
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:2029–2040 
https://doi.org/10.1007/s12652-018-0805-4

ORIGINAL RESEARCH

Feature space learning model

Renchu Guan1  · Xu Wang1 · Maurizio Marchese2 · Mary Qu Yang3 · Yanchun Liang1,5 · Chen Yang4

Received: 1 September 2017 / Accepted: 20 April 2018 / Published online: 9 May 2018 
© The Author(s) 2018

Abstract
With the massive volume and rapid increasing of data, feature space study is of great importance. To avoid the complex 
training processes in deep learning models which project original feature space into low-dimensional ones, we propose a 
novel feature space learning (FSL) model. The main contributions in our approach are: (1) FSL can not only select useful 
features but also adaptively update feature values and span new feature spaces; (2) four FSL algorithms are proposed with 
the feature space updating procedure; (3) FSL can provide a better data understanding and learn descriptive and compact 
feature spaces without the tough training for deep architectures. Experimental results on benchmark data sets demonstrate 
that FSL-based algorithms performed better than the classical unsupervised, semi-supervised learning and even incremental 
semi-supervised algorithms. In addition, we show a visualization of the learned feature space results. With the carefully 
designed learning strategy, FSL dynamically disentangles explanatory factors, depresses the noise accumulation and semantic 
shift, and constructs easy-to-understand feature spaces.

Keywords Feature space learning · Semi-supervised learning · Affinity Propagation · k-means

1 Introduction

In the era of big data, tasks such as natural language process-
ing and ImageNet large scale visual recognition competition 
make that it is not enough if we just rely on simple paramet-
ric models, because they cannot capture enough complexity 
of interest unless provided with the appropriate feature space 
(Bengio et al. 2013). However, how to explore and generate 

the feature space to support effective machine learning is 
a major question. Recently, much of the actual effort in 
deploying deep learning algorithms such as deep belief 
networks (Jiang et al. 2016), auto-encoders (Hinton and 
Salakhutdinov 2006), convolutional neural network (Esteva 
et al. 2017) and recurrent neural networks (Zhang et al. 
2018) goes into exploring feature space and learning good 
representations; however, most of the deep architectures are 
too challenging to train effectively. Another problem lies in 
disentangling and explaining the highly abstracted concepts 
or representations obtained from deep learning. The source 
of their performance is still lack of interpretability (Karpathy 
et al. 2015) (See Table 1).

Meanwhile, among the data mining techniques, cluster-
ing plays an important role in exploratory recommendation 
systems (Bobadilla et al. 2013), public opinion analyses 
(Semetko and Valkenburg 2000), and information retrieval 
areas (Frakes and Baeza-Yates 1992). Many clustering appli-
cations can be found in image segmentation, object recogni-
tion, video tracking, and etc. (Jain et al. 1999; Huang et al. 
2018; Wu et al. 2018). Instead of only using the unlabeled 
sources, semi-supervised algorithms have attracted consid-
erable attention because they can learn from a combination 
of labeled and unlabeled data for better performance (Wang 
et al. 2012; Guan et al. 2011). In semi-supervised clustering, 
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the intuitive purpose is to use not only the available informa-
tion from labeled data during clustering procedures, but also 
clues from unlabeled data to estimate data distribution. To 
exploit unlabeled data, most of the frameworks introduce the 
following two prior assumptions of consistency: (1) nearby 
points are likely to have the same label; and (2) points on the 
same structure (typically referred to a cluster or a manifold) 
are likely to have the same label (Xue et al. 2011). However, 
the biggest risk for directly using unlabeled samples is that 
the cluster could be adulterated with untrusted samples in 
its earlier stage. These bad pieces of information accom-
panied with good will propagate and be amplified in the 
following procedures and in other samples, which is similar 
to positive feedback in digital electronics and the Matthew 
effect in social psychology. Therefore, it is obvious that 
unlabeled points should be explored carefully because even 
the supervised classification performance can be degener-
ated by wrong unlabeled information (Li and Zhou 2015). 
In addition, most existing semi-supervised methods are lack 
of the ability for handling high-dimensional data (Tang et al. 
2007).

To make good use of daily growing data (most of them are 
unlabeled samples) and avoid the wrong information propa-
gation risk, we propose a novel feature space learning (FSL) 
model, which can perform adaptive feature space upgrading 
while fulfilling clustering. It is based on the hypothesis that 
unlabeled samples can provide useful information on dis-
tribution estimation (cluster center estimation) over feature 
space. Therefore, the new model creates label propagation in 
unlabeled texts with the help of clustering. Then, the incom-
ing newly labeled samples are selected based on the objec-
tive function, which most of the clustering algorithms try to 
minimize. Moreover, a feature selection method inspired by 
a universal regularity for human language-Zipf’s law (Zipf 
1949) and word burstiness (Kleinberg 2002) is developed to 
further control the risks. This model relies on the universal 
rules for human language which are named as Zipfs law 
and word burstiness. Because it uses an algorithm instead 
of functional mapping to dynamically delineate the feature 
spaces, FSL is quite different from the mean-shift algo-
rithm, which is another feature space model in image seg-
mentation and video tracking (Comaniciu and Meer 2002; 
Leichter 2012). This model combines prior information and 
an assumption of consistency, which could not only embed 
the labeled information in similarity measurements, but also 
guide the clustering procedures.

To illustrate the performance of our model, we applied 
FSL to two classical clustering algorithms and implemented 
four FSL algorithms: feature space seeded k-means (FSSK-
means), feature space constrained k-means (FSCK-means), 
feature space affinity propagation (FSAP) and feature space 
seeds affinity propagation (FSSAP). Experiment was con-
ducted with two benchmark data sets to demonstrate the Ta
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effectiveness of the proposed algorithms. As a result, topical 
feature space for each cluster can be found accompanying 
the end of clustering. With the learned feature space, we 
can obtain a simple and compact representation of the data.

2  Feature space learning model

Studying the statistical properties and universal regulari-
ties of written texts can dig out clues about how our brains 
process information and model language computationally 
(Serrano et al. 2009). Among the studies in this area, the 
most notable regularities are Zipf’s law and the bursty nature 
of words.

Zipf’s law is one of the best-known universal regularities 
on word frequencies, wherein the frequency of terms ni in 
a collection decreases inversely to the rank r of the terms: 
ni ∼ 1∕ri or P(ni) ∼ n−�

i
� ≈ 2 which indicates ni is approxi-

mated by the power law. It applies to collections of texts in 
virtually all languages.

Due to the bursty nature of human behavior (Barabasi 
2005) and the fact that bursty nature of rare words is con-
nected with the topical organization of texts (Griffiths and 
Steyvers 2004), word bursts have attracted more and more 
attention. It is depicted as making a word f more likely to 
reappear in document d if it has already appeared, compared 
to its overall frequency across the collection (Serrano et al. 
2009). Interestingly, those rare words are more evident with 
this property and they are more likely to be topical. To mine 
the potential information and use the consistency assump-
tion, we introduced Zipf’s law and word bursts to control 
the potential risk while learning from both labeled and unla-
beled samples.

Based on Zipf’s law and word bursts, the mainframe 
of the new feature space learning model is presented. Our 
hypothesis is that unlabeled samples can provide infor-
mation about the distribution estimation (cluster center 
estimation) over feature space. For example, suppose that 
we determine that the word “computer” in a labeled docu-
ment tends to be an important feature for its cluster vec-
tor. The most widely used text-mining model is the vector 
space model, which treats a document as a bag of words/
phrases and uses plain language words as features. If we 
use this feature or “computer” to estimate the clusters of 
many unlabeled documents, we could find that the word 
“graphics” occurs frequently in the unlabeled examples 
that are now believed to belong to the “computer” clus-
ter. In contrast, based on the prior assumption of consist-
ency, it could also be expected that points (documents) 
with the same label are likely to share same or similar fea-
ture space. Therefore, the unlabeled samples can provide 
additional informative features to construct new feature 
space to provide further cluster estimation or change the 

cluster center vector to be more representative. However, 
based on the above hypotheses, there is a potential risk 
that noisy information may be picked out. To avoid the 
risk, we designed two constraint strategies–Zipfs’ law and 
word bursts in our feature space learning (FSL) model to 
optimize the objective function.

To clarify the FSL model and procedures, all the cluster 
processes are illustrated in Fig. 1. Here, all the detailed 
explanations are depicted as follows:

1. Initialization: Initialize data to supersets to convert all the 
texts into vectors. Let D = {d1, d2,⋯ , dN} be a set of sam-
ples. Suppose that di and dj are two objects in D; they can 
be represented as: di = {⟨f 1

i
, n1

i
⟩, ⟨f 2

i
, n2

i
⟩,⋯ , ⟨f Li

i
, n

Li
i
⟩} 

dj = {⟨f 1
j
, n1

j
⟩, ⟨f 2

j
, n2

j
⟩,⋯ , ⟨f Lj

j
, n

Lj

j
⟩} . where f l

i
 and 

f m
j
(1 ≤ l ≤ Li, 1 ≤ m ≤ Lj) represent the lth feature of di 

and the mth feature of dj , respectively. nl
i
 and nm

j
 are their 

feature values. Li and Lj are the number of the objects’ 
features.

2. Seed construction: An intuitive way is to use the few-
labeled samples. However, after step 4 and step 5, the 
seeds can be updated with rules.

3. Similarity computation: Different similarity metrics can 
be selected according to different data, such as cosine 
coefficient for texts and Euclidean distance for images.

4. Clustering: In this step, several classical clustering algo-
rithms such as k-means and affinity propagation in our 
case can be adopted.

5. Feature Space control: It is the key procedure of our 
model and is designed to avoid wrong updating with 
noise data and features. The right part of Fig. 1 is a 
diagram of feature space updating (The change of frame 
and arrows indicate the feature space tranformation). It 
is described in detail in the next section.

6. The termination condition judgment. If clusters are not 
changed for several iterations or the maximum number 
of iterations value is reached, then the clusters and their 
topic feature space are generated.

When we face a real problem, three things should be 
emphasized in the feature space updating: first, how to 
update feature space centers.

Definition 1 The sample d∗ is a trust sample for the kth clus-
ter ( Trustk ), if

where K is the number of clusters, Mem(d, k) is the mem-
bership function which indicates the extent of sample d 
belonging to cluster k. Different clustering algorithms try to 

(1)d∗ = argmax
d∈Clusterk

Mem(d, k), 1 ≤ k ≤ K
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maximize different membership functions, or to be equiva-
lent, to minimize an object function opposed to member-
ship functions. Therefore, trusted samples are selected by the 
algorithms and will provide useful update information for 
centers in the following processes. The count of “trust sam-
ples” could vary according to different applications (such as 
image processing, gene finding and so on) and requirements.

Moreover, the feature space dimension updating step 
provides another “firewall” for the security of adaptive 
information obtained from trust samples. It is believed that 
not all the features in the input space are important for 
clustering. This is because some of the features may be 
redundant or irrelevant to the cluster topics. Some may 
even misguide the clustering result, especially when the 
irrelevant features outnumber the relevant ones. Therefore, 
a great number of feature selection methods have been pro-
posed, which could not only decrease the time and space 
complexity but also achieve improvements on clustering 
results. Instead of dimension reduction, we focus on the 
rich-information feature (e.g. words or key-phrases for text 
clustering) finding. We should emphasize that these fea-
tures are selected from both labeled and unlabeled sources 
to generate a new space but not to reduce the dimension as 
an original purpose of feature selection for text mining. It 

is implemented to control the unlabeled utilization risk and 
select the burst items for providing adaptive information.

As the second issue, feature space updating needs an 
effective risk control strategy to avoid the risk of untrusted 
labels; meanwhile, the risk control strategy cannot be too 
complex to avoid the high computation complexity. Here 
we propose a simple but effective feature selection method 
with linear computational complexity based on Zipf’s law 
and word burstiness. It borrows the ideas from the bursty 
nature of words and contributes to further extension, 
which indicates that bursty words in each individual text 
(with stop words or function words removed) are potential 
to be the bursty words in the corresponding cluster. These 
words are more informative and contain more relationships 
with each other. Furthermore, they could be the major part 
of the topic feature space. We call these words as rich-
information features (RIFs).

Definition 2 Assume sample d∗ is a trust sample of the kth 
cluster, and the lth feature fl is a feature of sample d∗ . Then 
fl is a rich-information feature (RIF) for cluster k, if

(2)nl
∗
≥ �

L∗∑

l=1

nl∕L∗,m
i
k
≥ �

Pk∑

p=1

m
p

k
∕Pk

Fig. 1  Flowchart of feature space learning model and feature space updating diagram
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where nl
∗
 is the frequency of feature fi in trust sample d∗ , 

mk
i
 is the frequency of feature fi in the kth cluster, L∗ and Pk 

indicate the number of features in both d∗ and the kth cluster 
center while � and � are two control parameters, respectively.

Definition 2 is a double constraints problem. It is derived 
from mutual information in information theory. The RIF 
selecting method is easily scaled to a “big” dataset, because 
of its linear computation complexity O(M + L).

Third, after the harsh feature selection, another rule is 
developed for updating weight in the adaptive processes to 
optimize the feature space. The feature space is constructed 
by adding rich-information features of trust samples into the 
original space iteratively. Therefore, the feature space can be 
considered as a linear combination of the vector of trust sam-
ple RIF and the original feature space. It should be noticed that 
the trust samples have different confidence levels at different 
iterations. Simply, the confidence of an RIF in t iteration is 
assigned as

where t is the iteration times and T is the total number of 
iterations. Herein, the RIFs of the unlabeled samples’ con-
tribution for cluster feature space is decreased linearly with 
iteration t. Denote the total confidence from the beginning 
until the tth iteration as

(3)conf t = (T − t)∕T

(4)confT =

t∑

i=1

confi =

t∑

i=1

T − t

T
= t

(
1 −

t + 1

2T

)

Then, for an RIF fi in trust sample d∗ of cluster k in the tth 
iteration, the weight updating rule (See step 5 in Figure 2) 
is set as follows:

where (wk
i
)
t is the weight of fi (a RIF) in cluster k for the tth 

iteration. In addition, considering the consistency assump-
tion of semi-supervised learning, the similarity matrix needs 
to be updated for those new labeled samples. The matrix is 
re-computed as follows: If i and j belong to same cluster at 
the t iteration, their distance is set to the minimum; other-
wise, the distance becomes the maximum. In particular, at 
the beginning of the algorithm, the similarities among all the 
labeled objects are also computed with this rule.

To examine the effectiveness of FSL, starting from two 
classical algorithms (k-means and affinity propagation) (Frey 
and Dueck 2007), we represent four FSL algorithms. These 
algorithms are named as feature space seed k-means (FSSK-
means), feature space constrained k-means (FSK-means), 
feature space affinity propagation (FSAP), and feature-space-
seeds affinity propagation (FSSAP).

2.1  K‑means based FSL models

The main idea of k-means is to optimize the objective function:

(5)(wi
k
)
t
=

conft

confT
× (wi

k
)
t−1

+
conft

confT
× ni

∗

(6)G(x) =

K∑

k=1

∑

di∈Clusterk

||di − ck||2
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where K is the cluster number, di is a sample involved in clus-
ter k and ck is the cluster center, respectively. After the initiali-
zation with labeled samples and a complete k-means cluster-
ing, the next step is to select the trust samples. According to 
Eq. (6), the membership function in Eq. (1) should minimize 
the distance of the relative sample with its cluster center. Then 
the trust sample selection method could be represented by:

In the next step, those features satisfied in Eq.  (2) are 
selected as RIFs and their weights are updated with Eq. (5). 
Moreover, it is very important in semi-supervised cluster-
ing to make full use of the information embedded in the 
labeled objects. The details of the k-means based clustering 
algorithms are as follows:

Feature-space-seed k-means (FSSK-means): The labeled 
sample is used to initialize the k-means algorithm. Rather 
than initializing k-means randomly, the kth cluster is initial-
ized with the mean of the kth partition of the labeled set. The 
labeled samples are only used for initialization, and they are 
not used in the following steps of the algorithm, such as re-
estimating means and reassigning clusters in k-means clus-
tering procedures. Taking into consideration on our specific 
application domain (text clustering), we utilized the classical 
similarity measurement cosine coefficient:

where X and Y are two texts. FSSK-means is based on the 
semi-supervised k-means algorithms proposed by (Basu 
et al. 2002). FSSK-means inherits the labeled sample learn-
ing strategy, but adds the utilization of unlabeled samples 
with a strict feature space learning strategy (such as trust 
sample and RIF selection).

Feature-space-constrained k-means (FSCK-means): The 
labeled sample set is also used to initialize the k-means 
algorithm as described for FSCK-means. However, in the 
subsequent procedures of FSCK-means, the labeled sam-
ples are employed in the clustering phase. This means that 
when the algorithm needs to re-estimate means and reas-
sign clusters, the labeled samples join in the computation. 
In contrast, labeled samples in FSSK-means are only used 
in initialization. Equation (8) is also used in FSCK-means to 
measure the similarity.

2.2  Affinity propagation based FSL models

The core idea of affinity propagation (AP) is that it can 
be viewed as a method that searches for the minima of an 
energy function:

(7)d∗ = argmin
d∈Clusterk

||d − ck||2, 1 ≤ k ≤ K

(8)S(X,Y) = |X ∩ Y|∕(|X|1∕2|Y|1∕2)

(9)G(x) = −

N∑

i=1

s(di, ck)

where N is the data number, k is the cluster index number, di 
is a sample involved in cluster k and ck is the cluster center.

After the AP clustering processes, we consider the sample 
as a trust sample according to the above AP’s objective func-
tion and Eq. (1):

where s(i, k) is the similarity between sample di and its 
center ck and s(k, k) is the priori suitability of point ck to 
serve as an exemplar. Similarly, Eq. (2) is used to search for 
the RIFs and Eq. (5) is used to update their weights.

Feature-space affinity propagation (FSAP) is performed on 
the basis of AP clustering. Labeled samples are directly used 
during the responsibility and availability messages transmis-
sion. It utilizes the cosine coefficient to measure the similarity 
between documents, and the self-similarity utilizes:

where N is the scale of the unlabeled data set, M indicates 
the scale of all the labeled and unlabeled samples, 
P(x) = min

1≤i,j≤N,i≠j
{s(i, j)}, 1 < i ≤ N , Q(x) = max

1≤i,j≤N,i≠j
{s(i, j)},

1 < i ≤ N and � is an adaptive factor. Moreover, in the FSL 
frame, we use Eq. (10) to select the trust samples. Then, with 
the rules of Eqs. (2) and (3), FSAP achieves the updated 
feature space.

Feature-space-seeds affinity propagation (FSSAP) FSSAP 
is derived from the combination of seeds affinity propagation 
(SAP) (Guan et al. 2011) and the FSL model. SAP related 
concepts are introduced: For document di , we denote Fi as 
the feature set of di , and SFi as the significant feature set of di , 
including the most significant features–such as the words and 
key-phrases in title and abstract of di . Then for two document 
samples di and dj , the co-feature set CFS(i,j) , unilateral feature 
set UFS(i,j) , and significant co-feature set SCS(i,j) are defined 
as follows:

FSSAP inherits the tri-set similarity measurement from 
SAP:

where | ⋅ | indicates the scale of a set; nm
j
 and nq

i
 have a fre-

quency of fq in SFj , and � , � and � are adaptive factors that 
have been extensively discussed in Guan et al. (2011). The 

(10)d∗ = argmin
1≤i,k≤N

[−(s(i, k) + s(k, k))]

(11)s(i, i) =

{
P(x) − 𝜙(Q(x) − P(x))

+∞, N < i ≤ M

(12)CFS(i,j) ={f |f ∈ Fi and f ∈ Fj}

(13)UFS(i,j) ={f |f ∈ Fi and f ∉ Fj}

(14)SCS(i,j) ={f |f ∈ Fi and f ∈ SFj}

(15)s(i, j) = �

|CFS|∑

m1

nm
j
+ �

|SCS|∑

q=1

n
q

SFj
− �

|UFS|∑

p=1

n
q

i
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labeled samples are first merged into compact seeds based 
on the labeled information before putting labeled and unla-
beled samples together. Then, the compact seeds are entered 
into the message-passing of AP. While in the learning pro-
cess, it should be noticed that the features are divided into a 
normal feature set and a significant feature set. Denote FCk 
as the normal feature set of cluster k, and SFCk as the sig-
nificant feature set of cluster k. Then after obtaining the trust 
sample d∗ of cluster k, if a feature of Eq. (2) is satisfied, it 
should be added into FCk . Moreover, if it satisfies

then it should be added into SFCk , where mi
SFk

 represents the 

frequency of feature fi in SFCk . Comparing FSAP and 
FSSAP, the most different strategy between them is that the 
latter chooses tri-set similarity measurement and compact 
seeds.

To compare the introduced ten clustering algorithms, 
Table 2 depicts all the different strategies. The main dis-
tinction among between semi-supervised learning and FSL 
laid on the different assumptions. The former only focus on 
the performance improvement. On the contrary, the latter not 
only consider the performance but also optimize the feature 
space. It is a bi-objective optimization.

3  Results and discussion

3.1  Datasets and evaluation

All the classical clustering, semi-supervised learning and 
new proposed FSL algorithms are applied to two benchmark 
text datasets: Reuters-21578 (Reuters) and 20 Newsgroups 
(20NG). They are maintained in the UC Irvine Machine 
Learning Repository and are widely used (Asuncion and 

(16)mi
SFk

≥

SFCk∑

p=1

m
p

SFk
∕|SFCk|

Newman 2007; Bekkerman et al. 2003). Moreover, for text 
data clustering and classification, the high-dimensional and 
sparse matrix computation is a typical problem (Guan et al. 
2011). FSL model transfers the original feature space into 
compact ones which can solve this problem.

The publicly available Reuters dataset is a widely used 
benchmark text mining data set which is pre-classified 
manually (Lewis 2004). This class information is eliminated 
before learning, and is used to evaluate the performance of 
each algorithm at the end. The original Reuters data consist 
of 22 files (for a total of 21,578 documents) and contains 
special tags like < TITLE >,< TOPICS > , and < DATE > 
among others, which are the text information and introduc-
tion. We firstly cut the files into a series of single texts and 
strips the documents from the special tags. Then, those 
documents which belong to at least one topic are selected. 
To avoid the imbalanced data problem in Reuters, the top 
10 classes are selected as other researches (Estabrooks et al. 
2004; Guan et al. 2011).

20NG is also a widely used benchmark data set. It is 
collected by Ken Lang and contains 19997 texts from 20 
news groups (Rennie 2008). The original 20NG contains a 
large number of headers information (such as: Newsgroups 
, Subject , and Date) in each document. These headers are 
deleted before the experiments to avoid introducing label 
information.

The pre-processing includes text extraction, stop words 
removal and word frequency computation for each docu-
ment, the data sets were changed into the superset form in 
Step 0 of Fig. 1. The labeled samples used in all of the algo-
rithms are randomly selected without any prior knowledge. 
The count of the unlabeled data is 400. To pursue the com-
pact feature space, for Reuters, the count of the labeled data 
is from 10 to 400 (2.5 to 50%); for 20NG, the count is from 
20 to 400 (5 to 50%).

To evaluate the performance of clustering, two types of 
measures were applied, namely F-measure and entropy, 
which has been widely used in information retrieval. They 
are used to compare the generated result with the set of cat-
egories created by experts. The F-measure is a harmonic 
combination of the precision and recall values. The larger 
the F-measure is, the better is the clustering performance. 
Entropy provides a measure of the uniformity or purity of 
a cluster. In other words, it can tell us how homogeneous a 
cluster is. The smaller the Entropy is, the better the cluster-
ing performance.

3.2  FSL vs. semi‑supervised algorithms

To examine the effectiveness of the proposed model, several 
existing algorithms were implemented for comparison, the 
blue line represents k-means algorithm, the green line is SK-
means, the red line CK-means, the cyan line is FSSK-means 

Table 2  Different learning strategies for related algorithms

Tri-Set similarity Semi-supervised FSL

k-means × × ×

AP(CC) × × ×

SK-means × ✓ ×

CK-means × ✓ ×

SAP (CC) × ✓ ×

SAP ✓ ✓ ×

FSSK-means × ✓ ✓

FSCK-means × ✓ ✓

FSAP × ✓ ✓

FSSAP ✓ ✓ ✓
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and the purple line is FSCK-means. The x axes indicate the 
percentage of labeled samples in the datasets, the y axes 
of Fig. 2a, c are the maximum F-measure for each labeled 
sample scales, and the y axes of Fig. 2b, d are the minimum 
Entropy for each labeled sample scales. From Fig. 2, we 
can clearly see that the FSL learning curves (FSCK-means 
in purple line and FSSK-means in cyan line) are the highest 
F-measure and lowest entropy. They beat the other three 
algorithms on different labeled sample scales.

The experiments show that our feature space learning 
algorithms outperform the classical k-means and semi-super-
vised k-means. The effectiveness of the FSL model can be 
seen in the distance between the classical semi-supervised 
clustering and feature space learning curves. We compute 
the mean value for each algorithm’s learning curve in Fig. 2 
and the numerical values of the maximum/minimum of these 
k-means based algorithms. They are showed in Table 3. 

From Table 3, we can see FSL based k-means algorithms 
are superior to the semi-supervised k-means clustering algo-
rithms. FSCK-means achieved the highest F-measure (0.614 
and 0.342 for Reuters and 20NG, respectively) and lowest 
Entropy (0.445 and 0.815 for Reuters and 20NG, respec-
tively). For the mean value of each learning curve, it can be 
found that the FSL algorithms also achieved the highest mean 
F-measure (0.546 and 0.289 for Reuters and 20NG, respec-
tively) and the lowest entropy (0.533 and 0.889 for Reuters 
and 20NG, respectively). All the two FSL algorithms are 
performed better than the ones without FSL strategies, e.g. 
FSSK-means gets 13.8% higher F-measure than SK-means 
and 73.6% higher than k-means (0.197) on 20NG data.

The comparison results of AP based algorithms are 
depicted in Fig. 3. In Fig. 3, the blue line represents AP(CC) 
algorithm, the green line is SAP(CC), the red line SAP, 
the cyan line is FSAP and the purple is FSSAP. The x axes 
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Fig. 3  Comparison results of AP based methods

Table 3  Semi-supervised 
K-means VS FSL K-means

The best results are in bold

Data Evaluation SK-means CK-means FSSK-means FSCK-means

Reuters Max-F 0.517 0.600 0.542 0.614
Min-E 0.563 0.494 0.547 0.445
Mean-F 0.462 0.509 0.477 0.546
Mean-E 0.619 0.576 0.611 0.533

20 Newsgroup Max-F 0.289 0.336 0.329 0.342
Min-E 0.870 0.825 0.841 0.815
Mean-F 0.250 0.288 0.276 0.289
Mean-E 0.936 0.890 0.906 0.889
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indicate the percentage of labeled samples in the datasets, 
the y axes of Fig. 3a, c are the maximum F-measure for each 
labeled sample scales, and the y axes of Fig.3b, d are the 
minimum Entropy for each labeled sample scales. In Fig.3a, 
b, because SAP (red line) used the tri-set similarity, its learn-
ing curve is near FSSAP (purple line) on Reuters. However, 
on 20NG the gap between FSSAP and SAP is enlarged in 
Fig. 3c, d. In addition, on 20NG, FSAP achieved the highest 
F-measures in Fig. 3c. In summary, the FSL models FSAP 
and FSSAP broadly performed better than those without. 
Combined with the results of k-means based algorithms, it 
illustrates that the FSL model is not sensitive to the exact 
algorithms and can be used in a variety of clustering methods.

From the above experiments and results, it can be seen 
that the FSL model based algorithms could achieve better 
results than the traditional semi-supervised clustering algo-
rithms on different data sets. It is because that by updating 
the feature space, the FSL model could modify the clustering 
strategy and embed information in similarity measurement 
simultaneously. The superior experimental results show that 
FSL can find out those important features and construct an 

informative feature space. Moreover, the FSL model can 
combine with different clustering algorithms not limited to 
the k-means and affinity propagation.

3.3  FSL vs. incremental semi‑supervised algorithm

The incremental affinity propagation (IAP) is an existing AP 
based semi-supervised algorithm (Shi et al. 2009) which can 
be considered as SAP (CC) plus an incremental trust sample 
selection process, while FSAP is SAP (CC) combined with 
FSL. To test the only effect of the feature space learning 
procedure, the result of FSAP is compared with that of IAP 
in Shi et al. 2009. The F-measure and entropy comparison 
results are shown in Tables 4 and 5. 

Tables 4 and 5 show that FSSAP with feature space learn-
ing receives the best values (the maximum F-measures and 
minimum entropies) in most cases, i.e. FSSAP performs bet-
ter than IAP on five data scales (10, 100, 200, 300, and 400) 
on both F-measure and entropy. Most importantly, FSSAP 
gets 14.3% higher F-measure than IAP with a data scale of 
100 and a 13.5% lower entropy score than IAP at 200.

Table 4  FSL AP vs IAP on 
F-measure

The best results are in bold

10 50 100 200 300 400

IAP 0.456 0.465 0.449 0.459 0.465 0.465
FSAP 0.503 0.423 0.513 0.500 0.514 0.503
FSSAP 0.452 0.532 0.612 0.621 0.642 0.618

Table 5  FSL AP vs IAP on 
entropy

The best results are in bold

10 50 100 200 300 400

IAP 0.698 0.594 0.594 0.598 0.598 0.596
FSAP 0.555 0.621 0.565 0.517 0.540 0.512
FSSAP 0.616 0.490 0.463 0.466 0.427 0.433

Table 6  Learned feature spaces

Algorithms Clusters Features’ count Example features

FSCK-means 1 2434 Aid = 3.37; share = 1.84; men = 1.72; ers = 1.54; dlr = 1.52
2 2233 Pro = 3.93; pro = 3.93; aid = 3.71; mln = 3.07; est = 3.53; acre = 2.89
3 3364 Aid = 3.37; aid  = 6.02; ill = 3.52; pct = 3.11; pro = 3.08; pri = 2.70
4 1109 Aid = 3.37; mln = 3.64; loss = 1.93 net = 1.70; pro = 1.55; dlr = 1.51
5 2633 Aid = 3.37; pro = 3.66; aid = 3.13; ers = 2.49; men = 2.44; eat = 2.17
6 2281 Aid = 3.37; ban = 3.79; rate = 3.66; bank = 3.47; pct = 3.11;aid = 2.56
7 2652 Aid = 3.37; ban = 4.56; aid = 4.47; bank = 4.42; int = 2.65;dollar =  2.45
8 2956 Aid = 3.37; aid = 3.66; ran = 2.67; ers = 2.47; men = 2.27; port = 2.19
9 3418 Trade = 4.97; ill = 4.79; aid = 4.67; pro = 4.05; Japan = 3.85;
10 2317 Ton = 3.40; aid = 3.23; tonnes =  2.88; eat = 2.85; wheat  = 2.63;
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The main difference between FSAP and IAP is that the 
former adopts the FSL model, which employs the more strin-
gent feature space learning strategy. On the contrary, IAP 
simply adds unlabeled samples into clustering without selec-
tion and feature space promotion. Although IAP can obtain 
similar or even better results at the beginning, because of 
the noise accumulation and semantic shift, it quickly falls 
behind FSAP and FSSAP.

3.4  Learned feature spaces

During the clustering procedures, the FSL model also spans 
new feature spaces and updates feature values. We picked 

out the feature spaces of FSCK-means on Reuter data to 
illustrate the transformed feature spaces.

From Table 6, it can be seen that the feature space has 
been changed after performing FSCK-means clustering. At 
the start-up, all the documents should be represented as a 
vector based on the whole vector space of the data. Because 
most of the documents do not contain all the words used in 
the data, the vector space model often falls into high-dimen-
sional and sparse. For example, in our case it consists of 
8277 dimensions. However, with the FSL model, we selected 
no more than 3500 features (the largest one is 3418 for Clus-
ter 9) that could represent all these documents and clusters. 
The newly generated feature spaces are only 13.4–41.3% of 
the original one. Moreover, during the clustering, the values 

Fig. 4  Visualization of feature 
space
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of the features are also accurately refined. For example, the 
“trade” value in cluster 9 in Table 6 is 4.97. This cluster 
coincides with the “trade” class in Reuters. With these well-
refined feature spaces, more accurate classifiers can be con-
structed easily by similarity or distance computing.

3.5  Feature spaces visualization

Different from the abstract concepts of representation learn-
ning, we make a visualization example for the learned fea-
ture space to make it visible and easy understand. In Fig. 4, 
the learned feature spaces of FSCK-means on Reuter data 
have been depicted. Instead of building up the whole vec-
tor spaces of the data and the high-dimensional and sparse 
matrix computing, with the FSL model, a much smaller 
feature space is constructed by those few labeled samples 
and the refinement of unlabeled samples features. At last, 
the learned feature spaces with low dimension could rep-
resent all the documents and clusters. Moreover, during the 
clustering, the values of the features are also more accu-
rately depicted. With the well-refined feature spaces, the 
word clouds of the learned feature spaces for each cluster 
are drawn. The larger a feature value is, the bigger its logo. 
In addition, more accurate classifiers based on these learned 
feature spaces could be easily constructed by similarity or 
distance computing.

4  Conclusion

In this paper, we proposed a feature space learning model 
and four FSL algorithms. Inspired by Zipf’s law and words 
bursts, FSL model employs risk control strategies to avoid 
untrusted samples and filter the features. By constructing a 
more powerful feature space, the four clustering algorithms 
perform better than the classical clustering (MacQueen 
et al. 1967; Frey and Dueck 2007), semi-supervised clus-
tering (Basu et al. 2002; Guan et al. 2011) and even incre-
mental semi-supervised algorithms (Shi et al. 2009), e.g. on 
F-measure, FSCK-means is 73.6% higher than k-means and 
FSSAP gets 14.3% higher than IAP. Experimental results on 
the benchmark datasets demonstrate that the FSL model can 
dynamically promote learning performance and construct 
better understandable feature spaces. However, to pursue 
feature space and clusters simultaneously, the computation 
complexity of FSL model is higher than classical cluster-
ing and semi-supervised clustering models. Further model 
innovations may be needed to addressing this remaining 
limitation.
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