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Abstract
Within a community, social relationships are paramount to profile individuals’ conduct. For instance, an individual within a 
social network might be compelled to embrace a behaviour that his/her companion has recently adopted. Such social attitude 
is labelled social influence, which assesses the extent by which an individual’s social neighbourhood adopt that individual’s 
behaviour. We suggest an original approach to influence maximization using a fuzzy-logic based model, which combines 
influence-weights associated with historical logs of the social network users, and their favourable location in the network. 
Our approach uses a two-phases process to maximise influence diffusion. First, we harness the complexity of the problem 
by partitioning the network into significantly-enriched community-structures, which we then use as modules to locate the 
most influential nodes across the entire network. These key users are determined relatively to a fuzzy-logic based technique 
that identifies the most influential users, out of which the seed-set candidates to diffuse a behaviour or an innovation are 
extracted following the allocated budget for the influence campaign. This way to deal with influence propagation in social 
networks, is different from previous models, which do not compare structural and behavioural attributes among members 
of the network. The performance results show the validity of the proposed partitioning-approach of a social network into 
communities, and its contribution to “activate” a higher number of nodes overall. Our experimental study involves both 
empirical and real contemporary social-networks, whereby a smaller seed set of key users, is shown to scale influence to the 
high-end compared to some renowned techniques, which employ a larger seed set of key users and yet they influence less 
nodes in the social network.
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1  Introduction

The impact of online social networks (OSNs) has undeniably 
affected a sizeable proportion of the world population who 
in way or the other, tend to use YouTube, Facebook, Twit-
ter, Flickr, MySpace and LinkedIn, etc. The impact of social 
networks on individuals’ behaviour throughout various 

stages of their life has been extensive, and in different cir-
cumstances. Subsequently, social networks have become a 
prime venue for propagating influences using different tech-
niques, and disseminating information of all kinds. This phe-
nomenon is facilitated by social connections which spread 
information from one individual to another at a faster pace, 
particularly when critical events arise. For example, tweets 
(i.e. Twitter posts) have considerable increased in volume 
during the severe 2011 Tsunami in Japan (Acar and Muraki 
2011), during which individuals around the devastated areas 
posted tweets to alert followers about their situation. Simi-
larly, and in the same year, the political unrest in Egypt and 
Tunisia were driven by bloggers posting their exasperation 
against their respective government practices, on social net-
works. The extraordinary observation during these events, 
is that massive physical-protestations took place on streets 
following virtual frustration expressions to get rid of dic-
tatorships. This illustrates the influential power of social 
networks, whereby actions are not just embraced online, 
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but individuals do engage into translating them across the 
physical world also.

Social networks have long been a nature of the humanity 
life, where distinguished individuals of a community could 
drive members of their community into embracing a faith or 
adopting a behaviour or change their life conditions (Khousa 
and Atif 2018). This natural humanity trait, has subsequently 
been digitalised in OSNs. However the propagation pace in 
OSNs is much faster than in real-life networks, and connec-
tions between OSN users scale much higher and quicker in 
OSNs leading to increasingly new relationships and new 
community memberships. Like in real-life social circles, 
people expand and benefit from their social relationships 
in OSNs as well. Traditionally, influencers tend to be those 
who accumulate many relationships. However, social ties 
develop also when the same action cascades over OSNs, 
which generates a propagation wave that may reach many 
more individuals than direct connections. This is how blog-
gers “like” a particular topic, and spread the induced mes-
sage that spawns growing discussions, across contemporary 
social networks (Dumenco 2011). Similarly, a product or a 
service may be embraced by many individuals across inter-
mediate connections, as well. Subsequently, the concept of 
interest graphs evolved, where nodes designating individu-
als express their mutual interests for a content node (Solis 
2011). Hence, there are two types of node, and two types 
of links as well, that link people to content of their inter-
ests, and content to content to express content relationships. 
This graph concept supports brand evolution by intersecting 
interest graphs to build larger communities that are used 
to spread influence in a targeted advertisement campaign 
for example. This approach has later evolved further into a 
major marketing trend in contemporary OSNs (Solis 2011).

OSNs are investigated using concepts from graph theory 
(Newth 2006) in the context of computer science and social 
science (Scott 2000) disciplines, leading to an interdiscipli-
nary social network analysis (SNA) area. Therefore, an inter-
disciplinary approach is required to investigate and evaluate 
OSNs. A graph representation of OSNs include nodes or 
vertices that represent OSN individuals, and links or edges 
that represent social ties, such as friendship. This representa-
tion is frequently used in the evolving SNA field (Hanneman 
and Riddle 2005) to identify the triggers and distribution 
patterns of influence propagation in social networks. The 
influential power of a user augments with the relationships 
he or she develops with peers who have varying degrees of 
influence power, in the social network. SNA attributes of a 
node centrality such as degree, closeness and betweenness 
centralities (Hanneman and Riddle 2005) were used ear-
lier to quantify nodes’ power in the network. The influence 
power of a node grows with the node’s degree, closeness or 
betweenness values. A graph-theory structure of a social net-
work sample is depicted in Fig. 1. The graph representation 

displays groups of nodes with some central ones that can 
trigger a great influential campaign when disseminating their 
social influence. However, centrality attributes alone reflect 
only structural aspects of a node. We argue in this paper that 
the influence assets of a node are also driven by the dynamic 
impacts across links and connections originating from that 
(influencer) node within OSN. This impact occurs when 
users along connecting paths to the influencer embrace the 
influencer’s advocated behaviour or embrace the influencer’s 
action, labelled throughout this paper as “common-action”.

We propose an approach by which a set of k nodes in a 
social network are discovered based on both their structural 
and historical-actions attributes to maximize influence prop-
agation. The proposed approach employs three successive 
processes that work in tandem. Initially, “artificial” com-
munities are built whereby “similar” users are assembled 
together, based on a judicious similarity function. Next, for 
each of these synthetic communities, we identify key users 
using a computational intelligence technique that employs 
a fuzzy-logic based function to discriminate nodes based on 
both their structural-centrality and influence-weight attrib-
utes. To measure influence weights, we suggest to crawl 
action-logs across nodes to figure out instances of com-
mon-actions adoption. Obviously, these measurements are 
subject to dynamic changes, depending on the accumulated 
behaviours of users from past activity logs in the social net-
work. Finally, we rank these key users based on their influ-
ence power, by simulating an influence diffusion process to 
determine the seed-set of candidate influence propagation 
nodes. The rationale to pre-process the original social net-
work through the identification of virtual communities, is 
inspired from the fact that members of the same community 
tend to think the same and hence they facilitate the propaga-
tion of incoming influences from peer members of their own 
community. The final step in the above three-steps process 
predicts the most influential members from candidate key 

Fig. 1   Social network diagram (Source:  http://www.fmsas​g.co/
SocialNetworkAnalysis)

http://www.fmsasg.co
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nodes based on the available marketing budget to shortlist 
agents for promoting products or services and recommend-
ing them around social networks.

The rest of this paper is organized as follows: Sect. 2 pro-
vides a background and related works about the main areas 
that are relevant to our proposed work. Section 3 depicts 
our proposed community-aware social influence diffusion 
approach. Section 4 demonstrates the efficiency of our pro-
posed approach through an experimental analysis, based on 
data sets from simulated and existing social networks. We 
wrap-up the suggested developments discussed in this paper 
within Sect. 5, where we also reveal some of our ongoing 
extensions.

2 � Problem and background

Members of a social network are expected to build connec-
tions with other members of the network. To model members 
and inherent connections, a graph G (N, E), represents the 
set of members N = {1, 2,… , n} which is implemented as an 
n × n adjacency matrix. The influence weights: 0 ≤ Eij ≤ 1 
are the adjacency matrix entries. Thereby the graph G(N, E) 
is said to be a weighted graph. When Eij ≠ Eji , the graph is 
said to be directed and undirected otherwise.

An influence occurs when a user u of a social network 
represented by the graph G embraces a behaviour, that was 
previously embraced by another user v, in which case v is 
said to have activated u or u is said to have been activated. 
Other nodes of G that do not perform the action or embrace 
the behaviour of v are said to remain inactive. Subsequently, 
influence maximization consists in discovering a subset of 
key users U in the social network modelled by the graph 
G, where |U| = k , who activate as many users in the social 
network as possible. Identifying U is the core problem of 
influence maximization (Goyal et al. 2010). The discovery 
of key users is subject to a multi-criteria decision-making 
dilemma due to the contribution of both nodes’ influence 
weights and their topological attributes within G. This 
dilemma motivates the rationale of our proposed computa-
tional intelligence technique based on a fuzzy-logic model 
to maximize influence, which forms the main contribution of 
this paper. To understand further this rationale, we introduce 
some relevant fuzzy-logic concepts and use them to illustrate 
our proposed approach.

2.1 � Fuzzy logic

Fuzzy logic is a prominent development in computational 
intelligence (Zadeh 1965). This theory tolerates logical 
assertions to carry a progressive extent of values that lie 
within the interval [0, 1] as an alternative to true/false asser-
tions (Hellmann 2001). The approximation in the reasoning 

processing led to several applications in contrast to its crisp 
counterpart, and appears more natural to mimic human, 
rather than machine reasoning (Zadeh 1984) to evaluate real-
world considerations. We adopted fuzzy-logic to break the 
dilemma induced when selecting highly influential nodes, 
thereafter labelled “key nodes”, out of which we pick the 
seed-set of nodes to use for an actual influential propagation 
instance, in order to meet marketing budget limitations. The 
joint criteria used to determine “key nodes” membership is 
found to be effectively addressed using a fuzzy-logic based 
membership function.

Fuzzy-logic sets are characterised with partial member-
ship features, unlike crisp set counterparts (i.e. either an ele-
ment is a member of set or not), and thus they adapt better 
to natural membership expressions used in real-world situ-
ations (Baig et al. 2013). A membership function is used 
to evaluate the extent of membership and which is context 
dependent to meet the realistic real-world features (Rahman 
and Ratrout 2009). The membership function computes the 
actual membership extent within the interval [0, 1] to assert 
a statement with a certain context-related degree, that con-
trasts with traditional logical assertions with exclusively true 
or false propositions (Rojas 1996).

2.2 � Illustrative scenario

To illustrate the application of fuzzy-logic to our proposed 
approach to select “key nodes”, consider the following 
example that is adapted from (Wolfram 2014). Consider the 
problem of discovering the most influential users in a social 
network made up of the following nodes = {1, 2, 3, 4, 5} . The 
goal is to determine nodes that combine centrality location 
and influence-weight on other nodes attributes. A first fuzzy 
set is developed to represent the centrality degree as follows:

Note that Node 3 is deemed most central given its mem-
bership value or grade. However, Nodes 1 and 4 are the 
least central nodes in the network. The other fuzzy set 
InfluenceWeight (IW) = {{1, 0.1}, {2, 0.9}, {3, 0.7}, {4, 1},

{5, 0.2}} represents the influence power of each node. Note 
that the influence weight here represents an averaged value 
of influence that a node has over all nodes in the network. 
A high value indicates a high influence power. Therefore, 
Node 4 is deemed to be the most influential user in the entire 
network.

Next, we engage into a decision-making process to 
identify the set of nodes that are most influential consid-
ering both of the above constraints, i.e. favourable loca-
tion vs. influence weight. The natural answer to these 
joint criteria is a fuzzy intersection of both membership 
sets to identify nodes that optimise both features, simul-
taneously. A fuzzy intersection considers members with 

Centrality (C) = {{1, 0.4}, {2, 0.6}, {3, 0.8}, {4, 0.4}, {5, 0.5}}.
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lowest grades in each of the fuzzy sets Centrality (C) 
and InfluenceWeight (IW) (Rojas 1996), thus resulting in 
C ∩ IW = {{1, 0.1}, {2, 0.6}, {3, 0.7}, {4, 0.4}, {5, 0.2}}   . 
This decision-making process is illustrated in Fig. 2. The 
maximum grade value grants highest influence feature to 
a user. It appears that Node 3 is elected as the one with the 
highest grade and thus is deemed to be the most influential 
in the network considering both constraints.

There were fuzzy-logic considerations to model social 
networks. However, they were limited to studying common 
network attributes such as degree, clustering and between-
ness (Kundu and Pal 2015). This approach focused on fuzzy 
relationships among social network users. Similarly, distin-
guished relationships among actors in social networks were 
modelled using “fuzzy graphs” in Nair and Sarasamma 
(2007). Our approach advocates fuzzy logic to select key 
nodes in our community-driven influence propagation 
approach.

3 � Related works

The process of identifying key users in a large network such 
as those found in contemporary social networks, can be 
harnessed by decomposing the network into communities. 
Intuitively, the influence propagation process is expected 
to spread faster among members of the same community 
with shared interests. Subsequently, community detection 
is combined with influence maximization in this paper, and 
thus our review of existing works encompasses both areas.

3.1 � Community detection

Identifying members within their circle of common interests 
has been a vector to direct marketing campaigns according 

to the interests of the social circle members. However, this 
identification process requires the discovery of social net-
work members with shared interests. One of the prominent 
works found in the literature discovers these clusters of 
social network members by hierarchically dividing the net-
work through eliminating iteratively network edges (New-
man and Girvan 2004). This process leads to a division of 
the network into dense clusters of users, thereby leading 
to community structures. The candidate edges for removal 
are those with high-betweenness value. This value that is 
associated to a candidate edge, quantifies the length of the 
shortest-path between any two nodes, when that path passes 
through the candidate edge. However, as edges are taken 
out from the network, all betweenness-values need to be 
recomputed since the paths based on which the previous 
computation was made may have changed. A desired thresh-
old is used to evaluate the quality of the detected communi-
ties in each iteration to decide whether to stop the network 
division process. Nevertheless, this technique is seldom 
employed for identifying communities due to its complex-
ity and incurred computational costs. Instead, the opposite 
agglomerative alternative is mostly used. A hierarchical 
clustering approach built upon the above technique discov-
ers and takes out edges iteratively from the network based 
on a centrality value (Fortunato et al. 2004). The authors 
show the effectiveness of their approach, despite the O (n4) 
complexity of the proposed algorithm.

A quality-driven division approach has also been pro-
posed using a metric called modularity (Newman 2004). 
Labelled Q, the modularity is a function that sizes the sig-
nificance degree of detected communities. This approach is 
distinguished by its simplicity and viable worst-case com-
putational complexity of O (n2) . Subsequently, this approach 
has been deemed attractive and employed in several applica-
tions. Nevertheless, the modularity is upper-bounded by a 

Fig. 2   Fuzzy decision plot
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threshold, which is a function of the network cardinality, and 
communities with modularity values lower than that thresh-
old could not be detected. To overcome these bounds, a met-
ric that measures communities’ density has been suggested 
Li et al. (2008). This approach employs both vertices and 
edges, while preserving the iterative division process of the 
network to detect communities. Yet, this proposed procedure 
is NP-hard. An alternative resolution of the upper-bounds 
problem involves a variation in the modularity function for-
mula (Arenas et al. 2008). Later, it was shown that such 
variation of the modularity function exhibits also boundary 
issues when combining smaller clusters and dividing larger 
ones (Lancichinetti and Fortunato 2011).

As mentioned earlier, an alternative approach to divisive 
techniques was the agglomerative one (Clauset et al. 2004a) 
suggested by the same authors, and labelled following their 
initials CNM. This method proceeds from the bottom of the 
dendrogram that hierarchically displays the relationships 
between nodes, and move up in a greedy way, while assem-
bling clusters of the network. Although analogous to (New-
man 2004), this approach has better complexity performance 
of O (nlog2n) in worst-cases.

3.2 � Influence maximization

The influence maximization problem has been extensively 
investigated in the literature, particularly in quantifying the 
expectation of a node to influence other nodes. But existing 
approaches face a limited capacity to maximize the activated 
social network nodes to the higher end, while minimizing 
the seed-set size k of selected nodes used to propagate influ-
ence. Constant probabilistic values are assigned to nodes in 
the static approaches to model influence propagation within 
social networks based on time-independent observations 
(Goyal et al. 2010). However, these methods assume a static 
propagation of influence that do not evolve over time, given 
the constant probabilistic values. This means, they do not 
address the development of influence probabilities follow-
ing users’ activities in the social network. The Bernoulli 
probability distribution was used in the above static model-
ling approaches to represent social network users attempting 
to activate neighbouring peers. The influence propagation 
models using static approaches are simple to use, but the 
natural evolution of social networks limits their applicability. 
The induced constant probabilities assumption oversimpli-
fies influence measurements to accommodate contemporary 
social networks.

Dynamic approaches to represent influence propagation 
such as the Snapshot approach (Kossinets and Watts 2006; 
Backstrom et al. 2006; Shi et al. 2009) does consider the 
evolution of probabilistic values to reflect the nodes’ evolv-
ing influence power over time. As the name implies, this 
approach considers successive snapshots of the network over 

time to infer its evolution. This approach has been exten-
sively used given its capacity to pick up the dynamics of 
social network data for analytical purposes, including the 
evaluation of influence state among nodes across successive 
timestamps. However, consecutive snapshots increase sub-
stantially the size of data to analyse. Alternatively, ordinal-
time approaches limit the observation sequences to activa-
tion occurrence instants (Cosley et al. 2010). That is, when 
there is a change in the network induced by an influence-
related activity, a snapshot of the network is retrieved, which 
lowers the size of data to analyse. Nevertheless, timestamped 
snapshots of an entire social web structure are complex to 
collect, which reduces the implementation efficiency of 
related approaches, that aim at evaluating activation patterns 
across influence-propagation processes.

Alternative approaches to model influence that appear 
to be less sensitive to the above drawbacks have been pro-
posed. The landmark Linear Threshold Model (or LTM) and 
Independent Cascade Model (thereafter labelled ICM or IC) 
fall in this category. LTM (Domingos and Richardson 2001; 
Kempe et al. 2003; Richardson and Domingos 2002) accu-
mulates the influence weight contribution from each node 
towards a common neighbour. When the resulting accumu-
lated value exceeds a threshold, the common neighbour is 
activated. Edge weights reflect the influence power a node 
may have over his neighbours. ICM (Kempe et al. 2003), 
advocates a binary states of nodes whereby each node has 
a single chance to be activated or not during an influence-
diffusion that cascades over neighbouring nodes. Activated 
nodes will have the same chance to activate their neigh-
bours, recursively. This process is similar to viral spread-
ing across ties in conventional social networks where users 
incite peers to watch the same movie, or embrace a certain 
political opinion. Subsequently, a cascade is enacted which 
diffuses the influence over the network structure. Activation 
occurs at a given node based on some probabilistic value, 
which evolves according to the interaction intensity between 
nodes. These approaches speed up the influence propagation 
process, particularly when the seed-set of highly influential 
users is pre-established.

However, the above LTM as well as IC models do not 
consider the mutual relationships among node actions. This 
observation called for alternative approaches that consider 
users’ actions towards a common context. Topical graphs 
mine users’ activities using a machine learning approach to 
infer influence probabilities following users’ interest in par-
ticular topics (Tang et al. 2009). A related subsequent inves-
tigation found that similar users tend to influence each other 
(Sun and Tang 2011). This relationship between similarity 
based on social ties and influence activation supports further 
our influence-propagation approach and our rationale for our 
proposed community-driven influence propagation. How-
ever, the effectiveness of influence propagation is enhanced 
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by decreasing the seed set of highly-influential nodes (Hos-
seini-Pozveh et al. 2017) and harness the complexity by 
using a modular propagation approach, such as those that 
employ communities (Wang et al. 2010), like we do. But 
these approaches are developed for specific purposes and 
do not incorporate computational intelligence techniques to 
optimise the seed-set selection as we do with our proposed 
fuzzy-logic based influence propagation model.

4 � Community based influence propagation 
algorithm

In this section, we reveal our approach to influence-maximi-
zation which includes a community-enrichment preprocess-
ing step to scale-up the diffusion process and the number 
of activated users within a social network. In doing so, we 
join together two of our previous works, namely an original 
approach to identify communities (AlFalahi et al. 2013) and 
a technique to evaluate influence weights (AlFalahi et al. 
2014). The combination of these works generates a new 
approach whereby the previous techniques are employed in 
tandem, to obtain a set of users who can incite neighbour-
ing peers to embrace an advocated behaviour. The analysis 
results shown later in the experiments section, reveal the 
effectiveness of this new approach to maximize influence 
on synthetic and existing social networks data.

Our suggested approach consists actually, of three suc-
cessive steps, namely (1) Communities identification via 
an enhanced Similarity-CNM network algorithm, (2) Key 
Users discovery within each detected community, and (3) 
Seed set identification from ranking key users, to effectively 
drive the diffusion process over neighbouring peers. Figure 3 
illustrates our proposed framework and Table 1 provides an 
explanatory reference of the symbols used throughout this 
paper.

4.1 � Similarity‑CNM

Given an input social network, our proposed approach starts 
by discovering communities. This essential step of our 
approach employs a similarity function to support behav-
ioural embracement among similar peers. This preprocessing 
step ensures that the search space for key users is reduced 
into modular communities and facilitates further the sub-
sequent diffusion process. Our inspiration that is supported 
also by previous investigations (Wang et al. 2010), is that 
users with high similarity-attributes are more susceptible to 
embrace common attitudes. Thus, the community structures 
which first assemble similar users into modular communi-
ties facilitate the process of key-users discovery. These key 
users are the first seed-set candidates to propagate influ-
ence, that are further ranked to extract a subset that meets 

some budgeting resources allocated to a given marketing 
campaign.

An improved version of the CNM algorithm (AlFalahi 
et al. 2013) is shown in Algorithm 1 depicted next. Named 
Similarity-CNM, this approach detects communities 
through an improved version of the existing CNM land-
mark approach (Clauset et al. 2004a). Based on the perfor-
mance results revealed later in this paper, the quality of the 
communities from the improved CNM-Similarity version 
outperforms the original CNM. Subsequently, the influence 
modelling steps follows the community detection one, using 
a network of modular virtual-communities instead of the 
original plain network. This community-enriched network is 
deemed to supply additional information that guide further 
the spread of influence across the entire network. The dis-
covery of communities is preceded by enriching the network 
with synthetic links that join similar nodes together, in order 
to obtain denser community structures. The preprocessing 
step incurs a computational complexity of O (n2) . However, 
this preprocessing step is carried out offline to alleviate 
this additional computational cost throughout the influence 
maximisation process.

Fig. 3   Proposed framework
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The preprocessing step results in an identical network from 
the original one, with added links that connect similar users, 
thereafter labelled similarity-network. A directed unweighted 
graph representation of the network is considered, where 
users’ similarity represent weight annotations over the network 
edges. These similarity weights provide indicators about users’ 
relationships to construct well-structured communities. The 
discovery and evaluation of community structures from the 
similarity-network uses the standard CNM algorithm (Clauset 
et al. 2004b). As stated earlier, this algorithm clusters network 
nodes iteratively following an agglomerative approach that 
moves up through the hierarchical network structure, while 
joining clusters together. The modularity is computed on the 
way up, to evaluate the clusters’ quality Q, which represents 
the variation of links within clusters and a presumed num-
ber of links. Good structures rise with such variations (New-
man 2004). Initially a small set of nodes is built up without 
any links, and hence with a poor modularity. The community 
structure is iteratively enriched with edges while merging clus-
ter pairs, which raises modularity values. The prospects of 
building sparse communities (Fortunato 2010) is reduced by 
supplying CNM with enriched similarity-network. We refer 
to this combined algorithm and enriched input as Similarity-
CNM approach. The algorithmic steps to obtain the virtual 
similarity-network G′ , given an input network G, are revealed 

in Algorithm 1. The employed similarity function is shown 
in Eq. (1):

Equation (1), makes use of adjacency values Eij that repre-
sent the size of common-neighbours cnij between the nodes 
i and j, using their respective degree ni and nj . The proposed 
pre-processing step results in more inclusive communities 
and speeds-up the community-detection process. The objec-
tive is to improve the structure of detected communities with 
high-modularity values. The discovered virtual communities 
are used to find candidate key users. This process begins by 
identifying users with highest centrality values within each 
community. Then, the nodes with highest influence weights 
are obtained.

The complexity of the algorithm is of order O (n2) , but 
since the process is performed offline as a preprocessing 
step to virtually transform the input network, the complex-
ity doesn’t really affect the performance of the framework. 
The next step of the framework is to establish communities 
in the enriched network G′ by applying some contemporary 
community detection algorithms, such as CNM (Clauset 
et al. 2004b). 

(1)Similarity (i, j) =
Eij + cnij

ni + nj
.

Table 1   Legend of symbols

Symbol Legend

G Social network graph
N Nodes set in a social network
n The number of nodes in the network, i.e. |N|
E Edges set in a social network
Di Degree of Node i, i.e the number of ties that Node i has in the network
Eij Adjacency matrix entry corresponding to Nodes i and j, i.e. = 1 if there is a link between i and j, and 0, otherwise.
ni Number of nodes adjacent to Node i, i.e. number of i’s neighbours.
cnij Number of common adjacent nodes to Nodes i and j
C A community in the social network
Q Modularity value of a social network with respect to community structures, and determined by Eq. (7)
Similarity_Threshold Parameter used to determine similar nodes with respect to the value delivered by Eq. (1)
CentralityWeighti Level of Node i centrality in the network, and determined by Eq. (2)
Threshold_IU Parameter used to determine the number of important users in a network with respect to their centrality weight values
Degree Centralities Vector of centrality weight values of nodes i, ∀i ∈ N

Central Users The first ThresholdIU nodes with highest centrality weight
Threshold_S Parameter to set the desired size of influential-nodes seed set
InfluenceWeightij Influence weight of Node i over a particular Node j, given Eij = 1 and determined by Eq. (3)
InfluenceWeights Avgi Average of influence weights that Node i has over all nodes j, given Eij = 1 , and determined by Eq. (4)
Intersectioni A fuzzy intersection value, between CentralityWeighti and InfluenceWeightsAvgi membership grades determined by 

Eq. (5)
Key Users A set of nodes with both favourable location and influence history determined by Eq. 6
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We show later in the experimental analysis section, that 
the community quality is highly optimizied when the pro-
posed pre-processing step of Algorithm 1 is applied. Next, 
we show how this virtual division of the network into well-
structured communities contributes to elicit nodes used to 
propagate influence.

4.2 � Key users

Key users are discovered initially from the the communi-
ties generated in the previous Similarity-CNM algorithm 
step. They represent seed-set candidates to propagate influ-
ence. They are distinguished by their favourable position 
in the network which is quantified through structural cen-
trality values, and their influence-weight which is quanti-
fied from historical logs data. As stated earlier, to break the 
dilemma of dealing with dual-criteria simultaneously, we 
employ fuzzy-logic theory (Kahraman 2008) to select key 
users that optimise both criteria. In doing so, we identify the 
attributes involved in the key-users membership-function, 
as well as the associated weights to reflect the importance 
of some attributes over others (Peneva and Ivan 2008). The 
attributes here are the centrality and the influence power of 
users in the network, whereas the weights are importance 
parameters associated with each of these two criteria. Fol-
lowing the definition of criteria and associated weights, key 

users are elicited using the fuzzy-logic process shown in 
Algorithm 2, which we elaborate further next.

4.2.1 � Central users fuzzy set

The structural attribute of key users reflect their favourable 
position, such as the ones with high-degree values, or those 
bridging two or more clusters, who have the capacity of car-
rying influence across cluster users. These are examples of 
key user structural attributes, which are some interpretation 
of user centrality. We adopt Degree Centrality to measure 
structural attribute values. Central users fuzzy-set is deter-
mined with these values derived from the corresponding 
membership function, which we discuss next.

Initially, and for each detected community, a Degree Cen-
trality is computed. To do this, the out-degree and in-degree 
are of each user node are determined and then cumulated. 
To recognise central users, we employ a centralityThresh-
old, whereby user nodes with degree exceeding centrali-
tyThreshold, are deemed structurally central, and will be 
carried forward to the next stage. Based on this approach, the 
degree centrality for all users is computed using the follow-
ing membership function to determine central users:

(2)CentralityWeighti =
Di

|E|
.
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In Eq. (2), Di represents Node’s i degree, which cumulates 
the in-degree and out-degree of Node i. The overall number 
of links in the network is formulated by |E|. Structural cen-
trality values are thus determined by Eq. (2) which define 
Central Users fuzzy-set. These values fall within the interval 
[0.1], to reflect the centrality extent of each network node. 
Those nodes with close to 1 centrality value, indicate a 
high-centrality position. Central Users fuzzy-set values are 
employed in the selection process of key users, as discussed 
next.

4.2.2 � Influence weights fuzzy set

In addition to the structural attribute, key users are also 
determined based on their capacity to spread influence 
across the network. The computation of this influence 
capacity determines the influence-weight value of a user, 
which is formulated using a Common Actions version of 
Jaccard coefficient (AlFalahi et al. 2014). As an illustra-
tion of this computation, suppose a user node A triggers 

a behaviour at timestamp T1, and at a later stage User B 
embraces that behaviour at timestamp T2. This sequence of 
events indicates that an activation instance occurred when 
User B adopts the behaviour initiated by User A. To calculate 
the Common Actions Jaccard coefficient, we enumerate the 
actions that a user adopted, and that were previously trig-
gered by a neighbouring user in the network. The real-world 
experimental data we used shows that an action is triggered 
by a single source, and thus this consideration is assumed 
throughout our proposed influence-propagation algorithm. 
Equation (3) shows the actual formulation of the common 
actions Jaccard coefficient.

In Eq. (3), Ai represents the number of actions accomplished 
by Node i, Aj represents the number of actions accomplished 
by Node j and Aij represents the number of common actions, 

(3)InfluenceWeightij =
Aij

Ai + Aj − Aij

.
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that represent those actions accomplished by Node i and 
subsequently, accomplished by Node j, as well.

The computation of influence weights, is followed by 
averaging them to distinguish those nodes that are deemed 
highly active, based on historical logs data. This process 
reveals the Influence Weights fuzzy set membership func-
tion, which is formulated as follows:

Equation (4) shows that the cumulated value of influence 
weights that a specific Node i has over each Node j across 
the network, is normalized by the size of the social network 
n.

4.2.3 � Fuzzy decision making

After computing both central and influential user fuzzy 
sets for every user, we decide on key users using a fuzzy-
set intersection operation for every Node i, consider-
ing the corresponding fuzzy sets CentralityWeighti and 
InfluenceWeightsAvgi , using the following formulation:

Equation (5) shows that the intersection between the fuzzy 
sets picks the smallest of degree centrality and influence 
weight values. Subsequently, Eq. (6) shows that, ultimately 
the key users are those which maximise their intersecting 
structural and influence fuzzy-membership sets. The ration-
ale of this approach is to address deficiencies each node may 
have in either its structural or influence power dimensions. 
This is why, the fuzzy-intersection considers the minimum 
of both values, so that users with less deficiency in either 
attribute get picked. This results in a set of user nodes with a 
single associated value, that is the least deficient, in terms of 

(4)InfluenceWeightsAvgi =

∑n

j=1
InfluenceWeightsij

n
.

(5)
Intersectioni = min (CentralityWeighti, InfluenceWeightsAvgi).

influence or structural shortcomings. Subsequently, the key 
nodes are determined based on the maximum of these single 
valuations of each node, as formulated by Eq. (6):

In Eq. (6), N represents the social network user nodes set.

4.2.4 � Seed set

At last, the seed set which represents the actual set of users 
to drive influence propagations is selected as the top k 
nodes of key users, where k is a parameter that depends 
on the allocated budget to a given marketing campaign to 
account for cost involving in recruiting seed set users to 
promote a given product or a service or spread a desirable 
behavioural campaign, such as stop-smoking. Hence, we 
need to rank the key users in order to be able to pick the 
top k ones. For that, Algorithm 3 is employed to evaluate 
the influence spread for each user using the IC model. 
For each run of the algorithm, we account the number 
of activations that a candidate key user scores. The com-
putational cost of this approach is similar to that of IC 
model, however the input key user nodes are judiciously 
picked in our case using our proposed fuzzy-logic based 
selection process. Our approach also contrasts with LTM 
which does not consider action logs data, like we advo-
cate. In addition, LTM is NP-Hard, calling for heuristic 
approaches to harness the problem. Instead, we harness the 
problem through the gradual three modular steps process 
that are: (1) detecting virtual communities using correla-
tions between user actions, (2) identifying key users in 
each of these communities, and (3) finding the seed-set 
(among those key users) to propagate influence across the 
entire social network.

(6)KeyUsers = argmaxi∈N(Intersectioni).
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5 � Experiments and performance analysis

This section describes the experiments we conducted to eval-
uate the community-based influence propagation approach 
we introduced in this paper. As mentioned in Step 1 of Algo-
rithm 2, we propose to use a similarity based preprocessing 
step to enrich the input social network using Algorithm 1, 
before applying Step 2 which detects communities in the 
enhanced social network. The resulting Similarity-CNM task 
is poised to detect better community structure as explained 
further in Sect. 4.1. Hence, we propose to first reveal the 
outcomes of this pre-processing step, whereby community 
quality is measured using Modularity as evaluation metric. 
Subsequently, we implemented the remaining steps of Algo-
rithm 1 to generate the key-users which accumulate both 
a favorable location in the network and a good account of 
influence (S). And finally, we run the second experiment to 
assess the propagation extent of influence propagated by the 
highest key-users, which form the actual seed-sets. Through-
out both experiments, we hypothesize that the similarity 
based preprocessing step on a social network G is effective 
with respect to the quality of communities, which are used to 
select candidates for the further influence-propagation step. 
In doing so, we hypothesize also that the fuzzy-logic based 
combination of favourable location within those communi-
ties, and the prior activity history elects highly influential 
candidates across the entire network. We implemented the 
proposed algorithms in this paper using Python and related 
iGraph and Networkx libraries. A Mac OS X version 10.14.2 
(Mojave) platform powered with an i7 processor of 2.50GHz 
and a RAM of 16 GB was used to implemented the algo-
rithms presented in this paper in order to evaluate their 
performance.

5.1 � Datasets

We used both artificially-generated social networks and 
actual network data. To evaluate the similarity-based com-
munity detection algorithm, we used LFR benchmark net-
works as dataset (Lancichinetti 2008). This benchmark was 
used in several researches dealing with community-detection 
in social networks (Cao et al. 2015; Hafez et al. 2014; Chen 
et al. 2016; Emmons et al. 2016; Orman et al. 2012). Simu-
lated networks are employed in the community-detection 
experiment to overcome the difficulty to evaluate communi-
ties in real-world networks due to an absence of community 
ground-truths (Cao et al. 2015), and to assess community-
quality under varying degrees of structural parameters. 
Nevertheless, LFR Benchmark networks do simulate net-
works that are very close to real-world social networks’ 
data (Bródka et al. 2010), and this benchmark is becoming 
a de-facto standard network-generator for evaluating the 

performance of different community-detection algorithms 
(Largeron et al. 2015). We generated a network of 10,000 
nodes using LFR benchmark for the first experiment. The 
most important parameter used to vary the structure of the 
network is known as the mixing parameter � , which rep-
resents the fraction of intra-community edges incident to 
each node. Its value ranges from 0 to 1, where 0 results in 
graphs that have high community structure, and 1 results 
in graphs that have low community structure. The mixing 
parameter generates this connection based on ( 1 − � ) for 
intra-community edges and ( � ) for inter-community edges. 
Thus, values between 0 and 0.5 yield proper community 
structures, and values between 0.5 and 1 yield loose commu-
nity structures. The other parameters are �1 and �2 , respec-
tively the “power law exponent of degree distribution” and 
“power law exponent for the community size distribution” 
(Lancichinetti 2008; Lancichinetti and Fortunato 2011), and 
which are respectively set to 2 and 1.5 in our experiment. 
Further parameters are the average and maximum node 
degree set to 10 and 50 respectively in our experiment, and 
the community-size set between 20 and 60. These values are 
consistent with those proposed by LFR benchmark provid-
ers (Lancichinetti 2008; Lancichinetti and Fortunato 2011).

For the second batch of experiments however, related to 
influence-propagation reach, we employed real-world data 
sets from Flickr social network. This social-network is dis-
tinguished by photo sharing activities. Users of Flickr post 
photographs or include them into blogs and other users may 
“like” the posted photographs as an instance of an activation. 
This dataset is graciously made available by some published 
works (Cha et al. 2009), and consists of over 2.5 million 
nodes with over 33 million links. Due to computational 
constraints and as part of our preliminary experiments, we 
extracted two subgraph samples of 500 and 5000 nodes, ran-
domly to observe the results of our experiments across real 
networks and assess the scalability properties of the obtained 
results. The targeted indicators from this second batch of 
experiments relates to the performance of the fuzzy-logic 
based intersection between favourable and influential nodes, 
that are poised to optimize diffusion across social networks. 
The extracted subgraphs preserve the original links which 
amount to 26,223 edges for the 500 nodes network and 
242,600 edges for the 5000 nodes network.

5.2 � Candidate algorithms

In the context of community detection, we propose to illus-
trate the performance of the similarity-based algorithm 
against a series of known community-detection algorithms, 
including pioneering CNM (Newman 2004), as well as Info-
Map (Rosvall and Bergstrom 2008), Louvain (Blondel et al. 
2008), and Multilevel (Rotta and Noack 2011) algorithms. 
CNM is modularity-based and very fast. Infomap is a search 
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algorithm for minimizing a map equation over possible net-
work partitions. Louvain is a greedy optimization approach 
that maximizes the modularity of a partition in the network 
in two steps. Initially, “small” communities are established 
through a local optimisation of the modularity value, and 
then community nodes are aggregated to construct a new 
network. The process iterates over these two steps until a 
maximum value of the modularity is reached. The multilevel 
refinement method is a multistep approach, which repeatedly 
prioritises the process of joining pairs of clusters that do not 
decrease the modularity. The priority criterion is a parameter 
of the algorithm.

Subsequently, and in the context of influence diffusion, 
we conducted experiments to measure the performance 
gain of our proposed approach compared to the original IC 
approach (Kempe et al. 2003), by setting the input set of trig-
gering nodes A0 . The members of this set should be carefully 
selected to maximise influence propagation. IC model does 

not exploit action correlations among users of the social net-
work whereas our proposed Algorithm 3 integrates influence 
weights based on common actions weights. In addition, IC 
propagates influence over the input network, whereas we 
consider our enriched similarity-network. To assess the 
gain in activated nodes following influence propagation, we 
apply IC model with randomly selected seed-nodes against 
the seed-set users generated from  3. With this comparison, 
we evaluate the value of the fuzzy-intersection introduced 
in this paper to select the most appropriate nodes for influ-
ence diffusion.

5.3 � Performance metrics

A practical metric used to evaluate the fabric structure of 
communities is the modularity, which is denoted Q and 
which evaluate the partitions in a social network. This evalu-
ation is based on the variance of the amount of edges link-
ing nodes within the same cluster from an expected amount 
of edges in an arbitrary network (that is typically unstruc-
tured). Better communities are detected when this difference 
is large. According to (Clauset et al. 2004a), the value of Q 
above 0.3 is considered as a significant community structure. 
This value is derived from the following formula:

where eij is the proportion of edges linking vertices in com-
munities i and j, and ai =

∑
i eij is the proportion of edge-

endpoints that connect vertices in community i. Q value 
ranges between [− 1, 1] , and measures the density of verti-
ces within the same community to that of nodes belonging 
to a different community. The larger the modularity score, 
the better is the partitioning of nodes into communities. A 
low-score means there is less community structure and high-
score means communities are very well partitioned (struc-
tured). The similarity threshold of Algorithm 1 was set to 
0.005 following observed experimental instances of Q for 
various threshold settings.

As for the influence-maximization evaluation, we made 
use of activated nodes size as a performance metric. We 
determine the number of activated nodes as it is the par-
amount element to contrast the performance of influence 
propagation for both the IC model and our proposed fuzzy-
logic based model. Nodes activation can be explained as the 
embracement of a certain action by a node, which is trig-
gered by another node. This is the main goal for influence 
propagation, whereby algorithms strive to scale-up nodes 
activation that conveys the adoption of a marketed product or 
a targeted behaviour. The influence threshold of Algorithm 3 
was set to 0.1.

(7)Q =
∑

i

(eij − a2
i
),

Fig. 4   Modularity of community structure when applying similarity 
network
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5.4 � Performance results

Our experiment results are organized in two stages. First, we 
show the gain in modularity of communities obtained when 
applying our pre-processing step of Algorithm 1. Then, we 
reveal the gain in activated nodes obtained when our pro-
posed fuzzy-logic based approach to elicit key-users shown 
in Algorithm 2 is employed, and subsequent diffusion of 
Algorithm 3 is carried out to generate the seed set of highly-
influential users.

5.4.1 � Similarity‑based preprocessing

Figure   4a shows the performance when our proposed 
enriched synthetic-network is used for community-detec-
tion by a range of landmark algorithms. The original 

LFR-generated network of 1000 nodes delivers a lower 
community structure than the enriched similarity network 
obtained by adding edges between similar nodes as dictated 
by Algorithm 1. The same 20% margin-gain in modularity 
is observed in a higher-scale network of 10,000 nodes as 
shown in Fig. 4b. Another observation is that the similarity 
network creates better opportunity for community clusters, 
when the network size increases as the modularity rises 
between the 1000-nodes network to the 10,000-nodes net-
work, whereas it appears stationary in the original network 
cases. In both experiments, the mixing parameter � was set 
to 0.3.

From the above experiment, we observe the value of the 
judicious similarity-function based on common-neighbors 
employed to support community-detection algorithms detect 
better communities. We use the synthetic similarity network 

Fig. 5   Community-detection modularities over 10,000 node networks with various topologies
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to detect virtual-communities via various community detec-
tion algorithms, for the purpose of using the enhanced com-
munity-structure to find the important nodes within each of 
these virtual communities. Later, in subsequent experiments, 
we observe the value of the proposed fuzzy-logic based 
approach to calculate the influence weight for each node 
within each community, based on both centrality measure 
and common actions history. Using the community structure 
scales-down the complexity of finding important nodes.

The enhanced community-structure brought about by 
the similarity-network spans various network topologies, 
as illustrated further in Fig. 5, where similarity-based com-
munity detection algorithms outperform original algorithms 
across a range of mixing parameter values. The performance 
of detected community-structures degrades as the value of 
mixing parameter � rises. Each point in the graphs repre-
sents an instance of modularity for a given LFR-generated 
network of 10,000 nodes shaped through the indicated 
mixing parameter in the x-axis. A low mixing-parameter 

is conducive to dense community-structures, since the frac-
tion of neighboring nodes outside any community (i.e. � ) 
is low, and hence higher modularity is inferred given the 
tight community structures of the sample network. On the 
other hand, a high mixing-parameter is conducive to loose 
community-structures since the fraction of nodes outside any 
community is high, and hence a low modularity is inferred. 
However, for each community-detection algorithm, the deg-
radation is moderate when applying our proposed preproc-
essing approach to the original network.

Furthermore, for each community-detection algorithm, 
the modularity does not fall below the 0.3 threshold, which 
is the minimum value mentioned in Clauset et al. (2004a), to 
indicate a significant community structure. It is noteworthy 
that InfoMap case shown in Fig. 5c, the similarity-network 
shows the steepest loss in modularity. This is because Info-
map community-detection algorithm is distinguished from 
the other community-detection algorithms as it relies on a 
map equation, whereas the others are modularity-maximi-
sation approaches. The employed map equation in Infomap 
partitions the network following some patterns within the 
network, to build communities. Hence, for our subsequent 
step of influence maximization, we use a candidate from 
modularity-based approaches, namely CNM.

5.4.2 � Social‑influence propagation

Through our second batch of experiments, we evaluate the 
influence-propagation reach when employing the fuzzy-
logic based approach discussed in Sect. 4.2, after preproc-
essing the social network using the approach presented in 
Sect. 4.1. As stated earlier, real-world data sets from Flickr 
social network are used in these experiments. Two subgraph 
samples of 500 nodes with 26,223 edges, and 5000 nodes 

Fig. 6   Activated Flick network nodes with varying seed-set sizes

Fig. 7   Activated nodes with varying diffusion steps using 10 seed 
nodes in a 5000-nodes Flickr network
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with 242,600 edges, have been extracted from Flickr data to 
evaluate the diffusion spread and the scalability performance 
of candidate algorithms. The output is measured in terms 
of the number of activated nodes. This performance metric 
estimates the diffusion along the network, given an input of 
judiciously selected seed-set users, which in our proposed 
approach are inferred from our fuzzy-logic based technique.

The results produced from these experiments batch reveal 
interesting tradeoffs between our proposed method and IC 
model, whereby a larger number of nodes are activated by 
our proposed community-based influence-diffusion model 
(discussed in Algorithm 2). and yet involving a smaller 
seed-set (compared to IC model). This is illustrated by Fig. 6 
which reports the influence diffusion results for two sample-
size Flick networks. First, Fig.  6a shows the results for a 
snapshot of 500 nodes, where our proposed social-influence 
based propagation which uses the fuzzy-logic discrimina-
tion to identify seed-set nodes quickly reaches a high range 
of nodes activation while using few seed nodes. Indeed, 10 
nodes activate about 350 nodes in our social-based propaga-
tion, while original IC model which chooses random seed-
set nodes activates about 30 nodes, only. As the seed-set 
threshold increases. the social-influence approach scales 
up the range of activated nodes to the higher-end, reach-
ing about about 400 nodes for an initial 50 seed nodes. The 
results show the pursuit of nodes activation to cover almost 
the entire 500 nodes of the sample Flickr social network. 
They also show that IC model requires 50 seed nodes to acti-
vate the third of what our proposed social-influence propa-
gation achieve with less merely 10 nodes. The activation 
gain is about 90% attributed to our proposed social-influence 
approach compared to IC benchmark. These results are the 
outcome of 10 diffusion steps, where the judicious combina-
tion of seed nodes’ location and historical influence brought 
by the fuzzy intersection of Eq. (5) enable faster influence 
propagation to the high-end of the social network. The 
results show that exploiting correlations exposed by central-
ity attribute and historical action logs, the influence propaga-
tion process scales higher the activation process. The trig-
gering users are more successful in persuading neighbours or 
neighbours-of-neighbours to embrace the propagated action.

In another experiment, the size of the Flickr sample net-
work is extended to 5000 nodes. The results are illustrated 
in Fig. 6b and in this case we report the results of just one 
diffusion step, and limiting the threshold of “important 
users” selected for their centrality value within their com-
munities to 10. This is the centralityThreshold mentioned 
in Sect. 4.2.1, which reflects the topological eligibility of 
seed-set nodes. Figure 6b shows that in just one diffusion 
step, the number of activated nodes rises quickly to over 
600 users, in an influence campaign driven by just 10 seed 
users. By contrast, IC model activates about 100 users 
with the same number of seed nodes. However, the gap 

between the two models grows when increasing the seed-
set size to reach 1000 more activated nodes by the social-
based propagation over original IC model. Hence, using 
IC approach, 400 nodes are activated by the 50 nodes of 
the seed set used to diffuse influence in the social network 
as shown in Fig. 6c, whereas this number climbs to over 
1400 in the social propagation model. This is an important 
outcome, considering investment decisions made by busi-
nesses to promote a product using our approach, as they 
could persuade less number of initial people to promote 
their product to expand the outcome of a marketing cam-
paign. This approach induces substantial marketing sav-
ings to provide free samples to those influence-inceptive 
individuals forming the seed-set. In addition, businesses 
raise their income, as those inceptive-individuals have the 
capacity to entice a large number of social-network users 
to adopt the product at a later stage.

We also noticed some more interesting results when 
analyzing the performance with varying diffusion steps 
as illustrated in Fig. 7. The social-based propagation is 
able to reach almost the entire Flickr social network of 
5000 nodes after just five diffusion steps using only 10 
seed-set nodes, and outperforming the original IC propa-
gation by an increasing margin as the diffusion step rises. 
This means that 0.2% of individuals in a social network 
are able to convince the entire network population. This 
influence scalability is attributed to the fuzzy-set intersec-
tion approach we employed to determine key users. The 
combined value obtained from both CentralityWeightn and 
InfluenceWeightsAvgn criteria to decide on key user node 
n, compensates the defects in either centrality or influence 
weight to reach neighbouring nodes. The impacts of this 
result contribute to an efficient seed set of potential can-
didates for influence propagation, by its reduced size and 
higher influence (reachability).

6 � Conclusion

In the presented work within this paper, we address the 
prominent social-network problem pertaining to influence-
maximization, for which we contribute a computational-
intelligence approach to expand the influence diffusion rates 
in contemporary social networks. The experimental analysis 
results reveal the potential benefits of using a community-
enrichment preprocessing step before applying influence-
diffusion algorithms. We also suggested a new method to 
find “key nodes” in social networks using a computational 
intelligence approach that adapts fuzzy-logic theory to key 
users selection. This technique discovers the most influen-
tial nodes as seed set for influence propagation, by combin-
ing multiple criteria such as nodes’ location and influence 
weights in the social network. The propagation of influence 
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in social networks involves naturally some vagueness, given 
dynamic nodes’ relationships and location in the network. 
The proposed fuzzy-logic approach is suggested to over-
come this typical vagueness in social networks, by combin-
ing both of these node properties to assert key nodes that are 
candidate seed set members for diffusing influence. These 
correlations have practical implications across a range of 
business, political or social campaigns that aim at generat-
ing revenues while minimizing costs, or adopting desired 
behaviours across a society with fewer interventions.

Future directions to extend the influence maximization 
algorithm presented in this paper are numerous to investi-
gate further efficiency and scalability opportunities. We are 
also working on applying the proposed approach to other 
real-word datasets such as YouTube and come up with new 
insights about robustness in finding the most influential seed 
set. We are also exploring the effectiveness of employing 
various centrality attributes for a better precision of the 
obtained results, such as betweenness, closeness, etc.
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