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Abstract
Efficient monitoring of a cloud system involves multiple aggregation processes and large amounts of data with various and 
interdependent requirements. A thorough understanding and analysis of the characteristics of data aggregation processes 
can help to improve the software quality and reduce development cost. In this paper, we propose a systematic approach for 
designing data aggregation processes in cloud monitoring systems. Our approach applies a feature-oriented taxonomy called 
DAGGTAX (Data AGGregation TAXonomy) to systematically specify the features of the designed system, and SAT-based 
analysis to check the consistency of the specifications. Following our approach, designers first specify the data aggregation 
processes by selecting and composing the features from DAGGTAX. These specified features, as well as design constraints, 
are then formalized as propositional formulas, whose consistency is checked by the Z3 SAT solver. To support our approach, 
we propose a design tool called SAFARE (SAt-based Feature-oriented dAta aggREgation design), which implements DAG-
GTAX-based specification of data aggregation processes and design constraints, and integrates the state-of-the-art solver Z3 
for automated analysis. We also propose a set of general design constraints, which are integrated by default in SAFARE. The 
effectiveness of our approach is demonstrated via a case study provided by industry, which aims to design a cloud monitor-
ing system for video streaming. The case study shows that DAGGTAX and SAFARE can help designers to identify reusable 
features, eliminate infeasible design decisions, and derive crucial system parameters.

Keywords  Data aggregation · Consistency checking · Feature model · Cloud monitoring system design

1  Introduction

Nowadays, cloud computing has become a prominent para-
digm adopted by many software systems that require high 
availability, elasticity, and efficient resource utilization 

(Armbrust et al. 2010). If one considers the telecommunica-
tion industry in the evolution to the Fifth Generation (5G) 
technologies as an example, both network applications and 
infrastructure services are increasingly deployed as virtu-
alized software instances running in the cloud (Ericsson 
2017). Similar trend has been witnessed in various areas 
such as health care (Verma et al. 2017), manufacturing 
(Molano et al. 2017), and transportation systems (Xue et al. 
2016). A main advantage of this shift is that, in cloud com-
puting, resource provision can be adapted dynamically and 
automatically depending on the status of the cloud at run-
time, thus maintaining the satisfactory Quality of Service 
(QoS) with efficient use of resources. In order to obtain a 
comprehensive run-time status of the cloud, a monitoring 
system must collect performance measurements from vari-
ous layers of the cloud, including for instance the hardware 
layer, the operating system layer and the application layer 
(Spring 2011). These data may be aggregated locally, and the 
aggregated results are propagated further for aggregation, 
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forming multiple levels of aggregation (Aceto et al. 2013; 
Montes et al. 2013).

Instead of adopting off-the-shelf monitoring tools 
directly, many companies choose to design their own moni-
toring system for scaling, either from scratch or by extending 
existing frameworks, in order to meet their particular needs 
(Ward and Barker 2014). This requires the system designers 
to decide what data, and how the latter, should be collected, 
aggregated, and propagated. Since each layer of the cloud 
may impose different requirements for the data aggrega-
tion, for instance in terms of data persistence and process 
timeliness, the designed solution must ensure the various 
properties of both the data and the processes. As some 
of these properties may conflict with each other, various 
design constraints emerge, and trade offs may be necessary. 
Guaranteeing the consistency of the design, that is, ensur-
ing non-contradicting and realizable properties, becomes a 
challenge for a system with large amounts of interdepend-
ent requirements. For designers choosing to extend exist-
ing frameworks, uncovering dependencies between the new 
extensions and existing system components also adds to the 
design complexity. Due to these complexity and heteroge-
neity issues, designing such systems by ad hoc and manual 
analysis is prone to faults, which might compromise the effi-
ciency and effectiveness of the monitoring tool, preventing it 
from realizing its full potential (Ward and Barker 2014). For 
instance, individual designers may forget or misunderstand 
the underlying dependencies between the data aggregation 
elements in a complex system. Under these circumstances, a 
tool with these elements embodied in its interface and auto-
matic consistency checking of the dependencies can help to 
prevent such faults. Therefore, a systematic analysis of the 
design decisions at early design stages, preferably backed 
by tool support, holds the promise of alleviating the issues. 
However, to our knowledge, tool-supported specification and 
analysis of data aggregation in cloud monitoring systems has 
not been addressed.

In this paper, we propose an approach for the systematic 
design of data aggregation in cloud monitoring systems, 
such that potential infeasible design decisions are prevented. 
Our approach applies a taxonomy of Data Aggregation Pro-
cesses (DAP) called DAGGTAX (Data AGGregation TAX-
onomy) (Cai et al. 2017a) during the design. Presented as a 
feature diagram, DAGGTAX includes the common and vari-
able features of the data as well as the aggregation process 
itself, and has formal semantics in Boolean logic. Following 
our approach, the properties related to data aggregation pro-
cesses are specified as features from DAGGTAX. Thanks to 
the formal underpinning of DAGGTAX, the specification of 
DAP as well as the design constraints between the features 
can be formalized as propositional formulas, which can be 
verified for consistency by existing SAT solvers.

To provide automated support to our approach, we have 
developed a design tool called SAFARE (SAt-based Feature-
oriented dAta aggREgation design)1, which implements a 
graphical user interface for the DAGGTAX-based specifica-
tion, and automated SAT-based analysis. Designers can use 
SAFARE to construct a DAP by selecting and combining the 
features from DAGGTAX, and construct the system by com-
bining various DAP. SAFARE automatically transforms the 
specifications, and design constraints supplied by domain 
experts, into propositional logic formulas, which are verified 
by the integrated Microsoft Z3 Theorem Prover (De Moura 
and Bjørner 2008).

We evaluate our approach using an industrial case study 
provided by Ericsson that aims to design a cloud monitoring 
system for an enhanced auto-scaling functionality in a video 
streaming system, by extending the existing open-source 
OpenStack framework2. The case study was published in 
our previous work (Cai et al. 2017b), in which we applied 
DAGGTAX to the design. In this paper, we extend the case 
study to include the consistency check of the design by 
SAFARE. Our experience from the case study demonstrates 
that DAGGTAX helps to gain a better understanding of the 
data and data aggregation processes in the cloud monitor-
ing system, which enables the designers to identify reusable 
features and derive crucial system parameters. SAFARE, 
via formal analysis of DAP specifications, allows infeasible 
design decisions to be eliminated at early stage, which sim-
plifies the trade-off analysis between the conflicting desired 
features. From an industrial perspective, the ability to have 
a common nomenclature supported by SAFARE has also 
been found very useful, since it bridges the various descrip-
tions and specifications of a data aggregation design used 
in the company today, and provides a common interface for 
the design.

In brief, our contribution in this paper is as follows:

–	 A formal specification of DAP and the design constraints, 
based on DAGGTAX.

–	 A tool that supports formal analysis of the DAP design, 
called SAFARE, equipped with a SAT-based consist-
ency-checking mechanism.

–	 A discussion of the benefits and limitations of SAFARE 
in the industrial case study.

The remainder of the paper is organized as follows. In 
Sect. 2 we recall the preliminaries of this paper. Our contri-
bution starts with the formalization of DAP specifications 
and design constraints in Sect. 3, and our tool SAFARE in 
Sect. 4. In Sect. 5 we present the case study, followed by the 

1  http://www.idt.mdh.se/perso​nal/sica/safar​e/index​.html.
2  https​://www.opens​tack.org/softw​are/.

http://www.idt.mdh.se/personal/sica/safare/index.html
https://www.openstack.org/software/
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lessons learned from the case study in Sect. 6. In Sect. 7 we 
discuss the related work, after which we conclude the paper 
in Sect. 8.

2 � Background

In this section we present the preliminaries of this paper, 
including the basic concepts of feature modeling and DAG-
GTAX, as well as the Boolean Satisfiability Problem and the 
Microsoft Z3 Theorem Prover.

2.1 � Feature model

A feature is a functional or extra-functional characteristic 
of a piece of software at its requirement, architecture, com-
ponent, or any other level (Czarnecki and Ulrich 2000). A 
feature model is a hierarchically organized set of features, 
representing all possible variations of a family of software 
products, from which features can be selected and combined 
to form a particular software product (Kang et al. 1990).

A feature diagram (Kang et al. 1990) is often a multi-
level tree to represent the organization of the feature model. 
Nodes of the tree represent features, and edges represent 
decomposition of features. In a feature diagram, mandatory 
features are represented by solid dots, while optional fea-
tures are represented by empty circles. A group of alterna-
tive features, from which one feature must be selected, is 
depicted as a group of nodes associated with a spanning 
curve. A node may be associated with a cardinality [m… n] (n 
≥ m ≥ 0), which denotes how many instances of the feature, 
including the entire sub-tree, can be considered as children 
of the feature’s parent in a concrete configuration. If m ≥ 

1, a configuration must include at least one instance of the 
feature, e.g., a feature with [1… 1] is then a mandatory fea-
ture. If m = 0, the feature is optional for a configuration. An 
example of a feature diagram is shown in Fig 1.

A valid software product specification is a combination 
of features that meets all specified constraints, which can 
be dependencies among features within the same model, or 
dependencies among different models. The specifications, as 
well as the constraints, can be formalized as propositional 
formulas, which can be analyzed automatically by off-the-
shelf satisfiability solvers (Batory 2005; Mendonca et al. 
2009). The results of the analysis show whether the analyzed 
specifications do meet all the constraints or not. In our work, 
we apply the similar principles to formalize and verify DAP 
specifications and design constraints.

2.2 � The DAGGTAX taxonomy

A Data Aggregation Process (DAP) is defined as the process 
of producing a synthesized form from multiple data items 
(Rudas et al. 2013). DAGGTAX (Cai et al. 2017a) provides 
a global, high-level characterization of DAP, in the form of 
a feature diagram (Kang et al. 1990), presented in Fig 1. In 
this diagram, the graphical notation conforms to the one of 
the feature model, introduced in Sect. 2.1.

The top level features in Fig. 1 include the main con-
stituents of an aggregation process (Raw Data, Aggre-
gate Function and Aggregated Data), as well as features 
characterizing the entire DAP, including the Triggering 
Pattern of the process, and Real-Time (P), which refers 
to the optional timeliness property of the entire process. In 
the following, we briefly explain the concepts underlying 
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each feature. For more details, we refer to our previous 
work (Cai et al. 2017a).

Raw Data A data aggregation process must involve at 
least one Raw Data Type. Each type of raw data consists 
of at least one instance of Raw Data. The sub-features are: 

Pull	� Raw data are actively pulled from 
the data source by the aggregation 
process.

Persistently Stored	� Raw data are stored persistently.
Shared	� Raw data are shared by other processes 

in the system.
Sheddable	� Raw data can be skipped for the aggre-

gation, due to trade-offs between dif-
ferent system properties.

MinT	� Minimum inter-arrival Time of raw 
data.

MaxT	� Maximum inter-arrival Time of raw 
data.

Real-Time (RD)	� Each raw data instance is associated 
with an arrival time, and is only valid 
if the elapsed time from its arrival 
time is less than its Absolute Validity 
Interval. Outdated Hard real-time data 
will result in loss of life or money. On 
the contrary, outdated Firm real-time 
data bare no value, while outdated Soft 
real-time data produce less value.

Aggregate function An aggregate function performs 
the aggregation computation. Its sub-features include: 

Duplicate sensitivity	� The aggregated result is incorrect if 
a raw data is duplicated.

Lossy	� Raw data cannot be reconstructed 
from the aggregated data alone.

Exemplary/summary	� An exemplary aggregate function 
returns one or several representative 
values of the selected raw data. A 
summary aggregate function com-
putes a result based on all selected 
raw data.

Progressive/holistic	� The computation of a progressive 
aggregate function can be decom-
posed into the computation of 
sub-aggregates, whereas a holistic 
aggregate function must be com-
puted on the entire data set at once.

Aggregated data An aggregation process must produce 
one aggregated data. Its sub-features include: 

Push	� Sending aggregated data to another unit 
of the system is a part of the DAP.

Durable	� The aggregated results should survive 
potential system failures.

Shared	� The aggregated data are shared by other 
processes in the system.

Time-to-live	� The aggregated data should stay avail-
able for a specified period of time in the 
aggregator.

Real-Time (AD)	� The aggregated data is absolute va-lid 
if all participating raw data are absolute 
valid. The absolute validity interval of 
the aggregated data depends on the inter-
vals and ages of the raw data that are used 
to derive the aggregated data. In addition, 
all raw data involved in the aggregation 
should be sampled within a specified 
interval, called relative validity interval. 
Similar to raw data, the strictness of real-
time aggregated data can be classified as 
hard, firm and soft.

Triggering pattern A DAP is activated with a trigger-
ing pattern, specified as Periodic, Sporadic or Aperiodic. A 
periodic DAP is invoked according to a time schedule with 
a Period. A sporadic DAP could be triggered by an exter-
nal event, or according to a time schedule, possibly with a 
MinT (Minimum inter-arrival Time) and/or MaxT (Maxi-
mum inter-arrival Time). An aperiodic DAP is activated by 
an external event without a constant period, MinT or MaxT.

Real-time (P) A DAP may need to satisfy timeliness 
requirements, named as “Real-Time (P)”. The real-time DAP 
need to complete its work by a specified Deadline. It can be 
classified as Hard real-time, meaning missing the deadline 
will cause intolerable loss of life or profit and thus must 
be avoided. A Firm real-time process will bring no value, 
while a Soft real-time process will provide less value, if the 
deadline is missed.

2.3 � Boolean satisfiability and Z3

The Boolean Satisfiability Problem (SAT) is the problem 
of determining whether there exists an assignment of the 
variables in a propositional formula, such that the formula 
evaluates to true (Barrett et al. 2009). Usually, the consid-
ered propositional formula is given in the conjunctive nor-
mal form, that is, a conjunction (AND, ∧ ) of clauses, where 
each clause is a disjunction (OR, ∨ ) of literals, and each 
literal is either a variable or its negation (NOT, ¬).

Z3 (De Moura and Bjørner 2008) is one of the state-of-
the-art Satisfiability Modulo Theories (SMT) solvers, devel-
oped at Microsoft, USA, which generalizes the satisfiability 
check from boolean logics to other background theories, 
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such as equality reasoning, arithmetic, fixed-size bit-vectors, 
arrays, etc. (Barrett et al. 2009). Z3 provides “black-box” 
satisfiability checks with well-defined programming inter-
faces in several programming languages. This makes Z3 an 
ideal choice to be integrated as part of many software veri-
fication and design tools. If the given propositional formula 
is satisfiable, Z3 gives “yes” as an answer; otherwise, in case 
the formula is not satisfiable, Z3 can also return an unsatisfi-
able core, which is a conjunction of unsatisfiable clauses, to 
help find the inconsistency in the specification. In our work, 
we integrate Z3 into SAFARE for the consistency check of 
DAP specifications.

3 � Formal specification and analysis of data 
aggregation processes

Our approach starts with the specification of DAP, followed 
by the formal analysis of the specifications. Starting from 
the system requirements, the designer identifies the DAP 
that form the workflow of the system. For each DAP, the 
designer needs to specify the desired features selected from 
DAGGTAX.

One advantage of applying DAGGTAX is that the DAG-
GTAX-based specifications can be formalized and checked 
by existing SAT solvers. The basic idea is to transform the 
feature diagram, as well as the constraints between features, 
into propositional formulas, which can be checked automati-
cally by Z3 , a state-of-the-art SMT solver. In the following, 
we propose the rules for formalizing the DAP specifications, 
and the design constraints.

3.1 � Formalizing DAP specifications

Our DAP formal specification work builds on existing work 
on formalizing feature diagrams (Batory 2005; Karataş et al. 
2013).

Given a specification s consisting of a set of selected fea-
tures {��, ..., ��} and a set of de-selected features {��+�, ..., ��} , 
and a system consisting of a set of DAP {��, ..., ��} , we define 
the following rules to transform the specifications and con-
straints into propositional formulas.

1.	 For each feature f in a specification, create a variable f.
2.	 The selection of feature f is formalized in Boolean logic, 

as f  , meaning that the boolean variable f  is true. The 
de-selection of f is formalized as ¬f .

3.	 The specification s is a conjunction of propositions: 
s ∶= f1 ∧ f2 ∧ ... ∧ fm ∧ ¬fm+1 ∧ ... ∧ ¬fn.

4.	 A constraint c between features is specified as a for-
mula c, which represents the feature variables connected 
by logical operators ∧ , ∨,¬ , and ⇒ (implication). For 
instance, if feature f1 requires feature f2 , this can be for-

malized as: f1 ⇒ f2 . If feature f1 excludes feature f2 , this 
can be formalized as: f1 ⇒ (¬f2).

5.	 The specification of the system is inconsistent, if the 
propositional formula � ⇒ false is satisfiable, where 
� ∶= s1 ∧ ... ∧ sk ∧ c1 ∧ ... ∧ cl , where l is the number 
of constraints.

We also define the following naming convention to name 
the variables, for the convenience of referring to the same 
features of different DAP specifications:

–	 Each feature can be assigned a name. The name of 
the root feature of each DAP specification needs to be 
unique.

–	 If feature f is a root feature, its corresponding variable f 
is named by the name of f.

–	 Otherwise, suppose f is a sub-feature of feature g, vari-
able f is named as �_� , where g is the name of g.

For instance, in the excerpt of a DAP specification in Fig. 2, 
the root feature “Data Aggregation Process”, named DAP1, 
has a sub-feature “Raw Data Type”, named “RD1”. Follow-
ing the naming convention, the variable of the root feature 
“Data Aggregation Process” is named DAP1 , while the latter 
is named DAP1_RD1.

In the remaining part of this section, we present a set of 
constraints, which can be used to restrict the design space 
of DAP design, and has been applied in our case study in 
Sect. 5. These constraints specify a set of general dependen-
cies, focusing on the real-time features that are crucial for 
real-time systems (Sects. 3.2 and 3.3), as well as the trans-
actional properties in a high level (Sect. 3.4). For a specific 
application, however, designers can introduce application-
dependent constraints among features, and formalize them 
in a similar way.

3.2 � Formalizing intra‑DAP constraints

Dependencies may exist between the features within a DAP, 
for instance, between aggregated data and raw data, because 
temporally valid aggregated data relies on temporally valid 
raw data. Therefore we formulate the following constraint:

C1. The real-time strictness level of the raw data must be 
higher than or equal to the real-time strictness level of the 
aggregated data. For instance, in a specification of a single 
DAP called DAP1, if the aggregated data AD is required to 
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Fig. 2   Excerpt of a DAP specification
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be hard real-time, then its real-time raw data RD must be 
hard real-time. If the aggregated data AD is required to be 
firm real-time, then its real-time raw data RD must be firm 
or hard real-time. These constraints can be formalized as the 
following formulas, respectively:

–	 DAP1_AD_RealTime_Hard ∧ DAP1_RD_RealTime 
	   ⇒ DAP1_RD_RealTime_Hard
–	 (DAP1_AD_RealTime_Firm ∧ DAP1_RD_RealTime)
	   ⇒ (DAP1_RD_RealTime_Firm 
	   ∨ DAP1_RD_RealTime_Hard)

Similarly, real-time aggregated data relies on a real-time 
aggregation process, as follows:

C2. The strictness level w.r.t. the timeliness of the entire 
DAP must be higher than or equal to the real-time strictness 
level of the aggregated data. For instance, in a configuration 
of a single DAP called DAP1, if the aggregated data AD is 
required to be hard real-time, then the aggregation process 
must be hard real-time. If the aggregated data AD is required 
to be firm real-time, then the aggregation process must be 
firm or hard real-time. These constraints can be formalized 
as the following formulas, respectively:

–	 DAP1_AD_RealTime_Hard ⇒
	   DAP1_RealTime_Hard 
–	 DAP1_AD_RealTime_Firm ⇒
	   (DAP1_RealTime_Hard ∨ DAP1_RealTime_Firm)

3.3 � Formalizing inter‑DAP constraints

When a multi-level aggregation is formed, one DAP’s aggre-
gated data is used as another DAP’s raw data. Constraints 
have to be satisfied between these two DAP:

C3. If DAP DAP2 is required to have real-time raw data 
DAP2_RD, which is consumed from another DAP DAP1’s 
aggregated data DAP1_AD, the real-time strictness level 
of DAP1_AD must be higher than or equal to the real-time 
strictness level of DAP2_RD. These can be formalized as:

–	 DAP2_RD_RealTime_Hard ⇒
	   DAP1_AD_RealTime_Hard 
–	 DAP2_RD_RealTime_Firm ⇒
	   (DAP1_AD_RealTime_Hard 
	   ∨ DAP1_AD_RealTime_Firm)

3.4 � Formalizing data management design 
constraints

Data involved in DAP are often stored in databases, which are 
managed by Data Base Management Systems (DBMS). The 

selected features in a DAP specification defines the require-
ments that should be supported by the DBMS. Such depend-
encies can also be specified as constraints, which can help to 
select the suitable DBMS from a variety of existing DBMS 
options.

In this paper we focus on transaction management sup-
port, which is an important aspect of DBMS to ensure data 
consistency, by ensuring the Atomicity, Consistency, Isola-
tion, Durability (ACID) and timeliness properties of database 
transactions. ACID properties provide a strong guarantee 
on the logical consistency of the data (Haerder and Reuter 
1983), while timeliness ensures that transactions can meet 
their desired deadlines (Ramamritham 1993). A DBMS may 
support only some of such properties, as illustrated in Fig. 3. 
For instance, in a real-time DBMS, durability or isolation may 
be relaxed in order to provide timeliness support (Stankovic 
et al. 1999).

Given the distributed nature of many systems applying data 
aggregation, such as cloud monitoring systems, the DAP in the 
system may be managed by different DBMS. When selecting a 
DBMS to a DAP, one must consider the requirement imposed 
by the DAP specification on the DBMS transaction support. 
The following constraints need to be satisfied when a DAP is 
bound to a DBMS:

C4. If DAP DAP1 has persistent raw data RD or durable 
aggregated data AD, the selected DBMS must support durabil-
ity. This is formalized as:

–	 (DAP1_RD_Pull_PersistentStored
	   ∨ DAP1_AD_Push_Durable)
	   ⇒ DBMS_Durability 

C5. If DAP DAP1 involves real-time raw data RD, real-time 
aggregated data AD, or itself is a real-time process, the selected 
DBMS must support timeliness. This is formalized as:

–	 (DAP1_RD_RealTime ∨
	   DAP1_AD_RealTime ∨ DAP1_RealTime)
	   ⇒ DBMS_Timeliness

4 � The SAFARE tool

SAFARE (SAt-based Feature-oriented dAta aggREgation 
design) is a JAVA-based tool, which enables designers to 
design DAP based on DAGGTAX, and integrates the Z3 

DBMS Transac�on Support

Atomicity Consistency Isola�on Durability Timeliness

Fig. 3   Feature model of DBMS transaction support
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Theorem Prover (De Moura and Bjørner 2008) for check-
ing the consistency of the design solution. Our tool allows 
designers to select the desired features of DAP. When a 
feature is selected, the tool displays design heuristics that 
include tips and techniques for the designer to realize, or 
mitigate the influence of the selected features. The speci-
fied DAP can be connected to form a multi-level aggrega-
tion design, whose consistency can be checked formally by 
the integrated Z3 solver. In addition, our tool also guides 
designers to associate the specified DAP to the appropri-
ate DBMS according to the desired transactional support. 
After the association is decided, SAFARE generates the 
database model of the data involved in the DAP, as well as 
query struts, which are partially complete SQL statements 
for accessing and manipulating the data.

In this section, we present our tool in detail. Figure 4 
shows the simplified UML class diagram containing the 
core classes of SAFARE. The GUIMainFrame class imple-
ments the graphical user interface, which consists of a 
DAPSpecificationPanel for specifying a DAP, a Consisten-
cyCheckPanel for adding and checking design constraints, 
and a DBMSSpecificationPanel for specifying DBMS 
transactional support. The Z3Analyzer contains a library 
of propositional formulas, obtained from the specifications 

and constraints, and implements the consistency check by 
employing Z3 JAVA API.

Figure 5 shows the graphical user interface of SAFARE. 
At the top lie three tabs, that is, DAP Specification, Con-
sistency Check, and DBMS Specification, which are the 
three main functionalities provided by the tool. The typical 
workflow of using SAFARE to design DAP is presented in 
Fig. 6. Typically, a domain expert can add design constraints 
to the tool via the Consistency Check tab. A designer starts 
with the specification of the DAP in the designed system on 
the DAP Specification tab, followed by checking the con-
sistency of the DAP on Consistency Check. The verified 
DAP are then associated with the selected DBMS on DBMS 
Specification. We present each functionality in the following 
subsections, respectively.

4.1 � DAP specification

SAFARE implements DAGGTAX features as a list of 
selectable checkboxes. The designer can specify a DAP by 
selecting and de-selecting the checkboxes. When a feature is 
selected, the tool can provide design tips, reminding design-
ers of potential techniques to realize the desired feature, or 
to mitigate the influence of the feature. The designer can 
specify multiple DAP, and create dependencies between 

Fig. 4   SAFARE’s simplified 
class diagram
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them. A dependency connects the aggregated data of one 
DAP with the raw data of another DAP, meaning that the 
former is used as the latter.

The DAP Specification interface is shown in Fig. 7. 
On the left side, the designer can specify the DAP of the 
designed system, while on the right side, the specified DAP 
can be connected into a multi-level aggregation design. As 

an example, in Fig. 7, we have created a specification of 
DAP AppProfileGeneration, which generates application 
profiles by aggregating the performance measurements, 
including throughput and the number of dropped pack-
ets. The raw data are pushed to the DAP with minimum 
and maximum inter-arrival times (“MinT” and “MaxT” 
selected). Its aggregate function is a composition of the raw 

Fig. 5   Graphical interface of SAFARE

Fig. 6   Sequence diagram of 
the typical workflow using 
SAFARE
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data, which has the feature “lossy”, “summary” and “pro-
gressive”. The aggregated AppProfiles are pushed by the 
aggregator to another unit, therefore having the “pushed” 
feature selected. This DAP is triggered periodically with a 
“period”, and has to meet a “soft” “deadline”. A tip is given 
when the feature “push” is selected, reminding the designer 
to consider a proper synchronization protocol between the 
DAP and the data receiver. In this example, another DAP 
VNFCProfileGeneration is also specified, below the DAP 
AppProfileGeneration, which generates profiles of Virtual 
Network Function Components (VNFC) from all applica-
tions within this VNFC. A dependency is specified in Fig. 7, 
according to which the aggregated data of AppProfileGen-
eration is used as the raw data of VNFCProfileGeneration.

4.2 � Consistency check

SAFARE transforms the DAP specifications and design 
constraints into propositional formulas, automatically. For 
instance, the selection of the “periodic” triggering pattern in 
AppProfileGeneration in Fig. 7 is converted to:

Semantically, this formula specifies that “periodic” is 
selected, while neither “aperiodic” nor “sporadic” are 
selected.

The constraints introduced in Sect. 3 are also converted 
to logical formulas. For instance, the constraint C3, i.e., the 
dependency between AppProfileGeneration and VNFCPro-
fileGeneration, is formalized as:

AppProfileGeneration_TriggeringPattern_Periodic∧

¬ AppProfileGeneration_TriggeringPattern_Aperiodic∧

¬AppProfileGeneration_TriggeringPattern_Sporadic

In addition to the aforementioned formulas, which have 
already been integrated in the tool, SAFARE allows domain 
experts to extend the constraint library with customized con-
straints. Such constraints are specified in SMT-LIB format, 
which is the standard format for specifying logical formulas 
in Z3 (De Moura and Bjørner 2008).

Such formalized specifications and constraints are 
checked automatically by the integrated Z3 theorem prover, 
as shown in Fig. 8. If the specifications are consistent, that 
is, the conjunctions of all logical formulas are satisfiable, 
the tool returns a confirmation that the specifications have 
passed the consistency check. The logical formulas for the 
specifications as well as the constraints are listed in the 
detailed log. In case a specification violates the specified 
constraints, the tool will return a failure message, and pin-
point the violation. For instance, let us assume that App-
ProfileGeneration has “soft” “real-time” “aggregated data”, 
VNFCProfileGeneration has “hard” “real-time” “AppPro-
file” raw data, and the raw data of the latter DAP comes 
from the aggregated data of the former. In this case, the tool 
will return a message saying that the consistency check has 
failed, and list the conflicting formula:

This exactly tells the designer where the conflict lies: 
VNFCProfileGeneration, while required to use hard 

VNFCProfileGeneration_AppProfile_RealTime_Soft

⇒ ( AppProfileGeneration_AppProfile_RealTime_Hard

∨ AppProfileGeneration_AppProfile_RealTime_Firm

∨ AppProfileGeneration_AppProfile_RealTime_Soft )

¬AppProfileGeneration_AppProfile_RealTime_Hard

∧ VNFCProfileGeneration_AppProfile_RealTime_Hard.

Fig. 7   Example: creating a DAP
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real-time data, tries to aggregate data from AppProfileGen-
eration that is not hard real-time. The designer needs to fix 
the inconsistent specification before continuing with the 
development.

4.3 � DBMS specification

SAFARE provides an interface to specify a list of possi-
ble DBMS solutions, as well as to assign the DAP to these 
DBMS. In the current version of the tool, a specification 
of DBMS only includes the support for atomicity, consist-
ency, isolation, durability, and timeliness. The specified 
DAP can then be bound to the specified DBMS, following 
constraints C4 and C5 of Sect. 3, which are enforced by the 
tool. In the example of Fig. 9, we have specified two DBMS. 
MongoDB3 provides support for atomicity, consistency, 

isolation and durability, while Mimer SQL Real-Time Edi-
tion (MimerRT)4 provides support for timeliness. Since 
AppProfileGeneration has real-time features, MimerRT is 
the only valid option from the list of DBMS. When a DAP/
DBMS binding is loaded, the tool generates a set of database 
tables for the data involved in the DAP, as well as SQL-
like queries for processing these data. This information can 
help designer to model the database and program database 
queries.

5 � Case study and results

In this section, we describe the industrial case study, which 
shares the same requirement and solution as presented in 
our previous work (Cai et al. 2017b). In this paper, we not 

Fig. 8   Consistency check using SAFARE

3  https​://www.mongo​db.com/. 4  http://www.mimer​.se/Produ​cts/Mimer​SQLRe​altim​e.aspx.

https://www.mongodb.com/
http://www.mimer.se/Products/MimerSQLRealtime.aspx
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only apply DAGGTAX, but also SAFARE, during the design 
of the target cloud monitoring system. The purpose is to 
demonstrate the applicability and usefulness of SAFARE in 
maintaining the consistency of the design through the case 
study. To justify the solution designed using DAGGTAX 
and SAFARE, we implement is as a prototype, and show by 
experiments that it meets the desired requirements.

5.1 � Case study description

Our target system is a cloud-based video streaming system, 
whose software services are deployed on a collection of 
hardware resources (physical servers and network capaci-
ties), virtualized by complex management software. The 
software services are executed on virtual machines, also 
called Virtual Network Functions (VNF), which are man-
aged by a VNF manager. In each VNF, there exists a set of 
Virtual Network Function Components (VNFC), each repre-
senting a collection of applications running in the cloud. For 
instance, one such VNFC may contain all video streaming 
services responsible for the user’s requests, while another is 
dedicated to handle security issues.

The designed system extends the open-source Open-
Stack framework, whose major components for achieving 
auto-scaling are shown in Fig. 10. Among them, Ceilometer 

monitors the run-time states of the cloud by collecting vari-
ous resource data, such as CPU usage of each VNF. Once a 
measurement meets a predefined condition, Heat is alerted 
to decide if a scaling action should be taken, and notifies 
Nova to start or terminate a VNF.

In order to maintain the desired Quality-of-Service (QoS) 
while maximizing the resource utilization, VNF should be 
started or terminated by the VNF manager according to the 
resource consumption and the status of the applications. The 
current framework supports only coarse-grained, VNF-based 
measurements, for instance, measuring the CPU usage of 
each VNF. However, to provide efficient auto-scaling deci-
sions, finer-grained measurements are needed. For instance, 
it is beneficial to distinguish the following two situations: 
(1) resources appearing to be exhausted by video stream-
ing services that are critical to end users, and (2) resources 

Fig. 9   DBMS specification, and binding DAP with DBMS

HeatCeilometer

NovaCreate
/Terminate

Configure

Alarm

Virtual Machine
Services

Decide
Resource usage data

Fig. 10   Auto-scaling related components in the OpenStack frame-
work
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appearing to be exhausted by a routine security check while 
the streaming requests are low. The former case may indicate 
insufficient provision that may degrade the QoS, and there-
fore a scaling up must be performed as soon as possible. The 
latter, however, is a temporary maintenance phenomenon, 
for which the scaling up causes unnecessary system over-
head and waste of resource.

To perform finer-grained monitoring and more efficient 
auto scaling, we consider to take into account the meas-
urements from within the VNF. The data to be collected 
include: (1) CPU usage of each VNF; (2) CPU usage of each 
VNFC within each VNF; (3) Throughput and the number 
of dropped packets of each application within each VNFC.

Two auto-scaling rules are specified to adjust the VNF 
management dynamically, and to be supported by the new 
system:

–	 A new VNF should be spawned (scale up), if either of the 
following rules is satisfied: (1) the average CPU usage 
of any VNF is higher than 90% for 60 s; (2) the average 
CPU usage of any VNF is higher than 80% for 60 s, and 
the packet loss of the video streaming services is higher 
than zero.

–	 An existing VNF should be terminated (scale down), if 
the following rule is satisfied: the average CPU usage of 
the VNF is lower than 5% for 60 s, and the packet loss of 
the video streaming services is zero.

5.2 � Application of DAGGTAX and SAFARE

We apply DAGGTAX to organize the data aggregation pro-
cesses in the existing auto-scaling functionality of Open-
Stack, as well as to select and compose features for the 
desired enhanced auto-scaling functionality. Using our tool 
SAFARE, we select the features from the interface to form 
the specifications, whose consistency is checked automati-
cally by the tool.

In the OpenStack framework, two levels of aggregation 
take place: one generating alarms from aggregating CPU 
usages of the VNF, the other making the scaling decisions 
from aggregating the alarms. These aggregation processes 
are identified using DAGGTAX and presented in Fig. 11, 
in which each box is an instantiated feature from Fig. 1. In 
the bottom level, a DAP called CPUAlarmStatusEvaluation 
aggregates periodically a set of VNFCPU’s raw data pulled 
from the Ceilometer database. These raw data are sampled 
by the hypervisor prior to the DAP by another process with 
a predefined frequency (MinT and MaxT have the same 
value). All CPU statistics within the interval between two 
aggregation periods are aggregated by an aggregate func-
tion, which computes the average value of the CPU data, 
compares the value with a threshold value, and produces the 
alarm status as a result. The aggregate function is duplicate 
sensitive, lossy, progressive and computes a summary. The 
aggregated alarm status is then pushed to Heat for the auto-
scaling decision. In the top level, the ScalingDecisionMak-
ing process is triggered by the alarm event. A ScalingPoli-
cyEvaluation function is applied to the alarm status. If the 
status shows that the CPU usage is higher than the threshold, 
and the time from the last scaling action is longer than one 
minute, an auto-scaling decision will be taken, either to add 
or to terminate a VNF.

We also apply DAGGTAX to design the DAP for the new 
auto-scaling functionality, together with the design deci-
sions on the data flow management, through the interface 
of SAFARE, and check the consistency against the design 
constraints specified in Sect. 3. In case SAFARE detects 
an inconsistency, we analyze and modify the inconsistent 
specification, and redo the consistency check.

Together with the engineers, we designed the DAP of the 
new system from the project requirements. We realized that 
the existing OpenStack framework needs to be extended, 
in order to fulfill the new auto-scaling functionality. The 
new scaling decision making process requires two types of 
raw data to make the decision: the CPU alarm status as in 
the existing solution, as well as the status of all currently 

Fig. 11   Data aggregation 
processes in OpenStack auto-
scaling functionality
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active VNF. Such status of each VNF is aggregated from 
the status of each VNFC, which itself is an aggregation of 
the applications within the VNFC. Therefore, we created a 
multi-level aggregation design, as presented in Fig. 12. This 
design reuses much of the existing OpenStack framework, 
and extends it with new DAP.

In Fig. 12, the features presented in gray color are already 
implemented in OpenStack. For better readability, we only 
show the features of raw data, aggregated data, triggering 
patterns and the real-time properties of new DAP, and omit 
the features of the aggregate functions and existing features. 
In this design, the top-level ScalingDecisionMaking process 
aggregates the CPU alarm status and a set of VNFProfiles, 
which are status profiles of currently active VNF. As the 
CPU status is also generated in the existing framework by 
the CPUAlarmStatusEvaluation, this process is preserved 
from Fig. 11 and reused in the new design. The aggregated 
decision data, as well as the triggering pattern of the Scal-
ingDecisionMaking process, are also the same as the exist-
ing framework. Each VFNProfile is generated by the new 
VNFProfileGeneration process, aggregating a set of VNF-
CProfiles, representing the status of the VNFC in this VNF. 
Each VNFCProfile is a new aggregation of the CPU usage of 
this VNFC (VNFCCPU), and a set of AppProfiles, which are 
the status profiles of the applications in this VNFC. In the 
lowest level, an AppProfile is an aggregation of the through-
put and the number of dropped packets that are sampled for 
each application. The VNFCProfileGeneration and AppPro-
fileGeneration processes are desired to meet their deadlines 
in order not to interfere with the video streaming services.

ScalingDecisionMaking and CPUAlarmStatusEvaluation 
are deployed in the controller node, while the other DAP for 
VNF, VNFC and application profiles are deployed in the 
VNF. Data between DAP, within the controller and the VNF 
respectively, are communicated via databases. We consider 
to choose from two DBMS products. One is MongoDB, 
which provides support for ACID properties. The other is 
MimerRT, which provides predictable real-time data access. 
Through our tool SAFARE, we bind the DAP ScalingDeci-
sionMaking and CPUAlarmStatusEvaluation to MongoDB 
because they require durable and persistent data storage. For 
the other DAP with real-time features, MimerRT is selected 
as the DBMS. Using the suggestions provided by the tool, 
we create tables and data objects in each database, and code 
the queries used for accessing the data.

5.3 � System implementation

The cloud monitoring system with the designed DAP has 
been implemented in a prototype, by extending OpenStack 
(version: Newton). Fig. 13 presents the architecture of the 
prototype. It is deployed on a PC with a 2.7 GHz quad-core 
process and 16 GB memory. Each VNF is a Linux virtual 
machine that hosts two VNFC and a MimerRTDB. VNFC1 
holds two video streaming applications, whereas VNFC2 
holds two applications that are less critical. Each application 
is simulated by a process, written in C, which updates the 
throughput and dropped packets in the database. For each 
application, an AppProfileGeneration process is executed to 
aggregate the application data and generate its AppProfile. 
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Similarly, in each VNFC, an aforementioned VNFCProfi-
leGeneration process is executed to create its VNFCPro-
file, while in each VNF a VNFProfileGeneration process is 
executed. The VNFProfiles are then sent to Ceilometer, via 
a new service entry point, and saved in MongoDB. The new 
scaling rules, as specified in Sect. 5.1, are defined in Heat.

We analyze the prototype with simulated data provided 
by Ericsson. The timing parameters of raw data and the 
processes are listed in Tables 1 and 2, respectively. The 
simulation workloads, as well as results, are presented in 
Table 3, which shows that the prototype system achieves 
more accurate auto scaling compared to the current Open-
Stack framework according to the specified rules. In particu-
lar, as expected, our prototype remains unchanged when the 

CPU usage of the VNF exceeds 80% but no packets have 
been dropped for the streaming service (Mode 2), and suc-
cessfully scales up when the packets start to be dropped 
due to overload (Mode 3). This shows that our new solu-
tion fully respects the requirement that the scaling decision 
must take the application status (in this case the dropped 
packets) into consideration. In contrast, the current Open-
Stack framework cannot distinguish these two modes and 
consequently sales up in both cases. This indicates that the 
current solution is insensitive to application status, which as 
a consequence could make inaccurate decisions and lead to 
waste of resources.

6 � Discussion

During this case study, we recognize several benefits from 
applying DAGGTAX and SAFARE in the early design 
stage. Similarly to what we have already experienced (Cai 
et al. 2017a, b), DAGGTAX can enhance the understanding 
about the data, the aggregation processes, as well as their 
interplays in the designed cloud system. From the feature 
diagrams, the reusable features are easier to be identified, 
which enhances the reusability of the design. Since DAG-
GTAX incorporates timing properties, such as MinT, period, 
deadline, etc, the time-related parameters crucial to real-time 
systems can be reasoned about informally, and infeasible 
design solutions can be prevented prior to implementation.

Fig. 13   Architecture of the 
enhanced auto-scaling function-
ality of the cloud video stream-
ing system
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Table 1   Timing parameters of raw data

Data MinT (s) MaxT (s)

Throughput 1 1
Dropped packet 1 1

Table 2   Timing parameters of DAP

DAP Period (s)

AppProfileGeneration 1
VNFCProfileGeneration 60
VNFProfileGeneration 60
CPUAlarmStatusEvaluation 60

Table 3   Simulation workloads 
and results

NC no change, SU scale up, SD scale down

Mode VNF CPU 
usage (%)

Dropped packet in 
VNFC1

Expected result DAGGTAX proto-
type result

Current 
openStack 
result

1 50 0 NC NC NC
2 81 0 NC NC SU
3 81 1 SU SU SU
4 91 0 SU SU SU
5 4 0 SD SD SD
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Designers of data aggregation processes benefit from the 
tool support provided by SAFARE. First of all, SAFARE 
implements DAGGTAX with a user-friendly interface to 
specify DAP, making the selection and combination of fea-
tures less error-prone compared with manual specification. 
SAFARE also provides design tips during the interactive 
specification, which raises the awareness of the impact of 
the selected features.

SAFARE enables automated formal verification of the 
specifications against design constraints, thus contributing to 
efficient reasoning and design space reduction. For instance, 
in the VNFCProfileGeneration process, we cannot ask for 
persistent raw data (VNFCCPU and AppProfile) nor durable 
aggregated data (VNFCProfile) if we require the process to 
meet its deadline, since the overhead of disk I/O is usually 
not predictable, which contradicts the real-time property of 
the process. This contradiction has been formulated as a con-
straint, and has been added to SAFARE. When a VNFCPro-
fileGeneration was specified with the aforementioned fea-
tures during the case study, SAFARE was able to point out 
the contradiction with the specified constraint automatically.

Although the current version of SAFARE only supports 
consistency checking of propositional formulas, we plan to 
extend the capability to include other types of analysis in 
the next version. The current interface of SAFARE allows 
values to be specified together with the features, for instance, 
the actual values of periods and deadlines of the DAP. With 
these extra information, one can analyze the schedulability 
of DAP, or verify more advanced constraints expressed in 
temporal logic. To achieve this, SAFARE may need to inte-
grate with other analysis tools, besides Z3.

7 � Related work

The design of monitoring systems for cloud management 
has attracted much research attention in recent years. For 
instance, Bruneo et al. (2015) have proposed a framework 
for designing a system collecting measurements from mul-
tiple layers of a cloud. Montes et al. (2013) have created 
a taxonomy of cloud monitoring systems, based on which 
they propose an approach for designing cloud monitoring. 
Although systematic analysis of architectural characteris-
tics are applied in the design approaches of both works, the 
authors do not consider the detailed characteristics of the 
constituents of data aggregation. Ward and Barker (2014) 
have proposed a taxonomy for cloud monitoring, and have 
discussed some key aspects of designing monitoring strate-
gies. On the contrary, we emphasize to analyze the details 
of DAP when designing such a monitoring strategy, which 
is not the authors’ focus. In our previous work (Cai et al. 
2017b), we have proposed to apply DAGGTAX for the 
analysis of DAP informally, while in this work, we propose 

to formally analyze DAGGTAX-based design with tool 
support. Recently, Grzonka et al. (2017) have proposed a 
Self-Adaptive Resource Management System (SARMS) that 
achieves auto scaling based on CPU and memory usage. 
Their work focuses on the monitoring of resource usages as a 
whole, while our case study implements the monitoring and 
aggregation in several layers, including the virtual machines, 
the VNFC, and the applications. Zhao et al. (2017) have 
proposed their SimMon toolkit for simulating and compar-
ing cloud monitoring mechanisms. Instead of implementing 
the concrete mechanisms, our proposed approach focuses on 
high-level specifications and designs, which can be analyzed 
formally in the early design stage.

A number of works have been conducted in order to 
understand various aspects of data aggregation, and thus 
aid the design of systems applying data aggregation. Gray 
et al. (1997) and Madden et al. (2002) have proposed taxono-
mies, whose main purposes is to help the understanding and 
design of aggregate functions. Fasolo et al. (2007) propose 
a taxonomy to reason about aggregate functions and routing 
protocols for systems applying in-network aggregation. In 
comparison, our work aims to design a system based on ana-
lyzing the characteristics of the data, the aggregate functions 
and the processes, which are all covered by DAGGTAX. 
Our approach applies formal consistency checking of the 
data aggregation features, which is also different from the 
mentioned related work.

Existing modeling notations such as UML activity dia-
grams can be used for the structural representation of data 
flows and processes (Störrle 2005; Gallina 2005). Guelfi 
and Mammar (2005) have proposed a formal semantics for 
UML activity diagrams, and transformation rules into the 
PROMELA language, which allows for model checking 
several properties. Our taxonomy is presented as a feature 
diagram, which provides clear systematization of common-
alities and variabilities of DAP. Our approach formalizes the 
feature-based specifications in Boolean logic, and performs 
feasibility checks with a SAT solver.

There has been a great deal of work on automated for-
mal analysis of feature models. Many of them propose to 
formalize the feature model and the product specification as 
propositional formulas, and check their consistency using a 
SAT solver. Batory et al. propose a Logic Truth Maintenance 
System (LTMS) (Batory 2005) and the AHEAD tool suite 
(Batory 2004), which formalizes and verifies the feature-
based configurations, integrated with a SAT solver for the 
consistency check. Mendonca et al. propose a set of trans-
formation rules to convert feature configurations to Boolean 
formulas used by SAT solvers (Mendonca et  al. 2009). 
Janota proposes the S2T2 configurator, which uses a SAT 
solver to guide interactive configurations in feature-based 
software design (Janota 2010). The automated analysis of 
DAP specifications in our tool implements the concepts and 
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ideas from such related work. In addition, our tool integrates 
the feature model DAGGTAX and provides design support 
for data management of data aggregation.

8 � Conclusions and future work

We have proposed a systematic design approach for design-
ing data aggregation in cloud monitoring systems. The 
approach relies on the systematic specification of data 
aggregation processes based on DAGGTAX, and the SAT-
based consistency check of the specification. We have imple-
mented SAFARE, a tool that supports the DAGGTAX-based 
specification, and integrates the Z3 theorem prover to verify 
the specification formally. Our tool also helps designers to 
design data management solutions for DAP, by guiding them 
to select proper DBMS transaction support for the DAP, and 
providing query struts for designing the database model and 
queries.

The applicability of our approach and our tool has been 
evaluated via an industrial case study, in which we have 
designed a cloud monitoring system for an enhanced auto-
scaling functionality in a cloud video streaming system. 
We have analyzed the current framework based on the fea-
tures of the DAP, and designed new DAP by selecting and 
composing features from DAGGTAX using SAFARE. The 
application of DAGGTAX with SAFARE promotes a deeper 
understanding of the system’s behavior, and raises aware-
ness about characteristics that need to be considered as well 
as issues that need to be solved during the design. It helps 
designers to perform better analysis than otherwise, such as 
to identify reusable design solutions, make data management 
decisions, and calculate time-related parameters. With a for-
mal underpinning, SAFARE also helps to eliminate infea-
sible feature combinations, and therefore reduce the design 
space. Although in this paper we have only demonstrated 
the benefits of our approach on a single case study, the cloud 
monitoring system, we believe that these benefits also apply 
to the design of other data-intensive systems with multi-
levels of data aggregation.

In the future, we plan to discover more design constraints 
that are common for cloud monitoring systems, and more 
general data-intensive systems. As these constraints may not 
be restricted to propositional formulas, we need to extend 
the analysis capability of SAFARE, which in the current 
version only supports automated analysis of Boolean logic 
formulas. We also plan to extend the support for the selec-
tion of transaction management in DBMS. Currently, we 
only consider the coarse-grained specification of ACID and 
timeliness support. In the future, we plan to enable more 
detailed specification of transaction management, such as 
different levels of isolation, as well as their dependencies 
upon the DAP features. For instance, one may reason about 

the logical data consistency when the multi-level DAP are 
modeled as an advanced transaction, and managed using 
transaction-based management.
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