
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:2519–2535
https://doi.org/10.1007/s12652-018-0730-6

ORIGINAL RESEARCH

Tool‑supported design of data aggregation processes in cloud
monitoring systems

Simin Cai1 · Barbara Gallina1 · Dag Nyström1 · Cristina Seceleanu1 · Alf Larsson2

Received: 5 September 2017 / Accepted: 12 December 2017 / Published online: 28 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Efficient monitoring of a cloud system involves multiple aggregation processes and large amounts of data with various and
interdependent requirements. A thorough understanding and analysis of the characteristics of data aggregation processes
can help to improve the software quality and reduce development cost. In this paper, we propose a systematic approach for
designing data aggregation processes in cloud monitoring systems. Our approach applies a feature-oriented taxonomy called
DAGGTAX (Data AGGregation TAXonomy) to systematically specify the features of the designed system, and SAT-based
analysis to check the consistency of the specifications. Following our approach, designers first specify the data aggregation
processes by selecting and composing the features from DAGGTAX. These specified features, as well as design constraints,
are then formalized as propositional formulas, whose consistency is checked by the Z3 SAT solver. To support our approach,
we propose a design tool called SAFARE (SAt-based Feature-oriented dAta aggREgation design), which implements DAG-
GTAX-based specification of data aggregation processes and design constraints, and integrates the state-of-the-art solver Z3
for automated analysis. We also propose a set of general design constraints, which are integrated by default in SAFARE. The
effectiveness of our approach is demonstrated via a case study provided by industry, which aims to design a cloud monitor-
ing system for video streaming. The case study shows that DAGGTAX and SAFARE can help designers to identify reusable
features, eliminate infeasible design decisions, and derive crucial system parameters.

Keywords Data aggregation · Consistency checking · Feature model · Cloud monitoring system design

1 Introduction

Nowadays, cloud computing has become a prominent para-
digm adopted by many software systems that require high
availability, elasticity, and efficient resource utilization

(Armbrust et al. 2010). If one considers the telecommunica-
tion industry in the evolution to the Fifth Generation (5G)
technologies as an example, both network applications and
infrastructure services are increasingly deployed as virtu-
alized software instances running in the cloud (Ericsson
2017). Similar trend has been witnessed in various areas
such as health care (Verma et al. 2017), manufacturing
(Molano et al. 2017), and transportation systems (Xue et al.
2016). A main advantage of this shift is that, in cloud com-
puting, resource provision can be adapted dynamically and
automatically depending on the status of the cloud at run-
time, thus maintaining the satisfactory Quality of Service
(QoS) with efficient use of resources. In order to obtain a
comprehensive run-time status of the cloud, a monitoring
system must collect performance measurements from vari-
ous layers of the cloud, including for instance the hardware
layer, the operating system layer and the application layer
(Spring 2011). These data may be aggregated locally, and the
aggregated results are propagated further for aggregation,

 * Simin Cai
 simin.cai@mdh.se

 Barbara Gallina
 barbara.gallina@mdh.se

 Dag Nyström
 dag.nystrom@mdh.se

 Cristina Seceleanu
 cristina.seceleanu@mdh.se

 Alf Larsson
 alf.larsson@ericsson.com

1 School of Innovation, Design and Engineering, Mälardalen
University, Västerås, Sweden

2 Ericsson AB, Stockholm, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0730-6&domain=pdf

2520 S. Cai et al.

1 3

forming multiple levels of aggregation (Aceto et al. 2013;
Montes et al. 2013).

Instead of adopting off-the-shelf monitoring tools
directly, many companies choose to design their own moni-
toring system for scaling, either from scratch or by extending
existing frameworks, in order to meet their particular needs
(Ward and Barker 2014). This requires the system designers
to decide what data, and how the latter, should be collected,
aggregated, and propagated. Since each layer of the cloud
may impose different requirements for the data aggrega-
tion, for instance in terms of data persistence and process
timeliness, the designed solution must ensure the various
properties of both the data and the processes. As some
of these properties may conflict with each other, various
design constraints emerge, and trade offs may be necessary.
Guaranteeing the consistency of the design, that is, ensur-
ing non-contradicting and realizable properties, becomes a
challenge for a system with large amounts of interdepend-
ent requirements. For designers choosing to extend exist-
ing frameworks, uncovering dependencies between the new
extensions and existing system components also adds to the
design complexity. Due to these complexity and heteroge-
neity issues, designing such systems by ad hoc and manual
analysis is prone to faults, which might compromise the effi-
ciency and effectiveness of the monitoring tool, preventing it
from realizing its full potential (Ward and Barker 2014). For
instance, individual designers may forget or misunderstand
the underlying dependencies between the data aggregation
elements in a complex system. Under these circumstances, a
tool with these elements embodied in its interface and auto-
matic consistency checking of the dependencies can help to
prevent such faults. Therefore, a systematic analysis of the
design decisions at early design stages, preferably backed
by tool support, holds the promise of alleviating the issues.
However, to our knowledge, tool-supported specification and
analysis of data aggregation in cloud monitoring systems has
not been addressed.

In this paper, we propose an approach for the systematic
design of data aggregation in cloud monitoring systems,
such that potential infeasible design decisions are prevented.
Our approach applies a taxonomy of Data Aggregation Pro-
cesses (DAP) called DAGGTAX (Data AGGregation TAX-
onomy) (Cai et al. 2017a) during the design. Presented as a
feature diagram, DAGGTAX includes the common and vari-
able features of the data as well as the aggregation process
itself, and has formal semantics in Boolean logic. Following
our approach, the properties related to data aggregation pro-
cesses are specified as features from DAGGTAX. Thanks to
the formal underpinning of DAGGTAX, the specification of
DAP as well as the design constraints between the features
can be formalized as propositional formulas, which can be
verified for consistency by existing SAT solvers.

To provide automated support to our approach, we have
developed a design tool called SAFARE (SAt-based Feature-
oriented dAta aggREgation design)1, which implements a
graphical user interface for the DAGGTAX-based specifica-
tion, and automated SAT-based analysis. Designers can use
SAFARE to construct a DAP by selecting and combining the
features from DAGGTAX, and construct the system by com-
bining various DAP. SAFARE automatically transforms the
specifications, and design constraints supplied by domain
experts, into propositional logic formulas, which are verified
by the integrated Microsoft Z3 Theorem Prover (De Moura
and Bjørner 2008).

We evaluate our approach using an industrial case study
provided by Ericsson that aims to design a cloud monitoring
system for an enhanced auto-scaling functionality in a video
streaming system, by extending the existing open-source
OpenStack framework2. The case study was published in
our previous work (Cai et al. 2017b), in which we applied
DAGGTAX to the design. In this paper, we extend the case
study to include the consistency check of the design by
SAFARE. Our experience from the case study demonstrates
that DAGGTAX helps to gain a better understanding of the
data and data aggregation processes in the cloud monitor-
ing system, which enables the designers to identify reusable
features and derive crucial system parameters. SAFARE,
via formal analysis of DAP specifications, allows infeasible
design decisions to be eliminated at early stage, which sim-
plifies the trade-off analysis between the conflicting desired
features. From an industrial perspective, the ability to have
a common nomenclature supported by SAFARE has also
been found very useful, since it bridges the various descrip-
tions and specifications of a data aggregation design used
in the company today, and provides a common interface for
the design.

In brief, our contribution in this paper is as follows:

– A formal specification of DAP and the design constraints,
based on DAGGTAX.

– A tool that supports formal analysis of the DAP design,
called SAFARE, equipped with a SAT-based consist-
ency-checking mechanism.

– A discussion of the benefits and limitations of SAFARE
in the industrial case study.

The remainder of the paper is organized as follows. In
Sect. 2 we recall the preliminaries of this paper. Our contri-
bution starts with the formalization of DAP specifications
and design constraints in Sect. 3, and our tool SAFARE in
Sect. 4. In Sect. 5 we present the case study, followed by the

1 http://www.idt.mdh.se/perso nal/sica/safar e/index .html.
2 https ://www.opens tack.org/softw are/.

http://www.idt.mdh.se/personal/sica/safare/index.html
https://www.openstack.org/software/

2521Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

lessons learned from the case study in Sect. 6. In Sect. 7 we
discuss the related work, after which we conclude the paper
in Sect. 8.

2 Background

In this section we present the preliminaries of this paper,
including the basic concepts of feature modeling and DAG-
GTAX, as well as the Boolean Satisfiability Problem and the
Microsoft Z3 Theorem Prover.

2.1 Feature model

A feature is a functional or extra-functional characteristic
of a piece of software at its requirement, architecture, com-
ponent, or any other level (Czarnecki and Ulrich 2000). A
feature model is a hierarchically organized set of features,
representing all possible variations of a family of software
products, from which features can be selected and combined
to form a particular software product (Kang et al. 1990).

A feature diagram (Kang et al. 1990) is often a multi-
level tree to represent the organization of the feature model.
Nodes of the tree represent features, and edges represent
decomposition of features. In a feature diagram, mandatory
features are represented by solid dots, while optional fea-
tures are represented by empty circles. A group of alterna-
tive features, from which one feature must be selected, is
depicted as a group of nodes associated with a spanning
curve. A node may be associated with a cardinality [m… n] (n
≥ m ≥ 0), which denotes how many instances of the feature,
including the entire sub-tree, can be considered as children
of the feature’s parent in a concrete configuration. If m ≥

1, a configuration must include at least one instance of the
feature, e.g., a feature with [1… 1] is then a mandatory fea-
ture. If m = 0, the feature is optional for a configuration. An
example of a feature diagram is shown in Fig 1.

A valid software product specification is a combination
of features that meets all specified constraints, which can
be dependencies among features within the same model, or
dependencies among different models. The specifications, as
well as the constraints, can be formalized as propositional
formulas, which can be analyzed automatically by off-the-
shelf satisfiability solvers (Batory 2005; Mendonca et al.
2009). The results of the analysis show whether the analyzed
specifications do meet all the constraints or not. In our work,
we apply the similar principles to formalize and verify DAP
specifications and design constraints.

2.2 The DAGGTAX taxonomy

A Data Aggregation Process (DAP) is defined as the process
of producing a synthesized form from multiple data items
(Rudas et al. 2013). DAGGTAX (Cai et al. 2017a) provides
a global, high-level characterization of DAP, in the form of
a feature diagram (Kang et al. 1990), presented in Fig 1. In
this diagram, the graphical notation conforms to the one of
the feature model, introduced in Sect. 2.1.

The top level features in Fig. 1 include the main con-
stituents of an aggregation process (Raw Data, Aggre-
gate Function and Aggregated Data), as well as features
characterizing the entire DAP, including the Triggering
Pattern of the process, and Real-Time (P), which refers
to the optional timeliness property of the entire process. In
the following, we briefly explain the concepts underlying

Aggrega�on
Process

Raw Data

Aggregate
Func�on

Pull Shared
Real-Time

(RD)

[1..*]

Persistently
Strored

Sheddable

Minimum
Interval

Hard

Firm

So�

Duplicate
Sensi�ve

Exemplary

Summary

Progressive

Holis�c

Triggering
Pa�ern

Aperiodic Periodic

Aggregated
Data

Push
Shared

Real-Time
(AD)

Durable

Hard

Firm

So�
Absolute
Validity
Interval

Rela�ve
Validity
Interval

Real-Time
(P)

Deadline

Hard

Firm

Soft
Time-to-live

Period

Absolute
Validity
Interval

Lossy

[m..n]

Mandatory Op�onal

Alterna�ve Cardinality

Raw Data
Type

[1..*]

Sporadic

Events

Events

Minimum
Interval

Maximum
Interval

Maximum
Interval

Fig. 1 DAGGTAX depicted as a feature diagram

2522 S. Cai et al.

1 3

each feature. For more details, we refer to our previous
work (Cai et al. 2017a).

Raw Data A data aggregation process must involve at
least one Raw Data Type. Each type of raw data consists
of at least one instance of Raw Data. The sub-features are:

Pull Raw data are actively pulled from
the data source by the aggregation
process.

Persistently Stored Raw data are stored persistently.
Shared Raw data are shared by other processes

in the system.
Sheddable Raw data can be skipped for the aggre-

gation, due to trade-offs between dif-
ferent system properties.

MinT Minimum inter-arrival Time of raw
data.

MaxT Maximum inter-arrival Time of raw
data.

Real-Time (RD) Each raw data instance is associated
with an arrival time, and is only valid
if the elapsed time from its arrival
time is less than its Absolute Validity
Interval. Outdated Hard real-time data
will result in loss of life or money. On
the contrary, outdated Firm real-time
data bare no value, while outdated Soft
real-time data produce less value.

Aggregate function An aggregate function performs
the aggregation computation. Its sub-features include:

Duplicate sensitivity The aggregated result is incorrect if
a raw data is duplicated.

Lossy Raw data cannot be reconstructed
from the aggregated data alone.

Exemplary/summary An exemplary aggregate function
returns one or several representative
values of the selected raw data. A
summary aggregate function com-
putes a result based on all selected
raw data.

Progressive/holistic The computation of a progressive
aggregate function can be decom-
posed into the computation of
sub-aggregates, whereas a holistic
aggregate function must be com-
puted on the entire data set at once.

Aggregated data An aggregation process must produce
one aggregated data. Its sub-features include:

Push Sending aggregated data to another unit
of the system is a part of the DAP.

Durable The aggregated results should survive
potential system failures.

Shared The aggregated data are shared by other
processes in the system.

Time-to-live The aggregated data should stay avail-
able for a specified period of time in the
aggregator.

Real-Time (AD) The aggregated data is absolute va-lid
if all participating raw data are absolute
valid. The absolute validity interval of
the aggregated data depends on the inter-
vals and ages of the raw data that are used
to derive the aggregated data. In addition,
all raw data involved in the aggregation
should be sampled within a specified
interval, called relative validity interval.
Similar to raw data, the strictness of real-
time aggregated data can be classified as
hard, firm and soft.

Triggering pattern A DAP is activated with a trigger-
ing pattern, specified as Periodic, Sporadic or Aperiodic. A
periodic DAP is invoked according to a time schedule with
a Period. A sporadic DAP could be triggered by an exter-
nal event, or according to a time schedule, possibly with a
MinT (Minimum inter-arrival Time) and/or MaxT (Maxi-
mum inter-arrival Time). An aperiodic DAP is activated by
an external event without a constant period, MinT or MaxT.

Real-time (P) A DAP may need to satisfy timeliness
requirements, named as “Real-Time (P)”. The real-time DAP
need to complete its work by a specified Deadline. It can be
classified as Hard real-time, meaning missing the deadline
will cause intolerable loss of life or profit and thus must
be avoided. A Firm real-time process will bring no value,
while a Soft real-time process will provide less value, if the
deadline is missed.

2.3 Boolean satisfiability and Z3

The Boolean Satisfiability Problem (SAT) is the problem
of determining whether there exists an assignment of the
variables in a propositional formula, such that the formula
evaluates to true (Barrett et al. 2009). Usually, the consid-
ered propositional formula is given in the conjunctive nor-
mal form, that is, a conjunction (AND, ∧) of clauses, where
each clause is a disjunction (OR, ∨) of literals, and each
literal is either a variable or its negation (NOT, ¬).

Z3 (De Moura and Bjørner 2008) is one of the state-of-
the-art Satisfiability Modulo Theories (SMT) solvers, devel-
oped at Microsoft, USA, which generalizes the satisfiability
check from boolean logics to other background theories,

2523Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

such as equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, etc. (Barrett et al. 2009). Z3 provides “black-box”
satisfiability checks with well-defined programming inter-
faces in several programming languages. This makes Z3 an
ideal choice to be integrated as part of many software veri-
fication and design tools. If the given propositional formula
is satisfiable, Z3 gives “yes” as an answer; otherwise, in case
the formula is not satisfiable, Z3 can also return an unsatisfi-
able core, which is a conjunction of unsatisfiable clauses, to
help find the inconsistency in the specification. In our work,
we integrate Z3 into SAFARE for the consistency check of
DAP specifications.

3 Formal specification and analysis of data
aggregation processes

Our approach starts with the specification of DAP, followed
by the formal analysis of the specifications. Starting from
the system requirements, the designer identifies the DAP
that form the workflow of the system. For each DAP, the
designer needs to specify the desired features selected from
DAGGTAX.

One advantage of applying DAGGTAX is that the DAG-
GTAX-based specifications can be formalized and checked
by existing SAT solvers. The basic idea is to transform the
feature diagram, as well as the constraints between features,
into propositional formulas, which can be checked automati-
cally by Z3 , a state-of-the-art SMT solver. In the following,
we propose the rules for formalizing the DAP specifications,
and the design constraints.

3.1 Formalizing DAP specifications

Our DAP formal specification work builds on existing work
on formalizing feature diagrams (Batory 2005; Karataş et al.
2013).

Given a specification s consisting of a set of selected fea-
tures {��, ..., ��} and a set of de-selected features {��+�, ..., ��} ,
and a system consisting of a set of DAP {��, ..., ��} , we define
the following rules to transform the specifications and con-
straints into propositional formulas.

1. For each feature f in a specification, create a variable f.
2. The selection of feature f is formalized in Boolean logic,

as f , meaning that the boolean variable f is true. The
de-selection of f is formalized as ¬f .

3. The specification s is a conjunction of propositions:
s ∶= f1 ∧ f2 ∧ ... ∧ fm ∧ ¬fm+1 ∧ ... ∧ ¬fn.

4. A constraint c between features is specified as a for-
mula c, which represents the feature variables connected
by logical operators ∧ , ∨,¬ , and ⇒ (implication). For
instance, if feature f1 requires feature f2 , this can be for-

malized as: f1 ⇒ f2 . If feature f1 excludes feature f2 , this
can be formalized as: f1 ⇒ (¬f2).

5. The specification of the system is inconsistent, if the
propositional formula � ⇒ false is satisfiable, where
� ∶= s1 ∧ ... ∧ sk ∧ c1 ∧ ... ∧ cl , where l is the number
of constraints.

We also define the following naming convention to name
the variables, for the convenience of referring to the same
features of different DAP specifications:

– Each feature can be assigned a name. The name of
the root feature of each DAP specification needs to be
unique.

– If feature f is a root feature, its corresponding variable f
is named by the name of f.

– Otherwise, suppose f is a sub-feature of feature g, vari-
able f is named as �_� , where g is the name of g.

For instance, in the excerpt of a DAP specification in Fig. 2,
the root feature “Data Aggregation Process”, named DAP1,
has a sub-feature “Raw Data Type”, named “RD1”. Follow-
ing the naming convention, the variable of the root feature
“Data Aggregation Process” is named DAP1 , while the latter
is named DAP1_RD1.

In the remaining part of this section, we present a set of
constraints, which can be used to restrict the design space
of DAP design, and has been applied in our case study in
Sect. 5. These constraints specify a set of general dependen-
cies, focusing on the real-time features that are crucial for
real-time systems (Sects. 3.2 and 3.3), as well as the trans-
actional properties in a high level (Sect. 3.4). For a specific
application, however, designers can introduce application-
dependent constraints among features, and formalize them
in a similar way.

3.2 Formalizing intra‑DAP constraints

Dependencies may exist between the features within a DAP,
for instance, between aggregated data and raw data, because
temporally valid aggregated data relies on temporally valid
raw data. Therefore we formulate the following constraint:

C1. The real-time strictness level of the raw data must be
higher than or equal to the real-time strictness level of the
aggregated data. For instance, in a specification of a single
DAP called DAP1, if the aggregated data AD is required to

Data Aggrega�on Process
DAP1

RawDataType
RD1

Aggregate Func�on
AF

Triggering
Pa�ern

Aggregated Data
AD

Fig. 2 Excerpt of a DAP specification

2524 S. Cai et al.

1 3

be hard real-time, then its real-time raw data RD must be
hard real-time. If the aggregated data AD is required to be
firm real-time, then its real-time raw data RD must be firm
or hard real-time. These constraints can be formalized as the
following formulas, respectively:

– DAP1_AD_RealTime_Hard ∧ DAP1_RD_RealTime
 ⇒ DAP1_RD_RealTime_Hard
– (DAP1_AD_RealTime_Firm ∧ DAP1_RD_RealTime)
 ⇒ (DAP1_RD_RealTime_Firm
 ∨ DAP1_RD_RealTime_Hard)

Similarly, real-time aggregated data relies on a real-time
aggregation process, as follows:

C2. The strictness level w.r.t. the timeliness of the entire
DAP must be higher than or equal to the real-time strictness
level of the aggregated data. For instance, in a configuration
of a single DAP called DAP1, if the aggregated data AD is
required to be hard real-time, then the aggregation process
must be hard real-time. If the aggregated data AD is required
to be firm real-time, then the aggregation process must be
firm or hard real-time. These constraints can be formalized
as the following formulas, respectively:

– DAP1_AD_RealTime_Hard ⇒
 DAP1_RealTime_Hard
– DAP1_AD_RealTime_Firm ⇒
 (DAP1_RealTime_Hard ∨ DAP1_RealTime_Firm)

3.3 Formalizing inter‑DAP constraints

When a multi-level aggregation is formed, one DAP’s aggre-
gated data is used as another DAP’s raw data. Constraints
have to be satisfied between these two DAP:

C3. If DAP DAP2 is required to have real-time raw data
DAP2_RD, which is consumed from another DAP DAP1’s
aggregated data DAP1_AD, the real-time strictness level
of DAP1_AD must be higher than or equal to the real-time
strictness level of DAP2_RD. These can be formalized as:

– DAP2_RD_RealTime_Hard ⇒
 DAP1_AD_RealTime_Hard
– DAP2_RD_RealTime_Firm ⇒
 (DAP1_AD_RealTime_Hard
 ∨ DAP1_AD_RealTime_Firm)

3.4 Formalizing data management design
constraints

Data involved in DAP are often stored in databases, which are
managed by Data Base Management Systems (DBMS). The

selected features in a DAP specification defines the require-
ments that should be supported by the DBMS. Such depend-
encies can also be specified as constraints, which can help to
select the suitable DBMS from a variety of existing DBMS
options.

In this paper we focus on transaction management sup-
port, which is an important aspect of DBMS to ensure data
consistency, by ensuring the Atomicity, Consistency, Isola-
tion, Durability (ACID) and timeliness properties of database
transactions. ACID properties provide a strong guarantee
on the logical consistency of the data (Haerder and Reuter
1983), while timeliness ensures that transactions can meet
their desired deadlines (Ramamritham 1993). A DBMS may
support only some of such properties, as illustrated in Fig. 3.
For instance, in a real-time DBMS, durability or isolation may
be relaxed in order to provide timeliness support (Stankovic
et al. 1999).

Given the distributed nature of many systems applying data
aggregation, such as cloud monitoring systems, the DAP in the
system may be managed by different DBMS. When selecting a
DBMS to a DAP, one must consider the requirement imposed
by the DAP specification on the DBMS transaction support.
The following constraints need to be satisfied when a DAP is
bound to a DBMS:

C4. If DAP DAP1 has persistent raw data RD or durable
aggregated data AD, the selected DBMS must support durabil-
ity. This is formalized as:

– (DAP1_RD_Pull_PersistentStored
 ∨ DAP1_AD_Push_Durable)
 ⇒ DBMS_Durability

C5. If DAP DAP1 involves real-time raw data RD, real-time
aggregated data AD, or itself is a real-time process, the selected
DBMS must support timeliness. This is formalized as:

– (DAP1_RD_RealTime ∨
 DAP1_AD_RealTime ∨ DAP1_RealTime)
 ⇒ DBMS_Timeliness

4 The SAFARE tool

SAFARE (SAt-based Feature-oriented dAta aggREgation
design) is a JAVA-based tool, which enables designers to
design DAP based on DAGGTAX, and integrates the Z3

DBMS Transac�on Support

Atomicity Consistency Isola�on Durability Timeliness

Fig. 3 Feature model of DBMS transaction support

2525Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

Theorem Prover (De Moura and Bjørner 2008) for check-
ing the consistency of the design solution. Our tool allows
designers to select the desired features of DAP. When a
feature is selected, the tool displays design heuristics that
include tips and techniques for the designer to realize, or
mitigate the influence of the selected features. The speci-
fied DAP can be connected to form a multi-level aggrega-
tion design, whose consistency can be checked formally by
the integrated Z3 solver. In addition, our tool also guides
designers to associate the specified DAP to the appropri-
ate DBMS according to the desired transactional support.
After the association is decided, SAFARE generates the
database model of the data involved in the DAP, as well as
query struts, which are partially complete SQL statements
for accessing and manipulating the data.

In this section, we present our tool in detail. Figure 4
shows the simplified UML class diagram containing the
core classes of SAFARE. The GUIMainFrame class imple-
ments the graphical user interface, which consists of a
DAPSpecificationPanel for specifying a DAP, a Consisten-
cyCheckPanel for adding and checking design constraints,
and a DBMSSpecificationPanel for specifying DBMS
transactional support. The Z3Analyzer contains a library
of propositional formulas, obtained from the specifications

and constraints, and implements the consistency check by
employing Z3 JAVA API.

Figure 5 shows the graphical user interface of SAFARE.
At the top lie three tabs, that is, DAP Specification, Con-
sistency Check, and DBMS Specification, which are the
three main functionalities provided by the tool. The typical
workflow of using SAFARE to design DAP is presented in
Fig. 6. Typically, a domain expert can add design constraints
to the tool via the Consistency Check tab. A designer starts
with the specification of the DAP in the designed system on
the DAP Specification tab, followed by checking the con-
sistency of the DAP on Consistency Check. The verified
DAP are then associated with the selected DBMS on DBMS
Specification. We present each functionality in the following
subsections, respectively.

4.1 DAP specification

SAFARE implements DAGGTAX features as a list of
selectable checkboxes. The designer can specify a DAP by
selecting and de-selecting the checkboxes. When a feature is
selected, the tool can provide design tips, reminding design-
ers of potential techniques to realize the desired feature, or
to mitigate the influence of the feature. The designer can
specify multiple DAP, and create dependencies between

Fig. 4 SAFARE’s simplified
class diagram

DAPSpecifica�onPanel

addDAPSpecifica�on()
addInterDAPDependency()

ConsistencyCheckPanel

addConstraint()
checkConsistency()
displaySuccess()
displayViola�on()

DBMSSpecifica�onPanel

addDBMSSpecifica�on()
selectDBMSforDAP()
displayDatabaseDesign()

Z3Analyzer

addFormula()
check()

List<DAPSpecifica�on>

List<Constraint>

List<DBMSSpecifica�on>

List<Formula>

DAPSpecifica�on

Constraint

Formula

DBMSSpecifica�on

GUIMainFrame

1..1

0..*

1..1

0..*

1..1

0..*

1..1
1..1

1..1

1..1

1..1

1..1

1..1
0..*

<<use>>

2526 S. Cai et al.

1 3

them. A dependency connects the aggregated data of one
DAP with the raw data of another DAP, meaning that the
former is used as the latter.

The DAP Specification interface is shown in Fig. 7.
On the left side, the designer can specify the DAP of the
designed system, while on the right side, the specified DAP
can be connected into a multi-level aggregation design. As

an example, in Fig. 7, we have created a specification of
DAP AppProfileGeneration, which generates application
profiles by aggregating the performance measurements,
including throughput and the number of dropped pack-
ets. The raw data are pushed to the DAP with minimum
and maximum inter-arrival times (“MinT” and “MaxT”
selected). Its aggregate function is a composition of the raw

Fig. 5 Graphical interface of SAFARE

Fig. 6 Sequence diagram of
the typical workflow using
SAFARE

DAPSpecifica�oPanelDomain
Expert

Consistency

CheckPanel DBMSSpecifica�onPanel Z3AnalyzerDesigner

addDAPSpecifica�on()

addFormula()

addConstraints()

addFormula()

checkConsistency()
check()

checkResults

displaySuccess()

alt

checkResults==fail

checkResults==pass

displayViola�on()

addDBMSSpecifica�on()

selectDBMSforDAP()

displayDatabaseDesign()

addInterDAPDependency()

2527Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

data, which has the feature “lossy”, “summary” and “pro-
gressive”. The aggregated AppProfiles are pushed by the
aggregator to another unit, therefore having the “pushed”
feature selected. This DAP is triggered periodically with a
“period”, and has to meet a “soft” “deadline”. A tip is given
when the feature “push” is selected, reminding the designer
to consider a proper synchronization protocol between the
DAP and the data receiver. In this example, another DAP
VNFCProfileGeneration is also specified, below the DAP
AppProfileGeneration, which generates profiles of Virtual
Network Function Components (VNFC) from all applica-
tions within this VNFC. A dependency is specified in Fig. 7,
according to which the aggregated data of AppProfileGen-
eration is used as the raw data of VNFCProfileGeneration.

4.2 Consistency check

SAFARE transforms the DAP specifications and design
constraints into propositional formulas, automatically. For
instance, the selection of the “periodic” triggering pattern in
AppProfileGeneration in Fig. 7 is converted to:

Semantically, this formula specifies that “periodic” is
selected, while neither “aperiodic” nor “sporadic” are
selected.

The constraints introduced in Sect. 3 are also converted
to logical formulas. For instance, the constraint C3, i.e., the
dependency between AppProfileGeneration and VNFCPro-
fileGeneration, is formalized as:

AppProfileGeneration_TriggeringPattern_Periodic∧

¬ AppProfileGeneration_TriggeringPattern_Aperiodic∧

¬AppProfileGeneration_TriggeringPattern_Sporadic

In addition to the aforementioned formulas, which have
already been integrated in the tool, SAFARE allows domain
experts to extend the constraint library with customized con-
straints. Such constraints are specified in SMT-LIB format,
which is the standard format for specifying logical formulas
in Z3 (De Moura and Bjørner 2008).

Such formalized specifications and constraints are
checked automatically by the integrated Z3 theorem prover,
as shown in Fig. 8. If the specifications are consistent, that
is, the conjunctions of all logical formulas are satisfiable,
the tool returns a confirmation that the specifications have
passed the consistency check. The logical formulas for the
specifications as well as the constraints are listed in the
detailed log. In case a specification violates the specified
constraints, the tool will return a failure message, and pin-
point the violation. For instance, let us assume that App-
ProfileGeneration has “soft” “real-time” “aggregated data”,
VNFCProfileGeneration has “hard” “real-time” “AppPro-
file” raw data, and the raw data of the latter DAP comes
from the aggregated data of the former. In this case, the tool
will return a message saying that the consistency check has
failed, and list the conflicting formula:

This exactly tells the designer where the conflict lies:
VNFCProfileGeneration, while required to use hard

VNFCProfileGeneration_AppProfile_RealTime_Soft

⇒ (AppProfileGeneration_AppProfile_RealTime_Hard

∨ AppProfileGeneration_AppProfile_RealTime_Firm

∨ AppProfileGeneration_AppProfile_RealTime_Soft)

¬AppProfileGeneration_AppProfile_RealTime_Hard

∧ VNFCProfileGeneration_AppProfile_RealTime_Hard.

Fig. 7 Example: creating a DAP

2528 S. Cai et al.

1 3

real-time data, tries to aggregate data from AppProfileGen-
eration that is not hard real-time. The designer needs to fix
the inconsistent specification before continuing with the
development.

4.3 DBMS specification

SAFARE provides an interface to specify a list of possi-
ble DBMS solutions, as well as to assign the DAP to these
DBMS. In the current version of the tool, a specification
of DBMS only includes the support for atomicity, consist-
ency, isolation, durability, and timeliness. The specified
DAP can then be bound to the specified DBMS, following
constraints C4 and C5 of Sect. 3, which are enforced by the
tool. In the example of Fig. 9, we have specified two DBMS.
MongoDB3 provides support for atomicity, consistency,

isolation and durability, while Mimer SQL Real-Time Edi-
tion (MimerRT)4 provides support for timeliness. Since
AppProfileGeneration has real-time features, MimerRT is
the only valid option from the list of DBMS. When a DAP/
DBMS binding is loaded, the tool generates a set of database
tables for the data involved in the DAP, as well as SQL-
like queries for processing these data. This information can
help designer to model the database and program database
queries.

5 Case study and results

In this section, we describe the industrial case study, which
shares the same requirement and solution as presented in
our previous work (Cai et al. 2017b). In this paper, we not

Fig. 8 Consistency check using SAFARE

3 https ://www.mongo db.com/. 4 http://www.mimer .se/Produ cts/Mimer SQLRe altim e.aspx.

https://www.mongodb.com/
http://www.mimer.se/Products/MimerSQLRealtime.aspx

2529Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

only apply DAGGTAX, but also SAFARE, during the design
of the target cloud monitoring system. The purpose is to
demonstrate the applicability and usefulness of SAFARE in
maintaining the consistency of the design through the case
study. To justify the solution designed using DAGGTAX
and SAFARE, we implement is as a prototype, and show by
experiments that it meets the desired requirements.

5.1 Case study description

Our target system is a cloud-based video streaming system,
whose software services are deployed on a collection of
hardware resources (physical servers and network capaci-
ties), virtualized by complex management software. The
software services are executed on virtual machines, also
called Virtual Network Functions (VNF), which are man-
aged by a VNF manager. In each VNF, there exists a set of
Virtual Network Function Components (VNFC), each repre-
senting a collection of applications running in the cloud. For
instance, one such VNFC may contain all video streaming
services responsible for the user’s requests, while another is
dedicated to handle security issues.

The designed system extends the open-source Open-
Stack framework, whose major components for achieving
auto-scaling are shown in Fig. 10. Among them, Ceilometer

monitors the run-time states of the cloud by collecting vari-
ous resource data, such as CPU usage of each VNF. Once a
measurement meets a predefined condition, Heat is alerted
to decide if a scaling action should be taken, and notifies
Nova to start or terminate a VNF.

In order to maintain the desired Quality-of-Service (QoS)
while maximizing the resource utilization, VNF should be
started or terminated by the VNF manager according to the
resource consumption and the status of the applications. The
current framework supports only coarse-grained, VNF-based
measurements, for instance, measuring the CPU usage of
each VNF. However, to provide efficient auto-scaling deci-
sions, finer-grained measurements are needed. For instance,
it is beneficial to distinguish the following two situations:
(1) resources appearing to be exhausted by video stream-
ing services that are critical to end users, and (2) resources

Fig. 9 DBMS specification, and binding DAP with DBMS

HeatCeilometer

NovaCreate
/Terminate

Configure

Alarm

Virtual Machine
Services

Decide
Resource usage data

Fig. 10 Auto-scaling related components in the OpenStack frame-
work

2530 S. Cai et al.

1 3

appearing to be exhausted by a routine security check while
the streaming requests are low. The former case may indicate
insufficient provision that may degrade the QoS, and there-
fore a scaling up must be performed as soon as possible. The
latter, however, is a temporary maintenance phenomenon,
for which the scaling up causes unnecessary system over-
head and waste of resource.

To perform finer-grained monitoring and more efficient
auto scaling, we consider to take into account the meas-
urements from within the VNF. The data to be collected
include: (1) CPU usage of each VNF; (2) CPU usage of each
VNFC within each VNF; (3) Throughput and the number
of dropped packets of each application within each VNFC.

Two auto-scaling rules are specified to adjust the VNF
management dynamically, and to be supported by the new
system:

– A new VNF should be spawned (scale up), if either of the
following rules is satisfied: (1) the average CPU usage
of any VNF is higher than 90% for 60 s; (2) the average
CPU usage of any VNF is higher than 80% for 60 s, and
the packet loss of the video streaming services is higher
than zero.

– An existing VNF should be terminated (scale down), if
the following rule is satisfied: the average CPU usage of
the VNF is lower than 5% for 60 s, and the packet loss of
the video streaming services is zero.

5.2 Application of DAGGTAX and SAFARE

We apply DAGGTAX to organize the data aggregation pro-
cesses in the existing auto-scaling functionality of Open-
Stack, as well as to select and compose features for the
desired enhanced auto-scaling functionality. Using our tool
SAFARE, we select the features from the interface to form
the specifications, whose consistency is checked automati-
cally by the tool.

In the OpenStack framework, two levels of aggregation
take place: one generating alarms from aggregating CPU
usages of the VNF, the other making the scaling decisions
from aggregating the alarms. These aggregation processes
are identified using DAGGTAX and presented in Fig. 11,
in which each box is an instantiated feature from Fig. 1. In
the bottom level, a DAP called CPUAlarmStatusEvaluation
aggregates periodically a set of VNFCPU’s raw data pulled
from the Ceilometer database. These raw data are sampled
by the hypervisor prior to the DAP by another process with
a predefined frequency (MinT and MaxT have the same
value). All CPU statistics within the interval between two
aggregation periods are aggregated by an aggregate func-
tion, which computes the average value of the CPU data,
compares the value with a threshold value, and produces the
alarm status as a result. The aggregate function is duplicate
sensitive, lossy, progressive and computes a summary. The
aggregated alarm status is then pushed to Heat for the auto-
scaling decision. In the top level, the ScalingDecisionMak-
ing process is triggered by the alarm event. A ScalingPoli-
cyEvaluation function is applied to the alarm status. If the
status shows that the CPU usage is higher than the threshold,
and the time from the last scaling action is longer than one
minute, an auto-scaling decision will be taken, either to add
or to terminate a VNF.

We also apply DAGGTAX to design the DAP for the new
auto-scaling functionality, together with the design deci-
sions on the data flow management, through the interface
of SAFARE, and check the consistency against the design
constraints specified in Sect. 3. In case SAFARE detects
an inconsistency, we analyze and modify the inconsistent
specification, and redo the consistency check.

Together with the engineers, we designed the DAP of the
new system from the project requirements. We realized that
the existing OpenStack framework needs to be extended,
in order to fulfill the new auto-scaling functionality. The
new scaling decision making process requires two types of
raw data to make the decision: the CPU alarm status as in
the existing solution, as well as the status of all currently

Fig. 11 Data aggregation
processes in OpenStack auto-
scaling functionality

ScalingDecisionMaking

CPUAlarmStatusEvaluation

EvaluationPolicy
(windowed avg) AlarmStatus

Push

Triggering
Pattern

Periodic

Period

VNFCPUType

VNFCPU

MinT MaxT

[1…n]

Triggering Pattern

Aperiodic

Event

AlarmType

CPUAlarm

ScalingPolicy
Evaluation

Decision

Duplicate
sensitive

Lossy

Progressive

Summary

Pull

Persistently
Stored

Data flow

Legend

feature Feature

2531Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

active VNF. Such status of each VNF is aggregated from
the status of each VNFC, which itself is an aggregation of
the applications within the VNFC. Therefore, we created a
multi-level aggregation design, as presented in Fig. 12. This
design reuses much of the existing OpenStack framework,
and extends it with new DAP.

In Fig. 12, the features presented in gray color are already
implemented in OpenStack. For better readability, we only
show the features of raw data, aggregated data, triggering
patterns and the real-time properties of new DAP, and omit
the features of the aggregate functions and existing features.
In this design, the top-level ScalingDecisionMaking process
aggregates the CPU alarm status and a set of VNFProfiles,
which are status profiles of currently active VNF. As the
CPU status is also generated in the existing framework by
the CPUAlarmStatusEvaluation, this process is preserved
from Fig. 11 and reused in the new design. The aggregated
decision data, as well as the triggering pattern of the Scal-
ingDecisionMaking process, are also the same as the exist-
ing framework. Each VFNProfile is generated by the new
VNFProfileGeneration process, aggregating a set of VNF-
CProfiles, representing the status of the VNFC in this VNF.
Each VNFCProfile is a new aggregation of the CPU usage of
this VNFC (VNFCCPU), and a set of AppProfiles, which are
the status profiles of the applications in this VNFC. In the
lowest level, an AppProfile is an aggregation of the through-
put and the number of dropped packets that are sampled for
each application. The VNFCProfileGeneration and AppPro-
fileGeneration processes are desired to meet their deadlines
in order not to interfere with the video streaming services.

ScalingDecisionMaking and CPUAlarmStatusEvaluation
are deployed in the controller node, while the other DAP for
VNF, VNFC and application profiles are deployed in the
VNF. Data between DAP, within the controller and the VNF
respectively, are communicated via databases. We consider
to choose from two DBMS products. One is MongoDB,
which provides support for ACID properties. The other is
MimerRT, which provides predictable real-time data access.
Through our tool SAFARE, we bind the DAP ScalingDeci-
sionMaking and CPUAlarmStatusEvaluation to MongoDB
because they require durable and persistent data storage. For
the other DAP with real-time features, MimerRT is selected
as the DBMS. Using the suggestions provided by the tool,
we create tables and data objects in each database, and code
the queries used for accessing the data.

5.3 System implementation

The cloud monitoring system with the designed DAP has
been implemented in a prototype, by extending OpenStack
(version: Newton). Fig. 13 presents the architecture of the
prototype. It is deployed on a PC with a 2.7 GHz quad-core
process and 16 GB memory. Each VNF is a Linux virtual
machine that hosts two VNFC and a MimerRTDB. VNFC1
holds two video streaming applications, whereas VNFC2
holds two applications that are less critical. Each application
is simulated by a process, written in C, which updates the
throughput and dropped packets in the database. For each
application, an AppProfileGeneration process is executed to
aggregate the application data and generate its AppProfile.

ScalingDecisionMaking

CPUAlarmStatusEvaluation

AlarmStatus

VNFCPU [1…n]

AlarmType

CPUAlarm

DecisionVNFProfileType

VNFProfile [1…n]

VNFProfileGeneration

VNFProfile
VNFCProfile

AppProfile
Generation

Throughput Dropped
Packet

AppProfile

MongoDB

[1…n]

Controller

VNF
VNFCProfileGeneration

Composition VNFCProfile

Push

Triggering
Pattern

Periodic

Period

VNFCCPUType

VNFCCPU

MinT
MaxT

AppProfileType

AppProfile [1…n]

MinT
MaxT

Pull

Real-time
(P)

Deadline

Soft
Pull

Composition

Composition
Periodic

ScalingPolicy
Evaluation

Aperiodic

EvaluationPolicy
Periodic

MimerRTDB

Pull

Persistent

Period

MinT
MaxT

Pull
Push

Push

Triggering
Pattern

MinT

MaxT

Push MinT

MaxT

Push
Push Periodic

Period

Triggering
Pattern

Real-time
(P)

Deadline

Soft

RESTful API

1

12
3

3

4

4

5

5
6

7

Data flow. The same i indicates the same data entity

feature
Existing features
in OpenStack feature New features

to be added

i

Durable

Fig. 12 Data aggregation processes in the designed system

2532 S. Cai et al.

1 3

Similarly, in each VNFC, an aforementioned VNFCProfi-
leGeneration process is executed to create its VNFCPro-
file, while in each VNF a VNFProfileGeneration process is
executed. The VNFProfiles are then sent to Ceilometer, via
a new service entry point, and saved in MongoDB. The new
scaling rules, as specified in Sect. 5.1, are defined in Heat.

We analyze the prototype with simulated data provided
by Ericsson. The timing parameters of raw data and the
processes are listed in Tables 1 and 2, respectively. The
simulation workloads, as well as results, are presented in
Table 3, which shows that the prototype system achieves
more accurate auto scaling compared to the current Open-
Stack framework according to the specified rules. In particu-
lar, as expected, our prototype remains unchanged when the

CPU usage of the VNF exceeds 80% but no packets have
been dropped for the streaming service (Mode 2), and suc-
cessfully scales up when the packets start to be dropped
due to overload (Mode 3). This shows that our new solu-
tion fully respects the requirement that the scaling decision
must take the application status (in this case the dropped
packets) into consideration. In contrast, the current Open-
Stack framework cannot distinguish these two modes and
consequently sales up in both cases. This indicates that the
current solution is insensitive to application status, which as
a consequence could make inaccurate decisions and lead to
waste of resources.

6 Discussion

During this case study, we recognize several benefits from
applying DAGGTAX and SAFARE in the early design
stage. Similarly to what we have already experienced (Cai
et al. 2017a, b), DAGGTAX can enhance the understanding
about the data, the aggregation processes, as well as their
interplays in the designed cloud system. From the feature
diagrams, the reusable features are easier to be identified,
which enhances the reusability of the design. Since DAG-
GTAX incorporates timing properties, such as MinT, period,
deadline, etc, the time-related parameters crucial to real-time
systems can be reasoned about informally, and infeasible
design solutions can be prevented prior to implementation.

Fig. 13 Architecture of the
enhanced auto-scaling function-
ality of the cloud video stream-
ing system

HeatCeilometer

Nova

VNF

Hypervisor

MongoDB

Create/Terminate

Decide

Configure

Alarm

MimerRT

CPUAlarmStatusEvaluation

VNFProfileGeneration

ScalingDecisionMaking

app
app

VNFCProfileGeneration
AppProfileGeneration

VNFC

Table 1 Timing parameters of raw data

Data MinT (s) MaxT (s)

Throughput 1 1
Dropped packet 1 1

Table 2 Timing parameters of DAP

DAP Period (s)

AppProfileGeneration 1
VNFCProfileGeneration 60
VNFProfileGeneration 60
CPUAlarmStatusEvaluation 60

Table 3 Simulation workloads
and results

NC no change, SU scale up, SD scale down

Mode VNF CPU
usage (%)

Dropped packet in
VNFC1

Expected result DAGGTAX proto-
type result

Current
openStack
result

1 50 0 NC NC NC
2 81 0 NC NC SU
3 81 1 SU SU SU
4 91 0 SU SU SU
5 4 0 SD SD SD

2533Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

Designers of data aggregation processes benefit from the
tool support provided by SAFARE. First of all, SAFARE
implements DAGGTAX with a user-friendly interface to
specify DAP, making the selection and combination of fea-
tures less error-prone compared with manual specification.
SAFARE also provides design tips during the interactive
specification, which raises the awareness of the impact of
the selected features.

SAFARE enables automated formal verification of the
specifications against design constraints, thus contributing to
efficient reasoning and design space reduction. For instance,
in the VNFCProfileGeneration process, we cannot ask for
persistent raw data (VNFCCPU and AppProfile) nor durable
aggregated data (VNFCProfile) if we require the process to
meet its deadline, since the overhead of disk I/O is usually
not predictable, which contradicts the real-time property of
the process. This contradiction has been formulated as a con-
straint, and has been added to SAFARE. When a VNFCPro-
fileGeneration was specified with the aforementioned fea-
tures during the case study, SAFARE was able to point out
the contradiction with the specified constraint automatically.

Although the current version of SAFARE only supports
consistency checking of propositional formulas, we plan to
extend the capability to include other types of analysis in
the next version. The current interface of SAFARE allows
values to be specified together with the features, for instance,
the actual values of periods and deadlines of the DAP. With
these extra information, one can analyze the schedulability
of DAP, or verify more advanced constraints expressed in
temporal logic. To achieve this, SAFARE may need to inte-
grate with other analysis tools, besides Z3.

7 Related work

The design of monitoring systems for cloud management
has attracted much research attention in recent years. For
instance, Bruneo et al. (2015) have proposed a framework
for designing a system collecting measurements from mul-
tiple layers of a cloud. Montes et al. (2013) have created
a taxonomy of cloud monitoring systems, based on which
they propose an approach for designing cloud monitoring.
Although systematic analysis of architectural characteris-
tics are applied in the design approaches of both works, the
authors do not consider the detailed characteristics of the
constituents of data aggregation. Ward and Barker (2014)
have proposed a taxonomy for cloud monitoring, and have
discussed some key aspects of designing monitoring strate-
gies. On the contrary, we emphasize to analyze the details
of DAP when designing such a monitoring strategy, which
is not the authors’ focus. In our previous work (Cai et al.
2017b), we have proposed to apply DAGGTAX for the
analysis of DAP informally, while in this work, we propose

to formally analyze DAGGTAX-based design with tool
support. Recently, Grzonka et al. (2017) have proposed a
Self-Adaptive Resource Management System (SARMS) that
achieves auto scaling based on CPU and memory usage.
Their work focuses on the monitoring of resource usages as a
whole, while our case study implements the monitoring and
aggregation in several layers, including the virtual machines,
the VNFC, and the applications. Zhao et al. (2017) have
proposed their SimMon toolkit for simulating and compar-
ing cloud monitoring mechanisms. Instead of implementing
the concrete mechanisms, our proposed approach focuses on
high-level specifications and designs, which can be analyzed
formally in the early design stage.

A number of works have been conducted in order to
understand various aspects of data aggregation, and thus
aid the design of systems applying data aggregation. Gray
et al. (1997) and Madden et al. (2002) have proposed taxono-
mies, whose main purposes is to help the understanding and
design of aggregate functions. Fasolo et al. (2007) propose
a taxonomy to reason about aggregate functions and routing
protocols for systems applying in-network aggregation. In
comparison, our work aims to design a system based on ana-
lyzing the characteristics of the data, the aggregate functions
and the processes, which are all covered by DAGGTAX.
Our approach applies formal consistency checking of the
data aggregation features, which is also different from the
mentioned related work.

Existing modeling notations such as UML activity dia-
grams can be used for the structural representation of data
flows and processes (Störrle 2005; Gallina 2005). Guelfi
and Mammar (2005) have proposed a formal semantics for
UML activity diagrams, and transformation rules into the
PROMELA language, which allows for model checking
several properties. Our taxonomy is presented as a feature
diagram, which provides clear systematization of common-
alities and variabilities of DAP. Our approach formalizes the
feature-based specifications in Boolean logic, and performs
feasibility checks with a SAT solver.

There has been a great deal of work on automated for-
mal analysis of feature models. Many of them propose to
formalize the feature model and the product specification as
propositional formulas, and check their consistency using a
SAT solver. Batory et al. propose a Logic Truth Maintenance
System (LTMS) (Batory 2005) and the AHEAD tool suite
(Batory 2004), which formalizes and verifies the feature-
based configurations, integrated with a SAT solver for the
consistency check. Mendonca et al. propose a set of trans-
formation rules to convert feature configurations to Boolean
formulas used by SAT solvers (Mendonca et al. 2009).
Janota proposes the S2T2 configurator, which uses a SAT
solver to guide interactive configurations in feature-based
software design (Janota 2010). The automated analysis of
DAP specifications in our tool implements the concepts and

2534 S. Cai et al.

1 3

ideas from such related work. In addition, our tool integrates
the feature model DAGGTAX and provides design support
for data management of data aggregation.

8 Conclusions and future work

We have proposed a systematic design approach for design-
ing data aggregation in cloud monitoring systems. The
approach relies on the systematic specification of data
aggregation processes based on DAGGTAX, and the SAT-
based consistency check of the specification. We have imple-
mented SAFARE, a tool that supports the DAGGTAX-based
specification, and integrates the Z3 theorem prover to verify
the specification formally. Our tool also helps designers to
design data management solutions for DAP, by guiding them
to select proper DBMS transaction support for the DAP, and
providing query struts for designing the database model and
queries.

The applicability of our approach and our tool has been
evaluated via an industrial case study, in which we have
designed a cloud monitoring system for an enhanced auto-
scaling functionality in a cloud video streaming system.
We have analyzed the current framework based on the fea-
tures of the DAP, and designed new DAP by selecting and
composing features from DAGGTAX using SAFARE. The
application of DAGGTAX with SAFARE promotes a deeper
understanding of the system’s behavior, and raises aware-
ness about characteristics that need to be considered as well
as issues that need to be solved during the design. It helps
designers to perform better analysis than otherwise, such as
to identify reusable design solutions, make data management
decisions, and calculate time-related parameters. With a for-
mal underpinning, SAFARE also helps to eliminate infea-
sible feature combinations, and therefore reduce the design
space. Although in this paper we have only demonstrated
the benefits of our approach on a single case study, the cloud
monitoring system, we believe that these benefits also apply
to the design of other data-intensive systems with multi-
levels of data aggregation.

In the future, we plan to discover more design constraints
that are common for cloud monitoring systems, and more
general data-intensive systems. As these constraints may not
be restricted to propositional formulas, we need to extend
the analysis capability of SAFARE, which in the current
version only supports automated analysis of Boolean logic
formulas. We also plan to extend the support for the selec-
tion of transaction management in DBMS. Currently, we
only consider the coarse-grained specification of ACID and
timeliness support. In the future, we plan to enable more
detailed specification of transaction management, such as
different levels of isolation, as well as their dependencies
upon the DAP features. For instance, one may reason about

the logical data consistency when the multi-level DAP are
modeled as an advanced transaction, and managed using
transaction-based management.

Acknowledgements This work is funded by the Knowledge Founda-
tion of Sweden (KK-stiftelsen) within the DAGGERS project.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Aceto G, Botta A, De Donato W, Pescapè A (2013) Cloud monitoring:
a survey. Comput Netw 57(9):2093–2115

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee
G, Patterson D, Rabkin A, Stoica I et al (2010) A view of cloud
computing. Commun ACM 53(4):50–58

Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Handbook of
satisfiability. Satisfiability modulo theories 185:825–885

Batory D (2004) Feature-oriented programming and the ahead tool
suite. In: Proceedings of the 26th International Conference on
Software Engineering, pp 702–703

Batory D (2005) Feature models, grammars, and propositional formu-
las. In: Proceedings of 9th International Software Product Line
Conference, Springer, vol 3714, pp 7–20

Bruneo D, Longo F, Marquezan CC (2015) A framework for the 3-d
cloud monitoring based on data stream generation and analysis.
In: Proceedings of the 2015 IFIP/IEEE International Symposium
on Integrated Network Management, pp 62–70

Cai S, Gallina B, Nyström D, Seceleanu C (2017a) Daggtax: a tax-
onomy of data aggregation processes. In: Proceedings of the 7th
International Conference on Model and Data Engineering

Cai S, Gallina B, Nyström D, Seceleanu C, Larsson A (2017b) Design
of cloud monitoring systems via daggtax: a case study. Procedia
Comput Sci 109:424–431

Czarnecki K, Ulrich E (2000) Generative programming: methods,
tools, and applications. Addison-Wesley, Boston

De Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Ram-
akrishnan CR, Rehof J (eds) International conference on tools and
algorithms for the construction and analysis of systems. Springer,
Berlin, Heidelberg, pp 337–340

Ericsson (2017) 5g systems—enabling the transformation of industry
and society. Tech rep. https ://www.erics son.com/res/docs/white
paper s/wp-5g-syste ms.pdf. Accessed 27 Feb 2018

Fasolo E, Rossi M, Widmer J, Zorzi M (2007) In-network aggregation
techniques for wireless sensor networks: a survey. IEEE Wirel
Commun 14(2):70–87

Gallina B, Guelfi N, Mammar A (2005) Structuring business nested
processes using uml 2.0 activity diagrams and translating into
xpdl. XML4BPN XML Integration and Transformation for Busi-
ness Process Management pp 281–296

Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao
M, Pellow F, Pirahesh H (1997) Data cube: a relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals.
Data Min Knowl Disc 1(1):29–53

Grzonka D, Jakobik A, Kołodziej J, Pllana S (2017) Using a multi-
agent system and artificial intelligence for monitoring and

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.ericsson.com/res/docs/whitepapers/wp-5g-systems.pdf
https://www.ericsson.com/res/docs/whitepapers/wp-5g-systems.pdf

2535Tool-supported design of data aggregation processes in cloud monitoring systems

1 3

improving the cloud performance and security. Future Gener
Comput Syst. https ://doi.org/10.1016/j.futur e.2017.05.046

Guelfi N, Mammar A (2005) A formal semantics of timed activity
diagrams and its promela translation. In: Proceedings of the 12th
Asia-Pacific IEEE Software Engineering Conference, pp 283–290

Haerder T, Reuter A (1983) Principles of transaction-oriented database
recovery. ACM Comput Surv 15(4):287–317

Janota M (2010) Sat solving in interactive configuration. PhD thesis,
University College Dublin

Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-ori-
ented domain analysis (foda) feasibility study. Tech. Rep. CMU/
SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh

Karataş AS, Oğuztüzün H, Doğru A (2013) From extended feature
models to constraint logic programming. Sci Comput Program
78(12):2295–2312

Madden S, Franklin MJ, Hellerstein JM, Hong W (2002) Tag: a tiny
aggregation service for ad-hoc sensor networks. ACM SIGOPS
Oper Syst Rev 36(SI):131–146

Mendonca M, Wasowski A, Czarnecki K (2009) Sat-based analysis of
feature models is easy. In: Proceedings of the 13th International
Software Product Line Conference, Carnegie Mellon University,
pp 231–240

Molano JIR, Lovelle JMC, Montenegro CE, Granados JJR, Crespo
RG (2017) Metamodel for integration of internet of things, social
networks, the cloud and industry 4.0. Journal of Ambient Intel-
ligence and Humanized Computing pp 1–15

Montes J, Sánchez A, Memishi B, Pérez MS, Antoniu G (2013)
Gmone: a complete approach to cloud monitoring. Future Gener
Comput Syst 29(8):2026–2040

Ramamritham K (1993) Real-time databases. Distrib Parallel Data-
bases 1(2):199–226

Rudas IJ, Pap E, Fodor J (2013) Information aggregation in intelligent
systems: an application oriented approach. Knowl-Based Syst
38:3–13

Spring J (2011) Monitoring cloud computing by layer, part 1. IEEE
Secur Priv 9(2):66–68

Stankovic JA, Son SH, Hansson J (1999) Misconceptions about real-
time databases. Computer 32(6):29–36

Störrle H (2005) Semantics and verification of data flow in uml 2.0
activities. Electr Notes Theor Comput Sci 127(4):35–52

Verma P, Sood SK, Kalra S (2017) Cloud-centric IoT based student
healthcare monitoring framework. J Ambient Intell Human Com-
put. https ://doi.org/10.1007/s1265 2-017-0520-6

Ward JS, Barker A (2014) Observing the clouds: a survey and tax-
onomy of cloud monitoring. J Cloud Comput 3(1):1

Xue S, Xiong L, Yang S, Zhao L (2016) A self-adaptive multi-view
framework for multi-source information service in cloud its. J
Ambient Intell Humaniz Comput 7(2):205–220

Zhao X, Yin J, Zhi C, Chen Z (2017) SimMon: a toolkit for simu-
lation of monitoring mechanisms in cloud computing environ-
ment. Concurrency Computat Pract Exper 29(1):e3832. https ://
doi.org/10.1002/cpe.3832

https://doi.org/10.1016/j.future.2017.05.046
https://doi.org/10.1007/s12652-017-0520-6
https://doi.org/10.1002/cpe.3832
https://doi.org/10.1002/cpe.3832

	Tool-supported design of data aggregation processes in cloud monitoring systems
	Abstract
	1 Introduction
	2 Background
	2.1 Feature model
	2.2 The DAGGTAX taxonomy
	2.3 Boolean satisfiability and Z3

	3 Formal specification and analysis of data aggregation processes
	3.1 Formalizing DAP specifications
	3.2 Formalizing intra-DAP constraints
	3.3 Formalizing inter-DAP constraints
	3.4 Formalizing data management design constraints

	4 The SAFARE tool
	4.1 DAP specification
	4.2 Consistency check
	4.3 DBMS specification

	5 Case study and results
	5.1 Case study description
	5.2 Application of DAGGTAX and SAFARE
	5.3 System implementation

	6 Discussion
	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References

