
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing 
https://doi.org/10.1007/s12652-020-01702-y

ORIGINAL RESEARCH

Improving monarch butterfly optimization through simulated 
annealing strategy

Dongfang Yang1 · Xitong Wang2 · Xin Tian3 · Yonggang Zhang2

Received: 15 July 2019 / Accepted: 7 January 2020 
© The Author(s) 2020

Abstract
Currently, a novel of meta-heuristic algorithm called monarch butterfly optimization (MBO) is presented for solving machine 
learning and continuous optimization problems. It has been proved experimentally that MBO is superior to artificial bee 
colony algorithm (ABC), ant colony optimization algorithm (ACO), Biogeography-based optimization (BBO), differential 
evolution algorithm (DE) and simple genetic algorithm (SGA) algorithms on most test functions. This paper presents a new 
version of MBO with simulated annealing (SA) strategy called SAMBO. The SA strategy is put in the migration operator 
and butterfly adjusting operator. So the newly proposed algorithm has two features: One is that the algorithm accepts all the 
butterfly individuals whose fitness are better than their parents. The other is that the algorithm randomly selects some indi-
viduals which are worse than their parents to disturbance the convergence of algorithm. In this way, the SAMBO algorithm 
can escape from local optima. Finally, the experiments are carried on 14 continuous nonlinear functions, and results show 
that SAMBO method exceeds the MBO algorithm on most test functions.

Keywords  Monarch butterfly optimization · Simulated annealing · Benchmark problems · Neighborhood search

1  Introduction

Recently, more and more nature-inspired algorithms (Yang 
2014) have been proposed and generally applied in numer-
ous applications, such as path planning (Wang et al. 2012), 
machine learning (Zhou 2016), knapsack problem (Feng 
et al. 2015), fault diagnosis (Duan and Luo 2015; Gao et al. 
2008) and directing orbits of chaotic system (Cui et al. 
2013). Among all kinds of natural-inspired algorithms, clus-
tering algorithms and evolutionary algorithms are the most 
representative ones.

Analysis of nature-inspired algorithms from the explora-
tion and search space shows that they both have two major 

components: exploitation and exploration, also called rein-
forcement and diversification. Exploitation is mainly to 
obtain relevant information from the search space of neigh-
borhood to generate new solution superior to the current. But 
in the process it always presents to attempt to find the local 
optimal solution. Therefore, the advantage of exploitation 
is that it usually has fast convergence. But its disadvantage 
is also obvious that it is easy to fall into the local optimum. 
Exploration is the opposite. Generally speaking, the search 
space of exploration is within the global scope, so the diver-
sity of search space is better. Therefore exploration could 
generate new solutions far away from the existing ones. It 
is not easy for exploration to fall into the local optimal, so 
the possibility of finding the global optimal will be greatly 
improved. But it is slow to converge and has a lot of calcula-
tion. In order to make the best performance of the algorithm, 
it is important to balance exploitation and exploration.

SI was originally inspired by the collective behavior of 
social insects. It was first formally proposed by Dorigo et al. 
in his book “Swarm Intelligence: From Natural to Artificial 
Systems” in 1999. The following particle swarm optimiza-
tion (PSO) (Zhao 2010; Kennedy and Eberhart 2002; Mir-
jalili et al. 2014), animal migration optimization (AMO) (Li 
et al. 2014), artificial fish swarm algorithm (Zainal et al. 
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2015) and monarch butterfly optimization (MBO) (Wang 
et al. 2015) belong to this category.

Neighborhood search (NS) (Ahuja et  al. 2002) is an 
incomplete and perturbed search method. This approach 
starts with the candidate solution, iteratively looking for a 
better alternative in its neighborhood. The neighborhood is 
a basic concept in optimization, which in metric space is 
a sphere centered on one point. When seeking an extreme 
value for a continuous function, you can implement the 
approximation of function extreme by seeking the direction 
of independent variable’s change to accomplish iteration of 
location in the neighborhood of current location. Neighbor-
hood search is very practical. Firstly, it requires a certain 
amount of solutions, so it needs less memory space. Sec-
ondly, it usually show nice performance, and could find solu-
tions faster than large complete approaches. Finally, it can 
be applied to combinational optimization problem through 
redefining the concept of neighborhood in discrete space.

Neighborhood search have been applied triumphantly in 
many combinatorial optimization problems, such as bin-
packing (Ceschia et al. 2013) and scheduling (Ceschia and 
Schaerf 2011). Several popular NS methods appear, such 
as hill climbing (HC) (Sha et al. 2012), steepest descent 
(SD) (Meza 2010), simulating annealing (SA) (Kirkpatrick 
et al. 1983), and tabu search (TS) (Glover 1998; Glover and 
Marti 2006).

Inspired by the migration behavior of monarch butterfly 
individuals in the nature, Wang et al. put forward monarch 
butterfly optimization (MBO) (Wang et al. 2015) recently. 
The algorithm is obtained by simplifying and idealizing 
the migration behavior of monarch butterfly. The algorithm 
divides the butterfly population into two parts, one for 
exploitation and the other or exploration. In the process of 
iteration, migration operator and butterfly adjusting opera-
tor are respectively used to generation the new population. 
MBO is easy to operate, and the operation of two operators 
is theoretically parallel.

In order to escape local optima to get better fitness and 
accept moves which reduce the solution quality, MBO 
adopts simulated annealing. This paper presents an improved 
version of MBO, called SAMBO. In SAMBO, simulated 
annealing is involved into the migration operator and but-
terfly adjusting operator. If the new generated individuals’ 
fitness outperforms their parents’, the algorithm will accept 
all of them as the new generation. Otherwise, the algo-
rithm receives it with certain probability. While basic MBO 
accepts all the new generated individuals. Obviously, this 
new algorithm can speed up convergence and augment the 
diversity of individual in the later search process. Towards 
proving the advantage of SAMBO, a series of experiences 
are performed on 14 test instances. The results indicate that 
SAMBO perform better than basic MBO in finding the opti-
mal solution on almost all the benchmarks.

Section 2 reviews MBO algorithm and simulating anneal-
ing. Section 3 discusses how to incorporate the simulating 
annealing strategy into the migration operator and butterfly 
adjusting operator. Section 4 shows the comparison of MBO 
and SAMBO through testing on 14 benchmark problems. 
Finally, Sect. 5 outlines the summary of algorithm and the 
plan for the future work.

2 � Literature reviews

2.1 � Monarch butterfly optimization

As one of the most familiar North American butterflies, 
the monarch butterfly has an orange and black pattern that 
can be easily recognized (Garber 2013). Male and female 
monarchs have different wings, which makes it easy to 
tell them apart. It is well known that every summer North 
American monarch will fly thousands of miles from the USA 
and southern Canada to Mexico to complete its migration, 
it involves flying over the Rocky Mountains in the west to 
California. In order to overwinter, they travel thousands of 
miles to Mexico. The southward movement occurs in August 
and ends with the first frost. Then, in the spring, they moved 
back from the south. Females lay eggs during these migra-
tions to produce offspring. Recent studies have shown that 
some monarchs show levy flight as they migrate or move. 
By simulating the migration behavior of Monarch butter-
flies in nature, a new nature-inspired algorithm has been 
proposed, which is called monarch butterfly optimization 
(MBO). The Monarch Butterfly Optimization algorithm 
mainly solves continuous Optimization problems. In mon-
arch optimization, all individual monarch butterflies are ide-
alized and distributed only in two locations, namely, south-
ern Canada, northern United States (Land 1) and Mexico 
(Land 2). Therefore, the location of monarch butterflies can 
be updated in two ways. First, all descendants are gener-
ated by the migration operator, which can be adjusted by the 
migration ratio. Then, the position of the other butterflies is 
adjusted by the butterfly adjustment operator. In other words, 
the search direction of all butterfly individuals in the mon-
arch butterfly optimization algorithm is mainly determined 
by migration operator and butterfly adjustment operator. The 
migration operator and the butterfly adjustment operator can 
be implemented simultaneously. Therefore, the monarch but-
terfly optimization algorithm can be processed in parallel 
theoretically, and can balance intensification and diversifi-
cation well, which is a very important point in the field of 
metaheuristic algorithm.

To solve optimization problems, the migration of mon-
arch butterfly could be reduced to the following regulations 
in MBO (Wang et al. 2015). 
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1.	 The butterflies which are on Land1 and Land2 make up 
the whole species group.

2.	 Every progeny is just produced by the individuals in 
Land 1 or Land 2.

3.	 The scale of the butterfly species group remains the 
same.

4.	 There is elitist strategy in MBO that the individual with 
the best fitness is preserved.

2.1.1 � Migration operator

By simplifying monarch butterflies’ migration process, the 
number of butterfly individuals in Land1 and Land2 can be 
recorded as ceil(p ∗ NP)(NP1) and NP − NP1(NP2) respec-
tively, according to the time in Land 1 and Land 2. Here, 
ceil(x) rounds x to the nearest integer greater than or equal 
to x; NP represents the total number of butterfly individuals; 
p presents the ratio of butterfly individuals in Land 1.This 
migration process can be marked out below:

where xt+1
i,k

 indicates kth element of xi at t + 1 generation. 
Alike, xt

r1,k
 indicates the kth element of xr1 at t generation. 

Monarch butterfly r1 is chosen from Land1 randomly. While 
r ≤ p, xt+1

i,k
 is updated by Eq. (1). r is computed as Eq. (2)

where rand is a random number gained from uniform distri-
bution. peri is set to 1.2 that presents the migration period in 
basic MBO. When r > p, xt+1

i,k
 is updated by Eq. (3)

where xt
r2,k

 indicates the kth element of xr2 at t generation. 
Monarch butterfly r2 is randomly chosen from Land2.

2.1.2 � Butterfly adjusting operator

For all the elements of monarch butterfly j, if rand ≤ p , it is 
generated as Eq. (4):

in the same way where xt+1
j,k

 indicates the kth element of xj at 
t + 1 generation, and xt

best,k
 indicates the kth element of xbest 

which owns the best fitness in the whole species group. If 
rand > p , it could be generated as Eq. (5):

where xt
r3,k

 indicates the kth element of xr3 . Butterfly r3 is 
randomly chosen from Land 2.

(1)xt+1
i,k

= xt
r1,k

(2)r = rand ∗ peri

(3)xt+1
i,k

= xt
r2,k

(4)xt+1
j,k

= xt
best,k

(5)xt+1
j,k

= xt
r3,k

With this addition,if rand > BAR , it is generated as Eq. 
(6) (Wang et al. 2015):

where BAR presents butterfly adjusting rate. dx indicates the 
walk step of butterfly j which could be computed through 
L ́e vy flight as shown in Eq. (7). � indicates the weighting 
factor as follow in Eq. (8):

where Smax indicates the max walk step.
Although MBO could obtain the better solution, it has a 

poor performance on finding the average value. So we pro-
pose a new method that could escape from local optimal to 
get the better value. And the part of Sect. 5 gives the result 
of experimental proof.

2.2 � Simulated annealing

Simulated annealing (SA) was first proposed by Metropolis 
in 1953, and used into combinatorial optimization problems 
by Kirkpatrick in 1983. SA mimics the annealing process of 
solid matter as the optimization process, where the energy 
function is expressed in form of the objective function. The 
simulated annealing strategy can search for the system state 
with the lowest energy, and select the adjacent state of raised 
energy with certain probability along with the decrease of 
temperature.This makes SA completely different from the 
greedy strategy, and the ability to escape from the local 
optima to be greatly enhanced.

One of the limitations of neighborhood search methods 
is that only local knowledge, the neighborhood N(s) of the 
solution s, is thought over at each step. So these neighbor-
hood search methods are simple to fall into the local opti-
mum. To avoid such, SA accepts a worsening move m ∈ N(s) 
at certain probability which depends on Δf (s,m) . The bigger 
is the loss of solution’s quality attracted by move, the less 
likely move is chosen. If the move gets a better function 
value, it must be selected. The probability of electing a move 
m is calculated as Eq. (9) (Urli 2015):

To command the frequency of accepting worse moves, a 
parameter temp (temperature) is presented and initialized 
to t0 which could be calculated heuristically or adjusted 
for the special problems. As the time passes, temp can be 
updated continually in terms of a cooling schedule. Then,a 
random parameter r′ is a random number in (0, 1). If 

(6)xt+1
j,k

= xt+1
j,k

+ � × (dxk − 0.5)

(7)dx = Levy(xt
j
)

(8)� = Smax∕t
2

(9)P(m|s, temp) =
{

e−Δf (s,m)∕temp if Δf (s,m) > 0

1 otherwise
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r� < P(m|s, temp) , the move m is adopted. If not, the move 
is refused. Due to influence of temp, SA will adjust the value 
of temp as time goes. At the start of the search, many worse 
moves are adopted when temp is large. As temp declines, 
the algorithm accepts less and less moves, and implements 
standard hill climbing (Sun et al. 2018b) in the last stage of 
search.

The usual method to reduce the value of temp is to 
employ a geometric cooling schedule, i.e.,to choose a cool-
ing rate parameter 𝜆(0 < 𝜆 < 1) , and to generate the new 
temperature as Eq. (10):

after lots of moves’ neighbors_sampledmax have been meas-
ured for acceptance. The main component of simulated 
annealing is shown as Fig. 1.

Customarily when temp < tmin (set by experimenter), the 
search quits. But we control the stop condition through the 
iteration generation of monarch butterfly in algorithm.

3 � Research methodology

MBO is a newly proposed nature-inspired meta-heuristic 
algorithm. Though it has revealed its advantage on some 
benchmark problems, it may fail to obtain the optimal 
property on average value. In this paper, the basic MBO 

(10)temp = � ⋅ temp

algorithm incorporates simulated annealing to enhance 
the property of algorithm. The main structure of SAMBO 
method is given below.

The butterfly individuals in Land1 and in Land2 are 
updated according to Eqs. (1)–(3) and Eqs. (4)–(8), respec-
tively. If the fitness f (xt+1

i
) of generated individual xt+1

i
 is 

less than the fitness f (xt
i
) , it will be accepted. Otherwise 

P(m|s, temp) can be formulated by Eq. (9). If random num-
ber r′ is less than P(m|s, temp),the generated individuals 
could also be accepted. Besides, the algorithm will refuse 
new generated individuals. This is the difference between 
simulated annealing and greedy strategy. 

Fig. 1   Components of simulated annealing
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On the basis of above analysis, the updated migration opera-
tor and updated butterfly adjusting operator are shown in algo-
rithm 1. and algorithm 2. The main frame of SAMBO could be 
described in algorithm 3. The algorithm flow chart is as follows:

It is notable when the simulated annealing (SA) joins. If 
SA occurs too early, it is prejudicial for convergence of algo-
rithm. If it is cited late, the algorithm has already fallen into 
local optima so that the simulated annealing has no effect. 
And initial temperature and cooling rate of algorithm have 
much influence on final function value. So there are three 
parameters to be adjusted (Fig. 2).

4 � Experiment

4.1 � Dataset descriptions and parameters setting

In this section, toward investigating the advantage of 
SAMBO, fourteen high-dimensional benchmark functions 
which are shown in Table 1 are adopted to evaluate the algo-
rithm improved above. Among all the benchmark functions, 
some are multimodal, which means that they have multiple 
local minima, some are nonseparable, which means that 
they cannot be written as a sum of functions of individual 
variables, some are regular, which means they are analyti-
cal (differentiable) at each point of their domain. Each of 
the functions in this study has 20 independent variables. 
The functions are summarized in Table 1. More informa-
tion about these functions, including their domains, can be 
found in Back (1996), Yao et al. (1999), and Cai and Wang 
(2006). In addition, all the tests are implemented under the 
same conditions: MATLAB R2014b on Win7 64-bit Intel 
i7-3770 processor, 8 GB RAM.

The property of SAMBO was compared with MBO, prob-
ability-based incremental learning (PBIL), particle swarm 
optimization (PSO). The same parameters of MBO method 
and SAMBO method are set as follows: max step Smax = 1.0 , 
butterfly adjusting rate BAR = 5∕12 , migration period 
peri = 1.2 , the migration ratio p = 5∕12 , population size 
NP = 50 , and maximum generation MaxGen = 50 . Accord-
ingly, the monarch butterfly individuals’ number in Land1 
and Land2 are 21 and 29, respectively. For other algorithms’ 
parameters, the settings could be referred as (Dan 2008).

In order to make the simulated annealing strategy play its 
greatest advantage, it is advisable to consider which genera-
tion is suitable to introduce the simulated annealing. In the 
simulated annealing process there are two parameters initial 
temperature and cooling rate. Different initial temperature 
and cooling rate will lead to disparate results, so all of three 
parameters influencing function value need to be tuned. Simu-
lated annealing is introduced at 10, 15, 20 generation respec-
tively in the experiments, the initial temperature is set to 200, 
500 and 1000 respectively, and the cooling rate is set to 0.9, 

0.95, 0.99, respectively. There are 27 forms to arrange combi-
nations of three parameters. We run all combination forms on 
each function. In order to reduce the effect of random function 
in the experiment, each experiment runs two hundred times 
independently. The experimental result of SAMBO shown in 
tables is the best situation in the all experiments under all the 
different combinations of three parameters. The each value 
recorded in tables is the average value of 200 experiments, 
and the optimum of best and mean solution for each function 
is bold. By the way, in the paper proposed by MBO algorithm, 
the author has already compared MBO algorithm with ABC, 
ACO, BBO, DE and SGA algorithms, and concluded that 
MBO algorithm is better than these algorithms in most cases 
(see the table below for details). Therefore, in this paper, we 
do not repeat the comparison between SAMBO algorithm and 
these algorithms. So, in the experimental process, we only 
compared our proposed SAMBO algorithm with MBO, PBLB 
and PSO algorithms while the benchmark function dimension 
is 20, 40 and 80. The experimental results show that, in most 
cases, our proposed SAMBO algorithm is superior to other 
algorithms in terms of best solution time and average solution 
time. See Tables 2, 3, and 4 for details.

4.2 � Experimental results and performance 
evaluation

4.2.1 � Experimental results with benchmark functions of 20 
dimensions

The dimension of benchmark functions is set to 20. The 
number of iteration is taken as stop condition. It is set to 
50. Table 2 shows the experiment results obtained by MBO, 
SAMBO, PBIL and PSO.

For the best and mean values shown in Table 2, there 
is no ambiguity in concluding that SAMBO could find the 
better value of most functions than other algorithms except 
the best value of F04, F06 and F11 and mean value of F13. 
It can be observed that even though the best value obtained 
by SAMBO is slightly better than those got by three other 
methods on most test functions, SAMBO significantly out-
performs MBO, PBIL and PSO on finding the mean value 
of functions. Then there is some improvement on mean val-
ues for follow functions. For F04 and F05, the result that 
SAMBO obtains is smaller than those which found by MBO 
about 6 times and 7.7 times, respectively, about 140 times 
smaller while compared with PBIL and PSO. For F08 and 
F10, SAMBO’s solution is smaller than that of MBOPBIL 
and PSO about 30 times. Compared with other algorithms 
on the F02 and F06, SAMBO has a little advantage. And 
SAMBO has a slight advantage over MBOPBIL and PSO 
on certain functions such as F01, F03, F07, F09 and F12. 
It’s worth noting that MBO and PBIL have a terrible per-
formance on the mean value of F11. For optimal solution, 
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SAMBO has a good performance on most of all the test 
functions expect F04, F06 and F11.

4.2.2 � Experimental results with benchmark functions of 40 
dimensions

The dimension of benchmark functions is set to 40. The 
number of iteration is taken as stop condition. It is set to 

50. Table 3 shows the experiment results obtained by MBO, 
SAMBO, PBIL and PSO. It can be obviously observed that 
SAMBO outperforms three other algorithms on most test 
functions except F12 and the best value of F06.

SAMBO significantly has better average function values 
than MBO, especially F10 and F11. For F10, the mean value 
obtained by SAMBO is smaller than that of MBO PBIL and 
PSO about 144 times, 30 times and 35 times, respectively. 

Fig. 2   SAMBO algorithm 
flowchart
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Especially for the mean value of F11, SAMBO is much bet-
ter than others about 27 orders of magnitude. And for F04, 
F05 and F08, the average values acquired by SAMBO are 
4 times smaller than that of MBO. While compared with 
PBIL and PSO, the newly proposed method is better about 
37 times, 28 times and 13 times respectively. Then SAMBO 
has a little advantage over MBO, PBIL and PSO on certain 
functions such as F01, F02, F03, F07, F09, F13 and F14. 
And for F06, PSO performs best. Although MBO finds bet-
ter solutions on the best and mean value of F12, the results 
obtained by each algorithm are not much different.

4.2.3 � Experimental results with benchmark functions of 80 
dimensions

The dimension of benchmark functions is set to 80. The 
iteration generation is taken as stop condition and set to 50. 
This time we only choose five test functions (F02, F04, F05, 
F08 and F10), because the advantage of SAMBO could be 
seen clearly and shown in the convergent graphs for these 
functions. Table 4 shows the experiment results acquired by 
MBO, SAMBO, PBIL and PSO. And this paper primarily 
demonstrates that the MBO has been improved, so we just 
provide the convergence curves of MBO and SAMBO on 
F02, F04, F05, F08 and F10.

From Table 4, there is no ambiguity in concluding that 
SAMBO outperforms MBO, PBIL and PSO. And compared 
with MBO, the advantage of SAMBO on F02, F04, F05, F08 
and F10 are revealed in Figs. 5, 6 and 7.

Figure 3 shows the convergence curve of SAMBO and 
MBO on F02.The curve of MBO tends to be flat quickly, 
while the curve of SAMBO is always going down. The per-
formance of SAMBO is much greater than MBO.

Figure 4 demonstrates the convergent process of SAMBO 
and MBO on F04. Except the fitness obtained by MBO is 
better than that of SAMBO at the generation 6,the curve of 
SAMBO is lower than MBO’s all the time. And their gap 
is getting bigger and bigger later. Finally, the two curves 
tend to be parallel, and the final fitness of SAMBO is much 
smaller than MBO’s.

Figure 5 illustrates the convergent trajectory of SAMBO 
and MBO on F05. Although initial value of SAMBO is 
worse than MBO’s initial value, the convergence of SAMBO 
happens earlier than MBO. Ultimately, the curve of SAMBO 
is much lower than MBO’s curve.

Table 1   Benchmark functions

Name Multimodal? Separable? Regular Range of 
each dimen-
sion

Ackley Yes No Yes ±30

Fletcher–Powell Yes No No ±�

Griewank Yes No Yes ±600

Penalty1 ♯1 Yes No Yes ±50

Penalty2 ♯2 Yes No Yes ±50

Quartic No Yes Yes ±1.28

Rastrigin Yes Yes Yes ±5.12

Rosenbrock No No Yes ±2.048

Schwefel 1.2 No No Yes ±65.536

Schwefel 2.21 No No No ±100

Schwefel 2.22 Yes No No ±10

Schwefel 2.26 Yes Yes No ±512

Spher No Yes Yes ±5.12

Step No Yes No ±200

Table 2   Best and mean function values obtained by MBO and SAMBO (D = 20)

Italic values represent the optimal solution

MBO SAMBO PBIL PSO

Best Mean Best Mean Best Mean Best Mean

F01 11.7705 12.6519 10.6003 11.3043 19.2873 20.9663 16.0218 19.8198
F14 0.3735e+06 1.1873e+06 2.2333e+05 2.3636e+05 5.8347e+05 2.2663e+06 5.2603e+05 2.2404e+06
F03 96.1304 136.2024 76.3990 99.2212 234.5175 656.1139 83.2786 332.4701
F04 2.1934e+07 4.9713e+07 7.8373e+06 8.0896e+06 9.2807e+07 1.1500e+09 6.0524e+06 1.1606e+09
F05 0.6782e+08 1.4290e+08 1.7739e+07 1.8635e+07 2.2276e+08 1.9643e+09 2.8503e+07 1.9584e+09
F06 10.5719 44.5388 7.1984 11.9005 18.7189 141.2131 3.4290 141.5007
F07 88.2089 114.7303 74.4715 79.6291 221.3520 377.6148 165.1462 296.7657
F08 747.4 2668.4 328.9859 360.3084 2.0265e+03 1.0981e+04 592.1046 1.1078e+04
F09 3.5192e+03 4.2384e+03 2.8417e+03 2.8529e+03 5.3140e+03 8.4250e+03 5.1332e+03 8.1747e+03
F10 0.1028e+05 4.9686e+05 7.2452e+03 7.4306e+03 1.2434e+04 2.5749e+05 8.4943e+03 2.9529e+05
F11 24.9725 1.3684e+12 25.0488 34.6025 61.6260 2.0336e+14 46.2554 46.2554
F12 35.3581 35.4068 29.8312 29.8628 66.9115 98.9670 53.0918 96.3481
F13 23.2107 23.2107 21.9257 34.6831 68.7995 192.6548 24.0148 97.3720
F14 1.0641e+04 1.5337e+04 7.2464e+03 7.3133e+03 2.6234e+04 7.3013e+04 9.2383e+03 3.6359e+04
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Figure 6 reveals the convergent history of SAMBO and 
MBO on F08. Similarly with Fig. 5, though SAMBO has 
the worse initial value, SAMBO achieve the better fitness 
in the end.

Figure 7 displays the convergent track of SAMBO and 
MBO on F10. It could be observed visibly that the convergent 
amplitude of SAMBO is greater, and the final fitness found 
by SAMBO is much less than the value which MBO finds, 
despite SAMBO’s fitness is much bigger than MBO’s at start.

4.3 � Experiment on real world dataset

Vehicle routing problem (VRP) (Elhassania et al. 2014) 
is one of the most challenging combinatorial optimization 
problems. This problem was defined more than 40 years ago 
and includes the design of an optimal path set for the fleet 
to serve a known set of customers. The practical application 
significance and its difficulty of solution are important in 
VRP. A company may have several warehouses for custom-
ers. If customers are clustered around these warehouses, the 
allocation problem can be modeled as several independent 

VRPs. However, if the distribution of customers and ware-
houses is mixed, this should be solved as a multi-depot vehi-
cle routing problem (Renaud et al. 1996).

We use our proposed SAMBO algorithm to solve multi-
depot vehicle routing problem, and in order to prove the 

Table 3   Best and mean function values obtained by MBO and SAMBO (D = 40)

Italic values represent the optimal solution

MBO SAMBO PBIL PSO

Best Mean Best Mean Best Mean Best Mean

F01 14.8501 15.5245 13.6714 14.3519 20.1512 21.0346 17.6506 19.8970
F02 2.9336e+06 5.7194e+06 1.5742e+06 1.7756e+06 3.9607e+06 9.4956e+06 3.7530e+06 9.5174e+06
F03 324.6347 474.6744 257.0004 279.0702 677.2620 1.3855e+03 310.7108 746.2803
F04 1.3332e+08 2.5998e+08 5.8350e+07 6.5413e+07 5.4517e+08 2.6694e+09 6.2306e+07 2.4049e+09
F05 2.6344e+08 4.9240e+08 1.3252e+08 1.4393e+08 1.1153e+09 4.4753e+09 1.6530e+08 4.0011e+09
F06 80.2079 264.8352 71.8131 80.5933 155.6223 607.5816 32.1506 567.5818
F07 294.9648 384.7409 245.2640 257.0589 531.6699 765.9487 398.1688 584.8991
F08 3.2633e+03 7.3208e+03 1.4958e+03 1.7963e+03 8.1280e+03 2.5370e+04 2.3835e+03 2.3577e+04
F09 8.2927e+03 9.6962e+03 7.3367e+03 7.4462e+03 1.2465e+04 1.6836e+04 1.2602e+04 1.6579e+04
F10 4.5868e+04 4.5824e+06 2.8705e+04 3.1838e+04 4.7609e+04 9.4444e+05 3.5841e+04 1.1186e+06
F11 91.1913 1.1171e+28 75.6560 94.5078 146.1005 7.6706e+28 167.7829 4.0435e+29
F12 36.6260 36.6846 36.6973 36.7500 84.5315 99.6902 88.9677 99.5984
F13 101.3803 158.6964 82.0935 103.3361 202.6079 410.7044 87.1691 206.3962
F14 3.3558e+04 4.9196e+04 2.1735e+04 2.2891e+04 7.5390e+04 1.5335e+05 3.4414e+04 8.3307e+04

Table 4   Best and mean function values obtained by MBO and SAMBO (D = 80)

Italic values represent the optimal solution

MBO SAMBO PBIL PSO

Best Mean Best Mean Best Mean Best Mean

F02 1.8289e+07 2.7423e+07 1.0179e+07 1.1553e+07 2.1691e+07 3.8800e+07 2.0702e+07 3.8692e+07
F04 4.0641e+08 8.0260e+08 2.7744e+08 3.2124e+08 1.7532e+09 5.7534e+09 2.8269e+08 4.8917e+09
F05 1.0348e+09 2.0543e+09 5.5375e+08 6.1619e+08 3.3302e+09 9.6167e+09 6.6903e+08 8.2376e+09
F08 1.1140e+04 2.4538e+04 5.8067e+03 6.6961e+03 2.3444e+04 5.5400e+04 7.7114e+03 4.8950e+04
F10 2.1304e+05 4.1116e+07 1.0909e+05 1.3203e+05 1.8536e+05 3.7114e+06 1.3994e+05 4.5329e+06

Fig. 3   Convergence graph of SAMBO and MBO on F02 with D = 80
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efficiency of the new algorithm, we also use the traditional 
MBO algorithm and genetic algorithm to solve the same prob-
lem. In the experiment, the performance of MBO algorithm, 
genetic algorithm and SAMBO algorithm was tested by six 
unsolved multi-depot vehicle routing problems, Table 5 shows 

the specific information of the six unsolved Multi-Depot Vehi-
cle Routing Problems. In addition to the number of customers 
in the problem, the number of warehouses and the vehicle load, 
each instance’s data also stores the coordinates of each cus-
tomer’s geographic location and the coordinates of the ware-
house. Through the coordinates, the length of the path can be 
calculated and used as the cost value of the path. Table 6 shows 
the solutions found by three algorithms for six problems: cost 
is the total length of the path found, and the running time is 
the time required to run the algorithm once, with the unit of 
seconds (s). The italics represent the optimal solution.

The italics in the table clearly show that SAMBO found 
the best solution for all six problems. Compared with tra-
ditional genetic algorithm, both MBO and SAMBO per-
form better. On the first four problems (P01, P02, P03 and 
P04), the cost value of genetic algorithm is about 3 times 
of MBO and SAMBO, especially for P02, the cost value 
of genetic algorithm is 4 times of SAMBO. Moreover, the 
path found by SAMBO is indeed less expensive than that 
found by MBO, indicating that the algorithm has improved 
on the basic MBO algorithm, and with the increase of the 
size of the problem, the gap between solutions becomes 
larger and larger. For problems P05 and P06, the path cost 
found by the algorithm SAMBO is more than 8000 and 2000 
less than that found by the genetic algorithm and the MBO 

Fig. 4   Convergence graph of SAMBO and MBO on F04 with D = 80

Fig. 5   Convergence graph of SAMBO and MBO on F05 with D = 80

Fig. 6   Convergence graph of SAMBO and MBO on F08 with D = 80

Fig. 7   Convergence graph of SAMBO and MBO on F10 with D = 80

Table 5   The specific information of the six unsolved MDVRP

No. Number of cus-
tomer

Number of ware-
houses

Vehicle 
load

P01 50 4 80
P02 75 5 140
P03 100 3 100
P04 100 4 100
P05 249 4 310
P06 249 5 310
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algorithm respectively. This shows that as the size of the 
problem increases, the advantages of the SAMBO algorithm 
become more and more obvious. Through experiments, it 
is proved that SAMBO algorithm is effective in solving the 
multi-warehouse vehicle routing problem.

5 � Conclusion and future work

In recent years, more and more swarm intelligence algo-
rithms are proposed and applied in many different areas. 
MBO is a newly proposed meta-heuristic algorithm to solve 
continuous optimization problems and testified that it out-
performs five other meta-heuristic algorithms on most of all 
the test problems. But the ability of MBO to find the aver-
age value is poor on certain test functions. So the simulated 
annealing strategy is incorporated into MBO algorithm to 
escape local optima. A novel version of MBO with simu-
lated annealing called SAMBO is proposed. In MBO, all the 
updated individuals are accepted. While in SAMBO method, 
except the updated butterflies whose fitness is better than 
their parents are accepted, the algorithm could adopt the 
worsening new individuals with a certain probability when 
the algorithm introduces simulated annealing strategy. This 
can ensure that outstanding individuals are preserved and 
churn search space to seek the better solution. The experi-
ment results demonstrate that SAMBO can find better solu-
tions than MBOPBIL and PSO especially on average value 
on almost of all the benchmark problems (Sun et al. 2018b, 
a).

But there are limits. In future, there are three points 
to clarify that can facilitate the future research direction. 
Firstly, in the current work, experiments just proceed on 14 
benchmark problems. More benchmarks should be used to 
evaluate SAMBO. Secondly, we could study a self-adapting 
way to solve how to tune three parameters (Shuai et al. 2017; 
Liu et al. 2017; Zheng et al. 2017). If the self-adapted way 
is worked out, it is convenient for us to use the SAMBO 
method to solve what we want to handle. Finally, SAMBO 
is just to solve single objective problems. We can ameliorate 
it to deal with multi-objective problems.
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