon feature extraction 
and the optimisation of Convolutional Neural Networks for 
food and drink intake gesture recognition which can serve 
as a point of direction for future research in the field. Such 
investigation includes:

• Hyper-parameter optimisation (the number of layers, the 
number of filters and the filter size) of a 1D CNN fed 
with raw accelerometer data.

• Employment of three time series to image encoding 
frameworks for feature extraction, namely the signal 
spectrogram, the Markov Transition Field (MTF) and 
the Gramian Angular Field (GAF). Despite the good 
performance exhibited in other applications, to the best 
of our knowledge, the MTF and the GAF have not been 
employed by any gesture or activity recognition research 
work.

• Development and comparison of a wide range of novel 
multi-input multi-domain deep learning frameworks for 
gesture recognition.

Ultimately, this paper provides an accurate unobtrusive 
solution for the recognition of eating and drinking gestures 
which outperforms most previous similar work. Given the 
unobtrusiveness of the solution and the recognition perfor-
mance achieved, this work signifies a great step towards the 

field of Ambient Intelligence in the form of a monitoring 
system for the analysis of personal dietary behaviours.

The rest of the paper is organised as follows. Section 2 
provides a critical analysis upon the use of CNNs for gesture 
and activity recognition purposes, as well as a review of pre-
vious research work on the recognition of eating and drink-
ing gestures using wearable sensors. Section 3 describes the 
methodology employed to implement the food and drink 
intake recognition system. Section 4 presents the results 
achieved by the use of the various CNN-based classifica-
tion frameworks proposed. Section 5 draws the conclusions 
from the results obtained.

2  Previous work

This section is divided into three different parts. In Sect. 2.1, 
previous literature on the use of convolutional neural net-
works for activity and gesture recognition is discussed. 
Section 2.2 reviews previous work on eating and drinking 
recognition with the use of wearable sensors. Ultimately, 
the motivation for undertaking this work is presented in 
Sect. 2.3.

2.1  The use of convolutional neural networks 
for activity recognition

The use of deep learning (Zeng et al. 2018, 2019, 2020), and 
specially that of Convolutional Neural Networks (CNNs), 
has revolutionised the state-of-the-art of challenging prob-
lems such as speech recognition and image classification 
(Ronao and Cho 2015). Likewise, CNNs are gaining increas-
ing attention within the field of HAR due to the numerous 
advantages they provide as compared to traditional state-of-
the-art HAR feature extraction and classification methods. 
First, conventional HAR solutions typically require the com-
putation of hand-crafted or self-engineered features, thus 
relying on human domain knowledge. Second, according to 
human expertise, only shallow features, such as basic signal 
statistics, can be learned through the use of conventional 
hand-crafted feature extraction methods (Yang et al. 2015). 
Despite the good performance exhibited by the use of shal-
low features on the recognition of low-level activities such 
as walking, sitting or jogging, gaining insights into context-
aware activities such as using the toilet or having lunch, may 
require more complex computations (Wang et al. 2019). 
Third, in contrast to traditional HAR approaches, CNNs are 
able to exploit the translation invariant nature of human ges-
tures/activities as well as the local dependency attribute of 
temporal sequences (Ronao and Cho 2015).

The advantages presented above have recently devi-
ated the attention of human activity/gesture recogni-
tion research work towards the implementation of CNN 
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frameworks, which as proven by recent work in the field 
(Duffner et al. 2014; Yang et al. 2015; Ignatov 2018), can 
outperform traditional state-of-the-art approaches such as 
Random Forest, Support Vector Machines or K-Nearest 
Neighbours. However, despite the good performance 
exhibited by CNNs, major discrepancies are found among 
the literature.

One of such discrepancies is found on the segmenta-
tion of the sensory signals, which is mainly due to the 
differing duration of different gestures or activity cycles. 
While excessively short segments would miss fundamental 
characteristics of a gesture/activity, long sequences may 
retrieve characteristics from multiple gestures/activities, 
thus lowering the ultimate classification performance. 
Generally, the length of the segments is either roughly 
estimated based on the characteristics of the gesture or 
activity set studied (Ronao and Cho 2015, 2016), or cal-
culated as a hyper-parameter of the classification problem 
itself (Lee et al. 2017; Ignatov 2018).

Different approaches are also found on the pre process-
ing of the signals. Typically, 1D filters are directly used 
on the raw sensor data (Ronao and Cho 2015; Yang et al. 
2015; Ronao and Cho 2016; Ignatov 2018; Anderez et al. 
2019). However, alternative solutions have also been pro-
posed. In Lee et al. (2017), the accelerometer signals are 
unified into the magnitude of the tri-dimensional vector. 
While this approach can leverage the computational cost of 
the network, a poor performance (classification accuracy 
= 92.95%) at recognising a basic set of three high-level 
activities, suggests that crucial information is thrown away 
at such unification step. Various studies employing multi-
ple sensor nodes for data collection (Jiang and Yin 2015; 
Ha et al. 2016), propose time series to image encoding 
frameworks to capture the spatial dependency between the 
different sensors, as well as the local dependency over 
time. A posteriori 2D CNNs are used for feature learn-
ing and classification. As proven in Ha et al. (2016), 2D 
CNNs can outperform 1D CNNs on time series classifica-
tion tasks, however, the exhibited improvement is consid-
erably low.

Ultimately, the network architecture has also varied con-
siderably between different HAR works. While some studies 
propose shallow networks with only one convolutional layer 
(Lee et al. 2017; Ignatov 2018), other studies have opted 
for the employment of networks with 2 convolutional layers 
(Jiang and Yin 2015; Ha et al. 2016) or yet deeper architec-
tures (Yang et al. 2015; Ronao and Cho 2015). In theory, 
increasing the number of convolutional layers allows for the 
computation of more complex features, which as shown in 
Ronao and Cho (2015), can lead to a better classification 
performance. However, employing deep architectures may 
also lead to network overfitting and consequently to a worse 
classification performance (Ignatov 2018).

2.2  Eating and drinking recognition with the use 
of wearable sensors

Eating and drinking recognition can be considered alone a 
research area within the human activity recognition field. 
This is mainly due to most of the activities studied by HAR 
work exhibit a quasi-periodic nature (e.g. walking, jog-
ging), whereas eating and drinking are composed of sparsely 
occurring gestures embedded in continuous data streams.

Various solutions for gesture recognition have been pro-
posed in the past years. The work in Chen et al. (2017) pro-
poses a sliding-window segmentation approach alongside a 
hand-crafted feature vector and a SVM classification model 
to recognise drinking gestures from signals collected by 
a single wrist-worn inertial sensor. A classification recall 
of 91.3% is claimed by this method. However, despite the 
good classification performance achieved, the experiments 
are run under a extremely constrained scenario where the 
chairs are height adjusted to each individual and the experi-
mental data set lacks of a ‘Null’ class. The work in Schi-
boni and Amft (2018) proposes a Gaussian Mixture Hidden 
Markov Model (GMM-HMMs) network for the recognition 
of drinking gestures. The experimental data is collected from 
seven participants following their usual daily routines while 
wearing a single wrist-worn inertial sensor which embod-
ies a tri-axial accelerometer, a tri-axial magnetometer and a 
tri-axial gyroscope. A classification precision of 75.2% and 
a classification recall of 76.1% are reported in this work. 
Another drinking recognition solution is proposed in Amft 
et al. (2010). The experimental data is collected from six 
participants wearing a single wrist-worn inertial unit con-
taining a tri-axial accelerometer, a tri-axial compass and a 
tri-axial gyroscope while performing a set of various free-
living scenarios. A Feature Similarity Search (FSS) is a pos-
teriori used for the classification of the gestures, achieving a 
classification recall of 84.0% .

The work in Dong et  al. (2014) presents a two-fold 
approach for the recognition of meal periods using data from 
a single wrist-worn inertial sensor. A wrist motion energy-
based custom-peak segmentation technique is proposed to 
identify potential time windows containing meal periods. 
Once the potential eating periods are identified, a 4-dimen-
sional feature vector alongside a Naive Bayes classifier are 
used for the ultimate classification. A classification recall 
of 81.0% is achieved by this work. In Junker et al. (2008), a 
gesture recognition system to identify a set of four dietary 
gestures (‘drink’, ‘cutlery’, ‘spoon’ and ‘hand-held’) from 
data collected from five inertial units (one on the trunk and 
two on each arm) is proposed. First, a two-fold gesture spot-
ting approach based on the sliding-window and bottom-up 
segmentation technique (Keogh et al. 2004) and a FSS, 
is used to identify potential eating and drinking gestures. 
A posteriori a Hidden Markov Model (HMM) is used for 
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classification, achieving a classification precision of 73.0% 
and a classification recall of 79.0%. The work in Anderez 
et al. (2020) proposes an accelerometer-based adaptive seg-
mentation technique (CAST) to identify potential eating and 
drinking gestures embedded in the continuous sensor read-
ings. A posteriori, a soft Dynamic Time Warping (DTW)-
based gesture discrepancy measure alongside a hand-crafted 
feature vector are used to train a range of different classifiers. 
The best results are obtained using a Deep Neural Network, 
which exhibits an average per-class classification accuracy 
of 98.2%, a classification precision of 95.7% and a classifica-
tion recall of 95.0%.

2.3  Research motivation

Different limitations are found within the above reviewed 
works. First, various eating and drinking recognition sys-
tems still rely on the use of several sensor units (Junker et al. 
2008; Anderez et al. 2018a), making such solutions exces-
sively intrusive for their daily use. Second, some studies rely 
on experimental work undertaken in extremely constrained 
environments. For instance, in Chen et al. (2017), the chairs 
are height-adjusted to individuals. Besides, the individuals 
are instructed as to how to perform the drinking gestures 
and the experimental dataset is only composed of drinking 
gestures. In addition, the performance of gesture recognition 
systems under unconstrained environments still lies far away 
from that achieved by HAR systems. The sparse occurrence 
of gestures and the subsequent difficulty to develop adaptive 
segmentation techniques to accurately spot such gestures, 
generally translates into true positive missing at this pre-
liminary segmentation (spotting) step, which then further 
propagates to the final classification step. For instance, the 
results in Amft et al. (2010) show an 84% recall at spotting 
drinking gestures. The work in Junker et al. (2008) obtains 
an 80% spotting recall. Besides, accurate eating and drinking 
recognition systems still rely on specific domain knowledge 
(Anderez et al. 2020).

To our view, gesture spotting and recognition experimen-
tal work should be undertaken in realistic scenarios where 
the participants can freely perform the proposed activities/
gestures. Moreover, the resultant experimental data sets 
should include a reasonable ‘Null’ class so that the imple-
mented systems face the challenges one would expect to 
encounter in real life.

Overall, the different drawbacks found within different 
reviewed works suggests there are still many open challenges 
on the implementation of systems for eating and drinking 
gesture recognition, as well as on the deployment of suitable 
CNN architectures for activity/gesture recognition. In line 
with this, this paper presents a CNN-based eating and drink-
ing gesture recognition system which aims at overcoming 
the above-mentioned drawbacks. To do so, first an adaptive 

segmentation technique is proposed to mitigate the problem 
present on sliding window-based segmentation approaches. 
Second, the study presented here aims to unravel a great 
array of unanswered questions with regards to the use of 
CNNs for gesture recognition, as well as to propose an accu-
rate domain knowledge independent eating and drinking rec-
ognition system.

3  Methods

This section presents the methodology employed to develop 
the proposed fluid and food intake recognition system. The 
section is divided regarding the different methodology 
phases as follows. Section 3.1 presents the experimental 
setup, Sect. 3.2 describes the signal pre-processing steps 
employed to accommodate the raw signals for network fit-
ting, Sect. 3.3 defines the time series to image encoding 
frameworks employed, Sect. 3.4 describes the single-input 
and the multi-input multi-domain CNN-based frameworks 
proposed for gesture classification.

3.1  Experimental setup

The experiment conducted embodied 6 volunteers (5 male and 
1 female) having a meal which included crisps, soup, chicken 
breast and cake. The participants wore a wrist-worn tri-axial 
accelerometer (sample frequency 25 Hz) on their dominant 
hand while having the meal. The data provided by the acceler-
ometer therefore embodied three different time series, namely 
ax, ay, az , which correspond respectively to the medio-lateral, 
antero-posterior and vertical acceleration inputs of the domi-
nant wrist of the participants as these move about in space 
during the experiment. Before the meal took place, the par-
ticipants were asked to move and act freely around the house 
for unlimited time. This ensured the dataset embodied a wide 
‘Null’ class composed of irrelevant gestures from a variety 
of other quotidian activities, so that the system development 
accounts for the challenges one would expect to face in real 
life. Given the food provided, the experiment included the use 
of various utensils. Moreover, the utensils provided differed 
between different participants (i.e. various participants used a 
mug to drink water while others used a glass), therefore incor-
porating inter-utensil variability. Furthermore, one left-handed 
person took part on the experiment, thus adding extra variabil-
ity to the dataset. The labelling of the gestures was a posteriori 
aided by the use of video recordings, whereby a gesture was 
classified regarding the type of gesture that had caused the 
peak on the acceleration on the y-axis. With this, a total of 
587 “Null” gestures, 59 “Drinking” gestures and 167 “Eat-
ing” gestures were retrieved for further feature extraction and 
classification, with an average segment length of 1.22 seconds 
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for the “Null” class, 4.51 seconds for the “Drinking” class and 
3.12 seconds for the “Eating” class.

3.2  Signal pre‑processing

The signal pre-processing process is divided into three dif-
ferent stages: signal shift, signal segmentation and segment 
padding.

3.2.1  Signal shift

Eating and drinking gestures generally require a movement of 
the dominant hand towards the mouth. Given the orientation 
shift of the y-axis when the wrist-worn accelerometer is worn 
by a left handed person, a 180◦ shift is applied to the signal cor-
responding to the accelerometer y-axis from the data collected 
from the left-handed participant.

3.2.2  Signal segmentation

The aim of signal segmentation is to either break down the 
signal into segments that share a common characteristic or 
to filter out unwanted segments of the signal. In this case, an 
adaptive segmentation technique, namely the CAST (Anderez 
et al. 2020), is employed to identify potential segments con-
taining an eating or a drinking gesture. This technique makes 
use of the crossings between two moving averages ȳ1[t] and 
ȳ2[t] (fast and slow respectively) to identify those potential eat-
ing and drinking gestures. The moving averages are calculated 
over the accelerometer y-axis signal as:

(1)ȳ[t] =
1

n

n−1∑
i=0

y[t − i]

where n is the number of data samples over which the mov-
ing average is calculated.

In this case, after the experimental work undertaken in 
Anderez et al. (2020), n = 25 (1 s) and n = 150 (6 s) are 
used for the calculation of ȳ1[t] and ȳ2[t] respectively.

The intuition behind this technique is the sequence of 
movements which compose a complete eating or drinking 
gesture. First, one has to grasp the corresponding piece 
of food or utensil (i.e. spoon), then such food or utensil is 
taken to the mouth and ultimately, the hand is returned to 
the rest position. The presented sequence of movements 
leads to a cross-over of the fast moving average y[1] to 
the slow moving average y[2] when the hand is moving 
towards the mouth, followed by the subsequent cross-down 
when the hand is moved back to the rest position. This 
can be observed on the example of the performance of the 
CAST at spotting a drinking gesture and an eating gesture 
depicted in Fig. 1.

3.2.3  Segment padding

Contrary to traditional sliding-window approaches, the 
CAST adapts to the duration of the gestures themselves, 
leading to a gesture set of signal segments with varying 
lengths. The segments are a posteriori padded to the length 
of the longest segment retrieved by the CAST ( n = 394 ) to 
allow for network batch training on the 1D CNN. The GAF 
and the MTF time series to image encoding frameworks 
utilise such padded segments of length ( n = 394 ). In the 
case of the signal spectrogram framework, n is rounded up 
to the nearest higher power of 2 ( n = 512).

Fig. 1  Example of the perfor-
mance of CAST at spotting a 
drinking gesture and an eating 
gesture
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3.3  Time series imaging

Inspired by the work in Wang and Oates (2015); Lawal and 
Bano (2019), three different frameworks are employed for 
encoding the accelerometer signal segments into images, 
namely the signal spectrogram, the Markov Transition Field 
(MTF) and the Gramian Angular Field (GAF). In this work, 
the image encoding is independently applied to the magni-
tude of the 3-dimensional accelerometer signal as well as 
to the y-axis signal (previously employed for signal seg-
mentation). Different pictorial examples of the time series 
to image encoding frameworks employed on the different 
gesture classes are shown in Fig. 2.

3.3.1  Signal spectrogram

The signal spectrogram is a visual representation which 
depicts the strength spectrum of frequencies of a signal as 
it varies with time. Given a time series X = {x1, x2,… , xn} , 

X is first converted into the frequency domain using the 
Fast Fourier Transform (FFT) as follows:

where a1, a2,… , aWl
 are the FFT components of the corre-

sponding window of length Wl . In this case, a window length 
Wl of 32 samples with 50% overlapping is used across the 
padded segments (N = 512).

A posteriori, the signal spectrogram is calculated as 
follows:

Eventually, the resulting signal spectrogram is encoded into 
a 2-dimensional (time and frequency) graph, with a third 
dimension (signal amplitude of a particular frequency at a 
specific time) represented by a colour scale.

(2)FFT(X) =

∑Wl

k=1
��ak��2

Wl

(3)spectrogram{x(t)}(�,�) = |X(�,�)|2

Fig. 2  Examples of the 
employed imaging techniques 
for each of the classes (’Drink’, 
’Eat’, ’Null’). In the examples 
provided, the plot and the cor-
responding spectrogram, MTF 
and GAF, are visual repre-
sentations of the y-axis of the 
accelerometer signal
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3.3.2  Markov Transition Field

The Markov Transition Field (MTF) framework is employed 
to encode dynamical transition statistics of the signal. To 
preserve the sequential information enclosed within the 
signal, the framework proposed by Wang and Oates (2015) 
is employed, whereby the Markov transition probabilities 
are represented sequentially, thus preserving information in 
the time domain. Given a time series X = {x1, x2, ..., xn} , Q 
quantile bins are identified and each xi is assigned to the 
corresponding bins qj (j ∈ [1,Q]) . A posteriori a Q × Q 
weighted adjacency matrix W is constructed with the count 
of the transitions among quantile bins in the form of a first 
order Markov chain along the time axis. wi,j is then estimated 
as the frequency at which a point in the quantile qj is fol-
lowed by a point in the quantile qi . This, after normalisation ∑

j wi,j = 1 gives as a result the Markov transition matrix W. 
However, W is insensitive to the distribution of X and the 
temporal dependency on time steps ti.

To overcome the loss of the temporal dependency, the 
Markov Transition Field (MTF) matrix M is defined as 
follows:

The Q × Q Markov transition matrix (W) is computed by 
dividing the data into Q quantile bins, where the quantile 
bins that contain the data at time stamp i and j are qi and qj 
respectively (q ∈ [1,Q]) . Mij in MTF denotes the transition 
probability of qi → qj . That is, the matrix W is spread out 
into the MTF matrix M by considering temporal position.

3.3.3  Gramian Angular Field

Given a time series X = {x1, x2, ..., xn} where each xi is nor-
malised as:

X̃ can be represented in polar coordinates as follows:

where ti is the time stamp and N is a constant regularisation 
factor of the polar coordinate system.

The above encoding offer two major advantages. First, the 
function is bijective. That is, each value in the original signal 
correspond to one value in the polar coordinate representation 

(4)M =

⎡
⎢⎢⎢⎢⎣

wij�x1∈qi,x1∈qj … wij�x1∈qi,xn∈qj
wij�x2∈qi,x1∈qj … wij�x2∈qi,xn∈qj

⋮ ⋱ ⋮

wij�xn∈qi,x1∈qj ... wij�xn∈qi,xn∈qj

⎤⎥⎥⎥⎥⎦

(5)x̃i =
(xi − max(X) + (xi − min(X))

max(X) − min(X)

(6)
{

𝜙 = arccos(x̃i),−1 ≤ x̃i ≥ 1, x̃i ∈ X̃

r =
ti

N
, ti ∈ N

and vice versa. Second, the absolute temporal relations are 
preserved through the r coordinate.

Further to the conversion, the angular perspective can 
be easily exploited by considering the trigonometric sum 
between each pair of points. Thusly, the GAF is defined as:

Taken the definition of the inner product of two vectors x 
and y as:

G is therefore a Gramian matrix as shown in Equation 9:

3.4  Network Architectures

This work proposes a range of single-input and multi-input 
multi-domain CNNs for the recognition of eating and drink-
ing gestures from continuous accelerometer readings. The 
intuition behind, is the great potential of CNNs to identify 
the relevant patterns from accelerometer temporal sequences 
given the translation invariant nature of gestures. In addition, 
CNNs are knowledge domain independent since the features 
are automatically learned through the training step. Such 
feature learning takes place following a hierarchical struc-
ture, whereby the most elementary patterns are captured at 
the left-most layers and more complex patterns are learned 
at the right-most ones.

3.4.1  Benchmark Model ‑ 1D CNN

Based on the exhibited success at similar classification tasks 
(Anderez et al. 2019), a 1D CNN fed with raw accelerometer 
data is proposed as a benchmark model. Given the acceler-
ometer time series x0

i
= [x1, ..., xN] , where N is the length of 

the accelerometer segments (in this case, N = 394 samples), 
the output of the convolutional layers is given by:

where l is the layer index, M is the kernel size, wj
m is the 

weight for the jth map and mth filter index, bl
j
 is the bias term 

for the jth filter at layer l, and � is the activation function. For 

(7)G =

⎡⎢⎢⎢⎣

cos(�1 + �1) … cos(�1 + �n)

cos(�2 + �1) … cos(�2 + �n)

⋮ ⋱ ⋮

cos(�n + �1) … cos(�n + �n)

⎤⎥⎥⎥⎦

(8)< x, y >= x ⋅ y −
√
1 − X̃2 ⋅

√
1 − X̃2

(9)G =

⎡⎢⎢⎢⎣

< x̃1, x̃1 > … < x̃1, x̃n >

< x̃2, x̃1 > … < x̃2, x̃n >

⋮ ⋱ ⋮

< x̃n, x̃1 > … < x̃n, x̃n >

⎤⎥⎥⎥⎦

(10)c
l,j

i
= �

(
bl
j
+

M∑
m=1

wl,j
m
x
l−1,j

i+m−1

)
,
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clarification, the subscript π of neuron c defines the ith neu-
ron on layer l, while the subscript i in the time series x refers 
to the ith accelerometer data sample. The mth filter index rep-
resents the mth parameter of the convolution filter.

In this case, the activation function employed is the recti-
fied linear unit (ReLU):

Following the convolutional layer, a pooling layer performs 
a non-linear down-sampling by retrieving the maximum 
value among a set of nearby inputs. This is given by:

where T is the pooling stride and R the pooling size (in this 
study, 1 and 2 respectively).

Several convolutional and pooling layers can be stacked 
to form deeper network architectures. The output from the 
stacked convolutional and pooling layers is flattened to form 
the feature vector f I = [f1, ..., fI] , where I is the number of 
units in the last pooling layer. f I is then used as input to the 
fully-connected layer:

where wl−1
ji

 is the connection weight term from the ith node 
on layer l − 1 to the jth node on layer l, � is the activation 
function (ReLU) and bl−1

i
 is the bias term.

The output from the fully connected layer is then used 
as input to the softmax function, by which the gesture clas-
sification is computed as:

where L is the index of the last layer, c is the gesture class 
and NC is the total number of gesture classes.

The network training is conducted using the Adaptive 
Moment Estimation (Adam) optimiser on batches of 32 
accelerometer segments for a total of 30 epochs. Categori-
cal cross-entropy is used as the loss function. A dropout 
rate of 0.5 is used on the fully connected layer to mitigate 
overfitting issues.

3.4.2  Benchmark Network Optimisation

The performance of the 1D CNN is studied across various 
key network parameters. These include the number of layers 
(l), the number of filters within a layer (j) and the filter size 
(M) as follows:

– l = [1,2,3]

(11)�(z) = max(0, z)

(12)p
l,j

i
= max

r ∈ R

(
C
l,j

i×T+r

)

(13)hl
i
=
∑
j

wl−1
ji

(
�(f l−1

i
) + bl−1

i

)

(14)P(c�p) = argmax
c∈C

e(f
l−1wL+bL)

∑NC

k=1
e(f

L−1wk)

– j = [16,32,64,128,256]
– M = [6,12,25,50,75,100,125,150]

Given the sample frequency employed for data collection 
(25 Hz), the filter size ranges from M = 0.24 seconds to 
M = 6 seconds.

3.4.3  CNN frameworks description

Once the 1D benchmark network is optimised, various 
multi-input multi-domain networks are built on top to eval-
uate whether a further improvement on the classification 
performance can be achieved. The different proposed CNN 
frameworks are described below:

– 1. 1D CNN: Optimised 1D CNN benchmark network fed 
with raw accelerometer data.

– 1.1.1. Spec(Mag): Optimised 1D CNN benchmark net-
work fed with raw accelerometer data combined with a 
2-layered 2D CNN fed with spectrogram images of the 
magnitude of the tri-dimensional accelerometer signal.

– 1.1.2. Spec(y): Optimised 1D CNN benchmark network 
fed with raw accelerometer data combined with a 2-lay-
ered 2D CNN fed with spectrogram images of the y-axis 
of the accelerometer signal.

– 1.2.1. MTF(Mag): Optimised 1D CNN benchmark net-
work fed with raw accelerometer data combined with a 
2-layered 2D CNN fed with MTF images of the magni-
tude of the tri-dimensional accelerometer signal.

– 1.2.2. MTF(y): Optimised 1D CNN benchmark network 
fed with raw accelerometer data combined with a 2-lay-
ered 2D CNN fed with MTF images of the y-axis of the 
accelerometer signal.

– 1.3.1. GAF(Mag): Optimised 1D CNN benchmark net-
work fed with raw accelerometer data combined with a 
2-layered 2D CNN fed with GAF images of the magni-
tude of the tri-dimensional accelerometer signal.

– 1.3.2. GAF(y): Optimised 1D CNN benchmark network 
fed with raw accelerometer data combined with a 2-lay-
ered 2D CNN fed with GAF images of the y-axis of the 
accelerometer signal.

– 1.4. F.V: Optimised 1D CNN benchmark network fed 
with raw accelerometer data combined with a 2-layered 
NN fed with a 31-dimensional hand-crafted feature vec-
tor.

The architecture of the 2D CNNs employed for the feature 
learning of the resultant spectrogram, MTF and GAF images 
is defined by l = 2 , j = 5 × 5 and M = 16 . The framework 
including the hand-crafted feature vector (F.V) employs a 
2-layered Neural Network (NN) with 16 neurons on each 
layer. Such feature vector includes a wide range of signal 
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descriptive statistics as well as the duration of the differ-
ent gestures. A visual representation of the different CNN 
frameworks employed is shown in Fig. 3.

A posteriori, the classification performance of each of 
the frameworks is evaluated by adopting a Leave-One-Out 
cross-validation strategy, whereby on each validation step 
one of the experiment participants is used as the test set 
and the remaining subjects as the training set. Given that 
six participants took part in the experiment, the resultant 
model performance metrics are then reported as the average 
of the six runs.

4  Experimental results

The results achieved by the different CNN-based frame-
works for the recognition of eating and and drinking gestures 
are presented in this section. The problem has been tackled 
as a 3-class classification problem, with the classes being 
‘Drink’, ‘Eat’ and ‘Null’. The ’Null’ class embodies all the 
irrelevant gestures retrieved by the segmentation technique. 
That is, all the gestures which are not an eating or a drink-
ing gesture.

A parametrically optimised 1D CNN fed with raw accel-
erometer data is first proposed as a benchmark classification 
model. Such optimisation is achieved by studying the per-
formance of the network across the number of layers l, the 
number of filters j and the filter size M. This can be better 
observed in Fig. 4 where the average per-class classifica-
tion accuracy of the networks is plotted against the different 
studied parameters. The optimisation process is performed 
layer by layer. That is, once the values j and M are optimised 
for the 1-layered CNN, a second convolutional layer is added 

to that optimised network. This process is then repeated for 
the implementation of the 3-layered CNN. From Fig. 4, it 
can be seen that while an increase on the classification per-
formance is achieved by increasing the number of layers 
(this is confirmed by an ANOVA-Tukey HSD test), no direct 
relationship can be observed between the classification per-
formance and the number of filters or the filter size. Despite 
the improvement seen on the classification performance 
achieved by the increase made to the number of layers, a 
further analysis is made by analysing the distribution of the 
average per-class classification accuracy across the different 
configurations. As it can be seen on Fig. 5, the performance 
distribution exhibited by the 1-layered and the 3-layered 
CNNs exhibit a negative skewness. This indicates the use 
of a 1-layered network and that of a 3-layered network for 
this specific problem can lead to underfitting and overfit-
ting issues respectively, therefore a 2-layered network would 
be recommended as the more conservative architecture for 
future similar problems where the execution of network opti-
misation is not possible.

In this case, as shown in Table 1, the best average per-
formance across j and M is achieved by the 3-layered CNN 
with an average per-class classification accuracy of 96.06%. 
The best classification performance is also achieved using a 
3-layered CNN (the configuration is described in the table). 
Such network achieves an average per-class classification 
accuracy of 97.10%, an average per-class classification 
precision of 93.01% and an average per-class classification 
recall of 93.96%. The performance achieved on each class 
are reported in Table 3.

After the optimisation of the 1D CNN, the different 
frameworks proposed in Sect. 3.4.3 are evaluated. The clas-
sification performance achieved by each of the frameworks 

Fig. 3  Diagram showing the 
different single-input and multi-
input multi-domain networks 
proposed. It should be noticed 
that the top part (1D CNN) is a 
common factor on all the pro-
posed networks. The rest of the 
models are built on top of that 
one by combining the respective 
learned features at a common 
fully connected layer
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can be seen in Fig. 6. The results indicate the benchmark 
1D CNN model outperforms the rest of the proposed frame-
works, with only the F.V framework obtaining comparable 
results. Despite the implicit additional information provided 
by the rest of the frameworks, the required additional com-
plexity of the network led to overfitting issues.

4.1  Discussion

The CNN-based system proposed addressed the problem of 
spotting and recognising eating and drinking gestures with 
the use of a single wrist-worn tri-axial accelerometer. As 
demonstrated in previous work (Anderez et al. 2020), the 

Fig. 4  Classification performance of the 1D CNN across the parameters l, j and M, where a depicts the average per-class classification accuracy 
of the 1-layered CNN, b of the 2-layered CNN and c of the 3-layered CNN

Fig. 5  Study upon network architecture (number of layers). a The distribution of the classification accuracies achieved by the 1-layered, 2-lay-
ered and 3-layered CNNs. b The corresponding violin plot

Table 1  Summary of results. 
The Avg. perform. (%) column 
reports the mean of the average 
per-class classification accuracy 
across j and M 

Acc. (%), Prec. (%) and Rec. (%) report the respective values achieved by the best network configurations 
described in the Best Configuration column

1D CNN Avg. perform. 
(%)

Best Configuration Acc. (%) Prec. (%) Rec. (%)

1 Layer 93.36 j1 = 64 filters, M1 = 50 94.82 86.46 90.23
2 Layers 95.59 j2 = 64 filters, M2 = 125 96.69 91.40 94.28
3 Layers 96.06 j3 = 16 filters, M3 = 25 97.10 93.01 93.96
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adaptive segmentation technique employed (CAST), cor-
rectly spotted all the eating and drinking gestures embedded 
in the accelerometer readings. This overcomes the drawback 
found in previous work at trying to estimate a suitable seg-
ment length for the specific classification problem (Lee et al. 
2017; Ignatov 2018).

Despite the efforts given to improve the classification per-
formance of the 1D CNN fed with raw accelerometer data, 
these mostly led to overfitting issues. However, the satisfac-
tory results achieved in this work not only outline the suit-
ability of CNNs for gesture recognition problems, but also 
signify a great contribution in the field, as supported by the 
outperformance of most similar work. Given the complexity 
of an eating activity, previous research has varied the way 
of tackling its recognition, with some works tackling the 
recognition of a complete meal period (Dong et al. 2014), 

and others aiming at the recognition of specific eating ges-
tures (Junker et al. 2008; Anderez et al. 2020). To fairly 
evaluate the proposed system against previous similar work, 
the recognition of drinking gestures in semi-controlled and 
controlled lab settings is considered. As it can be observed 
in Table 2, from the research works undertaking both the 
spotting and recognition phases, only the work in Anderez 
et al. (2020) exhibit a slightly better performance. However, 
the system presented here exhibits two major advantages 
as compared to the work in Anderez et al. (2020). First, the 
CNN-based system is domain knowledge independent. Sec-
ond, the presented system only makes use of accelerometer 
data, whereas the system proposed in Anderez et al. (2020) 
makes use of both accelerometer and gyroscope data. As 
stated in Dong et al. (2014), a gyroscope consumes approxi-
mately ten times more power than an accelerometer, mak-
ing the use of the former excessively power consuming for 
continuous monitoring.

5  Conclusions and future work

This paper has presented a system to address gesture rec-
ognition with a case study on eating and drinking. First, an 
adaptive segmentation technique, namely the CAST, was 
employed for spotting potential eating and drinking ges-
tures within the continuous accelerometer readings. This 
technique exhibits a 100% spotting recall, therefore over-
coming the drawbacks found in previous literature, where 
true positives are missing at this preliminary step. This is 
crucial since the errors taking place at this step propagate to 
the classification step, therefore affecting the overall perfor-
mance of the system.

A thorough study on CNNs for eating and drinking ges-
ture recognition was undertaken. A 1D CNN fed with raw 
accelerometer data was parametrically optimised and pro-
posed as a benchmark classification model. The best clas-
sification results were obtained with a network architecture 
composed of 3 convolutional layers with an overall per-
class classification accuracy of 97.10%. However, certain 
architectural configurations of the 3-layered CNN, show 
symptoms of model overfitting. Thus, it is crucial not to 

Table 2  Comparison of the 
proposed system to previous 
work on the recognition of 
drinking gestures

Method Sensor units Spot. Recog. Accuracy Precision (%) Recall (%)

Anderez et al. (2020) 1 ✓ ✓ 99.0 93.3 93.3
Proposed System 1 ✓ ✓ 98.73 92.98 89.83
Junker et al. (2008) 5 ✓ ✓ – 88.0 83.0
Amft et al. (2010) 1 ✓ ✓ – 84.0 90.0
Serrano et al. (2017) 4 ✓ ✓ – 82.28 84.42
Chen et al. (2017) 1 X ✓ – 96.5 91.3
Ramos-Garcia et al. (2015) 1 ✓ ✓ 86.5 – –

Table 3  Classification performance per class

Accuracy (%) Precision (%) Recall (%)

Drink 98.73 92.98 89.83
Eat 96.29 87.43 95.81
Null 96.29 98.60 96.25
Average per class 97.10 93.01 93.96

Fig. 6  Classification performance achieved by the proposed CNN-
based frameworks
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assume complex networks will perform better and keep an 
adequate balance between the complexity of the network, 
the data available and the complexity of the classification 
problem itself.

Further to defining a 1D CNN benchmark classifica-
tion model, various efforts were made to enrich the fea-
ture learning process performed through such benchmark 
model. These included the use of various 2D CNNs fed 
with the resultant images obtained by the employment of 
three different time series to image encoding frameworks, 
as well as a Neural Network (NN) fed with a 31-dimen-
sional hand-crafted feature vector. A posteriori, the above 
feature learning techniques were combined with the result-
ant features of the benchmark network at a common fully 
connected layer. Despite the good performance exhibited 
by the employed time series to image encoding frame-
works in different applications such as audio analysis (Yu 
and Slotine 2009) or EEG-based sentiment classification 
(Wang and Oates 2015), in this case, their use did not 
lead to a better classification performance when added to 
the 1D benchmark network. The model incorporating the 
31-dimensional feature vector did not improve the classi-
fication performance of the benchmark model either. Prob-
lems of model overfitting were observed in all the cases. 
Thus, it can be concluded that raw accelerometer data 
alongside the use of a 1D CNN is the preferred solution, 
since it offers an adequate balance between underfitting 
and overfitting, leading to a better classification perfor-
mance when unseen data is fed into the network.

Overall, the results obtained suggest the eating and 
drinking gesture recognition proposed is accurate and 
reliable. In addition, as opposed to comparable systems 
in terms of the gesture recognition performance (Anderez 
et al. 2020), the system presented here offers two major 
advantage in the sense that it does not require domain-
specific knowledge and only makes use of accelerometer 
data. We believe, the results achieved are a great contribu-
tion towards unobtrusive diet monitoring, and thus towards 
the independence and well-being management of elderly 
people living independently.

Future efforts will be directed towards the development 
of a system for the recognition of meal periods based on 
the distribution of eating gestures across time. Further to 
this, we aim to develop trend analysis techniques to iden-
tify irregularities or changes on personal dietary patterns 
so that cases in which eating assistance is required are 
accurately identified.
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