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Abstract A CPA secure multi-bit somewhat homomor-

phic encryption scheme based on Learning With Errors

over Rings assumption is presented. We use canonical

embedding to transform ring elements into vectors over Zq,

and thus decrease encryption and decryption cost. Com-

paring with GHV scheme appeared in 2010, to encrypt

n bits, this scheme can reduce encryption cost from O(n3/2)

into O(nlog n). Finally, an efficient private information

retrieval protocol that employs this scheme is presented.
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Abbreviations

PIR Private information retrieval

FHE Fully homomorphic encryption

SWHE Somewhat homomorphic encryption

LWE Learning with errors

RLWE Learning with errors over rings

1 Introduction

Homomorphic encryption is a powerful cryptographic

primitive that allow for a variety of applications. It is a

form of encryption which allows specific types of com-

putations to be carried out on ciphertext and obtain an

encrypted result which decrypted matches the result of

operations performed on the plaintext. There are many

interesting applications including private information

retrieval (PIR), electronic voting, database encryption,

delegated computation and secure multiparty computation

(Chen et al. 2012a, b).

Fully homomorphic encryption (FHE) permits arbi-

trarily computation on encrypted data (Gentry 2009).

During the past 4 years, numerous constructions of FHE

involving novel mathematical techniques and a number of

applications have appeared (Dijk et al. 2010; Stehle and

Steinfeld 2010; Smart and Vercauteren 2010; Brakerski

and Vaikuntanathan 2011a; Bogdanov and Lee 2011;

Brakerski et al. 2012). However, it seems that most of the

available FHE schemes still have a long way to go before

they can be used in practice. Comparing with the theoret-

ical perfect but unpractical FHE, somewhat homomorphic

encryption (SWHE), which only permits a specific set of

operations, seems more efficient, and most of the actual

applications only involve SWHE schemes by now.

The main target of this work is to construct an efficient

multi-bit somewhat homomorphic encryption scheme.

Starting from Regev’s Learning With Errors over Rings

(RLWE)-based scheme (Regev 2009) and using canonical

embedding to improve efficiency, we present a new con-

struction of SWHE scheme that supports a larger plaintext

space and faster encryption. Moreover, we provide a Pri-

vate Block Retrieval (PBR) protocol using this scheme.

2 Related works

Boneh et al. (2005) described a cryptosystem (denoted by

BGN) that permits arbitrary numbers of additions and one

multiplication, without growing the ciphertext size. Later
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in EUROCRYPT 2010, Gentry et al. (2010) constructed a

variant of BGN, called GHV, it is based on Learning With

Errors (LWE) assumption, supports a larger message space

and has a better message-to-ciphertext expansion ratio than

BGN. In GHV, to encrypt m2 bits, the encryption process

has a computation cost of ~Oðm3Þ.
Aiming at constructing time-efficient schemes that

supports larger message spaces, we present a multi-bit

SWHE scheme that is basing on RLWE assumption.

Comparing with GHV, our scheme are more time-efficient,

to encrypt n bits, the total encryption cost is ~O n log nð Þ.
Such improvement attributes to the combination of the

more compact RLWE assumption and canonical embed-

ding. We show how to use this scheme to build an efficient

PIR (private information retrieval) protocol.

3 Preliminaries

3.1 Homomorphic encryption schemes

Definition 1 A Homomorphic Encryption scheme (HE)

can be described as a 4-tuple of algorithms HE = (Key-

Gen, Enc, Dec, Eval). The algorithms are probabilistic

polynomial-time and satisfy the following properties:

• KeyGen(1k): given security parameter k, output (pk, sk,
evk), where pk and sk are public key and private key

respectively, and evk is the public homomorphic

evaluation key.

• Enc(pk, m): given the encryption key pk and a message

m, the encryption algorithm outputs a ciphertext c,

denoted by c = Enc(pk, m).

• Dec(sk, c): given a ciphertext c and decryption key sk,

output a plaintext m.

• Eval(evk, f, c1, c2…, cl): Given the homomorphic

evaluation key evk, a function f and l ciphertexts c1,

c2…, cl, output a ciphertext cf, satisfying cf = Enc(pk,

f(Dec(sk, c1), Dec(sk, c2),……, Dec(sk, cl)))

This definition is a generic description of homomorphic

encryption schemes, and the material of function f is

omitted. Generally f can be expressed as a Boolean circuit

on field GF(2n), and only contains ADD and OR operations.

3.2 RLWE assumption

The LWE problem has gained a universal notice since it

had been first introduceed by Regev in (2009). In Eurocrypt

2010, Lyubashevsky et al. (2010) analyzed the efficiency

of LWE-based cryptosystems. For a standard LWE

assumption, obtaining one pseudorandom scalar bi [ Zq
requires an n-dim inner production computation. They

propose a more compact version of LWE called RLWE,

that is, LWE assumptions on a given ring, where con-

ducting an n-dim inner production can get another n-dim

vector. This makes an efficiency improvement by n times.

Definition 2 (RLWE assumption) Let f(x) be an n-degree

polynomial with integer coefficients, q is a prime, and ring

Rq is defined as Rq ¼ Zq½x�= f ðxÞh i. Let v be error distri-

bution on Rq, s 
$
Rq, ai 

$
Rq, k = poly(n). For any given

k pairs (ai, bi = ais ? ei) i=1
k , where ei is the error vector,

then bi is computationally indistinguishable from any uni-

formly chosen element in Rq.

Lyubashevsky et al. (2010) have proved that, the

Shortest Independent Vector Problem (SIVP) or Shortest

Vector Problem (SVP) in the worst case on ideal lattice can

be reduced to RLWE. Their main result can be captured as

the following: with error distribution be Dn and n = a�(nl/
log (nl))1/4, given l samples, the RLWE problem is at least

as hard as SIVP problem in a lattice.

To make the description more clear, we only use RLWE

assumption on a special polynomial R ¼ Zq½x�= xn þ 1h i
where n is a power of 2 and q = 1 mod 2n.

3.3 Canonical embedding in polynomial rings

Canonical embedding was first proposed by Minkowski

(Lyubashevsky et al. 2010). Let n = 2 k, q = 1 mod 2n is a

prime, and x = exp (pi/n), then canonical embedding is

defined as a mapping r from Rq ¼ Zq½x�= f ðxÞh iinto vector

space on complex numbers C
n, that is aðxÞ7! ðaðx1Þ;

aðx3Þ; . . .; aðx2n�1ÞÞ 2 C
n. Where a(x) 2 Rq and f(x) =

xn ? 1.

Using canonical embedding, we can map a polynomial

in Rq ¼ Zq½x�= f ðxÞh iinto a Ring vector. When a polyno-

mial is mapped into a vector in C
n, both addition and

multiplication can be conducted coordinate-wise, thus

making computation more convenient. Especially when

q is a prime and q = 1 mod 2n, x2i-1, i = 1, …, n-1 are

just the n roots of xn ? 1 in Zq, so a polynomial

aðxÞ 2 Zq½x�= xn þ 1h ican be mapped into an elements in

Z
n
qor a n-dim vector on Zq.

For a given rðaðxÞÞ ¼ ðaðx1Þ; aðx3Þ; . . . ; aðx2n�1ÞÞ
2 Z

n
q, we can get its preimage a(x) by solving a linear

equation set of n variables.

4 Multi-bit homomorphic encryption schemes based

on RLWE assumption

4.1 The basic scheme

The first single-bit public key encryption scheme basing on

LWE assumption was proposed by Regev in (2009), and
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from this scheme, people have promoted some other con-

structions and applications. The multi-bit version of Re-

gev’s scheme can be implemented on RLWE assumption

as the following (Rückert and Schneider 2010).

Scheme 1 (RLWE based version of Regev’s multi-bit

encryption scheme) Parameters: let q be a prime, q : 1

mod 2n, R ¼ Zq½x�= xn þ 1h i, v is discrete Gauss distribu-

tion. A sample that conforms to v is noted by e(x) 2 R with

r C 1. Define a set Dr as Dr ¼ Z \ � r
2

� �
; . . .; r

2

� �� �� 	
=

hxn þ 1i

For a positive integer k, define two operations on Rk:

1. Multiplication of two polynomial vectors � : Rk 9

Rk ? R: For any x̂; ŷ 2 Rk, x̂� ŷ ¼
Pk

i¼1 xiyi
2. Multiplication of one polynomial vector and one

polynomial: for any x̂ 2 Rk, y 2 R, x̂y ¼ ðx1y; . . .;
xkyÞ 2 Rk

• Private key: randomly choose s �
$

R, the length of

s is nlog2q bits.

• Public key: randomly choose a k-dim vector

â $ Rk, choose error vector ê vkR;a, here v

R,a
k obeys discrete Gaussian distribution on Rk, with

expectation 0 and standard deviation

a� 1=t
ffiffiffiffiffi
nk
p

r=2d eþ
�

1Þ. Computing a vector

b̂ ¼ âsþ ê 2 Rk, and the public key is ðâ; b̂Þ. To
decrease key length, we could let all of the users

share the same â. So the length of public key is kn

log2q bits.

• Encryption: given a plaintext m 2 D1 ¼ Z2½x�=
xn þ 1h i, randomly choose r̂ $ Dk

r , compute a pair

(c0, c1) as the ciphertext, here c0 ¼ â� r̂ 2 Rand

c1 ¼ b̂� r̂ þ mðq� 1Þ=2 2 R.

• Decryption: compute c1 � c0s ¼ mðq� 1Þ=2þ ê�
r̂ � mðq� 1Þ=2

Correctness of scheme 1 is shown in Rückert and

Schneider (2010), and when a� 1=30
ffiffiffiffiffi
nk
p

r=2d e, the

scheme can decrypt correctly.

4.2 A new scheme using canonical mapping

Basing on scheme 1, we use canonical mapping to con-

struct a new scheme.

Scheme 2

• Parameters: Let q be a prime and q � 1 mod 2n, let x
be a root of xn ? 1 in Zq, and (q-1)/2 cannot be divided

by x. The error distribution v R,a
k is discrete Gaussian

distribution on Rk, with expectation 0 and standard

deviation a� 1=t
ffiffiffiffiffi
nk
p

r=2d e þ 1
� 	

. Definition of Dr and

polynomial vector operations are the same with

scheme 1.

• Private key: s $ R, s.t. s(0) is not a divisor of (q-1)/2.

The length of private key is nlog2q bits.

• Public key: Randomly choose a k-dim polynomial

vector â $ Rk. Choose error vector ê vkR;aand set

b̂ ¼ âsþ ê 2 Rk. To reduce key length, we can let all of

the users share the same â, and the public key is

ðâ; b̂Þwhich has a length of kn log2q bits.

• Encryption: Encryption has three steps.

1. For any given n-bits plaintext m [ D1, let m = (m0, m1,

…, mn-1) and randomly choose r̂ $ Dk
r

2. Compute c0 ¼ b̂� r̂, c1 ¼ â� r̂. Noticing that c0, c1
are two polynomials in R, we can use canonical

mapping to change them into vectors in Z
n
q, namely

c0 7!ðc0ðxÞ; c0ðx3Þ; . . .; c0ðx2n�1ÞÞ ¼ C0

c1 7!ðc1ðxÞ; c1ðx3Þ; . . .; c1ðx2n�1ÞÞ ¼ C1

3. Compute C2 ¼ C0 þ q�1
2
ðm0; . . .mn�1Þ, and output the

ciphertext (C1, C2).

• Decryption: Also includes three steps.

1. Use the inverse of canonical mapping to change C1

into a polynomial c1ðxÞ ¼ â� r̂;

2. Compute c1ðxÞ � s ¼ â� r̂ � s ¼ b̂� r̂ � ê� r̂ � c0ðxÞ,
and transform c1(x)�s into a vector S;

3. Compute ðC2 � SÞ mod x � q�1
2
m

Theorem 1 When the parameters satisfy the aforemen-

tioned requirement, Scheme 2 can decrypt correctly.

Proof Consider the decryption process,

C2 � S ¼ C0 þ
q� 1

2
m� r c1 xð Þsð Þ

¼ b̂� r̂
� 	

xð Þ; . . .; b̂� r̂
� 	

x2n�1� 	� 	

� â� r̂sð Þ xð Þ; . . .; â� r̂sð Þ x2n�1� 	� 	
þ q� 1

2
m

We focus on the first item, and case of the other items is

analogous. The first item of the above formula is

â� r̂sð Þ xð Þ þ ê� r̂ð Þ xð Þ � â� r̂sð Þ xð Þ þ q� 1

2
m0

¼ ê� r̂ð Þ xð Þ þ q� 1

2
m0

where ê� r̂ð Þ xð Þis a polynomial about x in R, and after a

module operation, only the constant term remains. Let

ê ¼ e1; . . .; ekð Þ, r̂ ¼ r1; . . .; rkð Þ, then ê� r̂ ¼
Pk

i¼1 eiri.
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Considering ê vkR;a, on account of Chebyshev’s law, for

n independent samples that abiding the same Gaussian

distribution Xi / N(l, r2), 1 B i B n, their summation

satisfies
P

i=1
n Xi / N(nl, nr2), thus

P
i=1
k eiri obeys a

Normal distribution with expectation 0 and standard devi-

ation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 r

ffiffiffi
n
p

a=2ð Þ2
q

¼
ffiffiffiffiffi
nk
p

ra=2�
ffiffiffiffiffi
nk
p

r=2d ea� 1=t.

According to the truncated inequality of Normal distribu-

tion,we have Pr
Pk

i¼1 ei 0ð Þ
h i

[ q=4
� �

¼ 4
t

ffiffi
2
p

q
e�

t2

32. When

t C 30, this value can be ignored, so Pr ([
P

i=1
k ei(0)] B q/

4) & 1. Considering that x is not a divisor of (q-1)/2, the

first item of C2 � Sð Þ mod xis not greater than
q
4
þ q�1

2
m0. Thus completes the proof.

Theorem 2 For any e[ 0 and m C (1 ? e)(1 ? n) -

log q, if there exists a probabilistic polynomial-time

algorithm that can attack the CPA security of scheme 2

with advantage e, then there exist a poly-time distinguisher

V that for any possible private key s, can distinguish dis-

tribution â; âsþ êð Þjâ $ Rk; ê DR;n; s 
$
R

n o
and uni-

form distribution U on Rk 9 Rk, here n = a � (nk/
log (nk))1/4.

Proof We only discuss the first bit m0 of a plaintext.

Suppose there exists a CPA attacker A that can distinguish

the ciphertext of m0 = 0 and m0 = 1 with advantage e. We

construct a distinguisher V which can distinguish the fol-

lowing two distributions with advantage at least e/2:

â; âsþ êð Þjâ $ Rk;ai 0ð Þ ¼ 1; i ¼ 1; . . .; k; ê DR;n; s 
$
R;

n

s 0ð Þ ¼ 1gand Uniform distribution U on Rk 9 Rk. The

distinguisher V is constructed as the following:Input of V

are two polynomial vectors â; b̂
� 	

in Rk 9 Rk, satisfying

that each constant term of âis 1. Now V can invoke A to

judge that whether â; b̂
� 	

obeys uniform distribution or is a

RLWE vector. Using â; b̂
� 	

as private key, V invokes A, the

latter generate two message bits m0, m1, and send them to

V. V randomly choose i 2 {0, 1}, encrypt mi and send the

ciphertext back to A. If A can guess the correct i and return

it to V, then V outputs 1, else, outputs 0.Let the challenging

ciphertext be (C1, C2), if r is canonical mapping,

then the first bit of C1 and C2 are â� r̂ð Þ xð Þand
b̂� r̂
� 	

xð Þ þ q�1
2
m0respectively. If b̂is chosen randomly

and uniformly in Rk, and is independent of â, then the first

bit of the challenging ciphertext is also randomly and

uniformly. In this case, the probability of ‘‘V outputs 1’’ is

at most 1/2. On the other side, if b̂ ¼ âsþ êand the

parameters are chosen according to the requirement, then

by assumption, the probability of A correctly guessing i is

(1 ? e)/2, so V can output 1 with the same probability.

Thus completes the proof, namely, V can distinguish two

distributions with advantage e/2.

4.3 Homomorphic evaluations

Given two pairs of ciphertexts (C1, C2) and (C 1

0
, C 2

0
),

where

C1 ¼ ðc1ðxÞ; c1ðx3Þ; . . .; c1ðx2n�1ÞÞ

C2 ¼ c0 xð Þ þ q� 1

2
m0; c0 x3

� 	
þ q� 1

2
m1; . . .; c0 x2n�1� 	


þ q� 1

2
mn�1

�

C01 ¼ ðc01ðxÞ; c01ðx3Þ; . . .; c01ðx2n�1ÞÞ

C02 ¼ c00 xð Þ þ q� 1

2
m00; c

0
0 x3
� 	

þ q� 1

2
m01; . . .; c

0
0 x2n�1� 	




þq� 1

2
m0n�1

�

When computing the sum of two ciphertexts, we could

simply add them coordinate-wise, and get Cadd1;Cadd2ð Þ ¼
C1 þ C01;C2 þ C02
� 	

Due to the use of canonical mapping, multiplication of

two vectors could also done coordinate-wisely. Let ‘‘*’’

denote the coordinate-wise multiplication of vectors, then

Cmult1;Cmult2ð Þ ¼ C1 	 C01;C2 	 C02
� 	

We focus on the decryption of the first item. Case of the

other items is analogous.

The first item of C2 * C 2

0
is c0 xð Þc00 xð Þþ

q�1
2
m0c

0
0 xð Þ þ q�1

2
m00c0 xð Þ þ q�1ð Þ2

4
m0m

0
0.

During the decryption process, we need to change C1 -

* C 1

0
into a polynomial, multiply it with s2 and then

transform the result into a vector Smult. The first item of

Smult is

s2 xð Þc1 xð Þc01 xð Þ ¼ â� r̂ xð Þs xð Þ � â� r̂0 xð Þs xð Þ
ð4� 1Þ

Noticing that

c0 xð Þc00 xð Þ ¼ â� r̂ð Þ xð Þs xð Þ þ ê� r̂ð Þ xð Þ½ �

 â� r̂0ð Þ xð Þs xð Þ þ ê� r̂0ð Þ xð Þ½ � ð4� 2Þ

Subtract (4-2) by (4-1), we can get

ê� r̂ð Þ xð Þ ê� r̂0ð Þ xð Þ þ â� r̂ð Þ xð Þs xð Þ ê� r̂0ð Þ xð Þ
þ â� r̂0ð Þ xð Þs xð Þ ê� r̂ð Þ xð Þ ¼ D

The last decryption step in scheme 2 is to compute C2-S,

and after homomorphic multiplication, it needs to compute

C2 * C 2

0
-Smult. Then the first item is
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Dþ q� 1

2
m0c

0
0 xð Þ þ q� 1

2
m00c0 xð Þ þ q� 1ð Þ2

4
m0m

0
0

where c0 xð Þ ¼ â� r̂ð Þ xð Þs xð Þ þ ê� r̂ð Þ xð Þ, c00 xð Þ ¼
â� r̂0ð Þ xð Þs xð Þ þ ê� r̂0ð Þ xð Þ. Noticing that besides the

first item, all of the other items are multiples of x, and
recalling that x is not a divisor of (q-1)2/4, so we can

divide the first item by x, and get the residue:

ê� r̂ð Þ 0ð Þ ê� r̂0ð Þ 0ð Þ þ â� r̂ð Þ 0ð Þs 0ð Þ ê� r̂0ð Þ 0ð Þ

þ â� r̂0ð Þ 0ð Þs 0ð Þ ê� r̂ð Þ 0ð Þ þ q� 1

2
m0 â� r̂ð Þ 0ð Þs 0ð Þ½

þ ê� r̂ð Þ 0ð Þ� þ q� 1

2
m00 â� r̂0ð Þ 0ð Þs 0ð Þ þ ê� r̂0ð Þ 0ð Þ½ �

þ q� 1ð Þ2

4
m0m

0
0

Also noticing that s(0) is not a divisor of (q-1)/2, dividing

the above formula by s(0) and get the residue, the first item

becomes

ê� r̂ð Þ 0ð Þ ê� r̂0ð Þ 0ð Þ þ q� 1

2
m0 ê� r̂ð Þ 0ð Þ

þ q� 1

2
m00 ê� r̂0ð Þ 0ð Þ þ q� 1ð Þ2

4
m0m

0
0

¼ D

where ê� r̂ð Þ 0ð Þand ê� r̂0ð Þ 0ð Þare constant items of

ê� r̂and ê� r̂0respectively.
According to the proof of theorem 4.1, C2 * C 2

0
can be

correctly decrypted and thus obtain the multiplication of

two plaintexts.

4.4 Efficiency

The advantage of scheme 2 lies in a shorter key length and

smaller computation cost, we give a detailed analysis below.

Key length: The length of public key is knlog2q bits. The

private key is a polynomial in R with constant item 1, and

the length of private key is nlog2q bits.

Computation cost:

1. During encryption, the computing cost of polynomial

convolution can be reduced through a Fast Fourier

Transformation. To encrypt n bits, the total computa-

tion cost is ~O n log nð Þ.
2. During decryption, it needs to compute the inverse of

canonical mapping, then compute a polynomial mul-

tiplication and one canonical mapping, finally a vector

subtraction. The total computation cost is ~O n log nð Þ.
3. Homomorphic addition: The addition of two cipher-

texts is simply vector addition, the computation cost is
~O nð Þ. After an addition, the length of ciphertext is not

increased, and accordingly the computation cost of

decryption remains the same.

4. Homomorphic multiplication: Multiplication of two

ciphertexts only needs to directly compute vector

multiplication on Z
n
qcoordinate-wise, the computing

cost is ~O n log nð Þ. After multiplication, the length of

ciphertext increase to 4nlog2q bits, namely doubled. In

decryption phase, for each ciphertext element, it needs

to solve a linear equation set, then compute one

polynomial multiplication and one subtraction, the

total computation cost of decryption is ~O n2ð Þ.

To sum up, we confirm that comparing with scheme 1,

scheme 2 has an obvious advantage in efficiency. The key

length and computation cost is controlled in a rational

bound. We believe that scheme 2 is a practical somewhat

homomorphic encryption scheme.

5 Private information retrieval protocol basing

on scheme 2

5.1 A PBR protocol

The most representative application of homomorphic

encryption is to construct private information retrieval (PIR)

protocols (Cachin et al. 1999). Using homomorphic encryp-

tion, communication complexity of PIR protocol can be

reduced to poly(log n) bits, this is a great improvement. Ku-

shilevitz and Ostrovsky (1997) first introduced homomorphic

encryption into PIR protocols, their PIR protocol has sub-

linear time-complexity and exponential communication cost.

In 2009, Gentry discussed (2009) how to implement PIR

protocol using homomorphic encryption. In 2011, Brakerski

and Vaikuntanathan (2011b) presented a generic framework

through combining a FHE with a symmetric key encryption

scheme. Most of the available PIR protocols refer to single bit

retrieval, while in fact, a record in a database is often longer

than one bit, thus arise a natural expansion of PIR, namely

PBR (Private Block Retrieval) protocols.

We introduce a PBR protocol basing on scheme2.

Considering a database that each record of which is more

than one bit, we use multi-bit encryption scheme to encrypt

index information, thus can reduce the number of cipher-

text, and also reduce communication cost.

Suppose there are n records in a database, each has a length

of d bits. The initial position of each record is represented by

indexes, which has a length of log n bits. Let

SYM = (SYM.KeyGen, SYM.Enc, SYM.Dec) be a secure

symmetric key encryption scheme, with plaintext space

{0,1}logn, without lost of generality, assuming that the

ciphertext space also be {0,1}logn. Let SWHE ¼ SWHE:ð
KeyGen; SWHE:Enc; SWHE:Dec; SWHE:EvalÞbe a some-

what homomorphic encryption scheme on plaintext space

{0,1}k, where k = poly(log n).
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Our PBR protocol is comprised of four algorithms:

PBR ¼ ðSetup;Query;Response;DecodeÞ

The algorithms are defined as the following:

• Setup(1k): on inputting the security parameter k,
generate the symmetric key symsk / SYM.Keygen(1k)

and keys of the SWHE scheme (hpk, hevk, hsk) /
SWHE.Keygen(1k), then encrypt symsk with the public

key, namely Csymsk / SWHE.Enchpk(symsk).

The setup stage output the public parameters Pa-

rams: = (hpk,hevk,Csymsk), and private parameters Set-

upstate: = (hsk, symsk).

• Query(1k, setupstate, i): Suppose the ith record is to be

required, i[{1,…,n}, the user encrypts i by symsk, and

generate the query string query, namely query /
SYM.Encsymsk(i).

• Response(1k,DB,params,query): Upon receiving the

query string query, database compute the query func-

tion h(Csymsk), and let resp / SWHE.Evalhevk(h(Csym-

sk)), thus can get the a ciphertext of DB[i]. Where the

query function h(x) is defined as

h xð Þ ¼def DB SYM:Dec x; queryð Þ½ �

• Decode(1k,setupstate, qstate, resp): the receiver decrypt

resp, and obtain b / SWHE.Dechsk(resp)

5.2 Analysis

The above protocol can be implemented using a LWE-

based symmetric encryption scheme combining with our

multi-bit SWHE scheme. In this implementation, the index

has a length of log n bits (here n present the number of

records in a database), so the size of query information

query is log n bits. According to scheme 2, the response

information to a query has 2d logq bits. So in the above

PBR protocol, to retrieve d bits, the protocol has a com-

munication complexity of 2dlogq ? logn, communication

cost of each bit is 2 log q ? ( log n)/d, which is a poly-

nomial of the length of q and n. Such a communication

complexity is fairly reasonable.

On the other hand, let’s consider the computational cost

of this protocol. Also according to the SWHE scheme,

suppose the decryption algorithm has one multiplication,

then to generate response information, the server has a

computation cost of ~O n log nð Þ, while in user end, com-

putation cost of decryption is ~O n2ð Þ.

6 Conclusion

In this paper we provide a somewhat homomorphic multi-

bit encryption scheme that is basing on RLWE assumption.

We use canonical mapping in the process of encryption and

homomorphic evaluations. Due to this technique and the

comparatively compact RLWE assumption, the new

scheme is time-efficient and the number of ciphertext

elements will not increase after homomorphic evaluations.

Using this scheme, an efficient PIR protocol can be

constructed.

Homomorphic encryption scheme is a new hot area in

cryptography. There has been abundant works in recent

years focusing on scheme construction and application, and

new methods and new ideas have appeared continuously.

However there still leaves a lot of problems to solve, both

in theoretical and practical.

Aiming on performance improvement, we use a new

technique to construct scheme, and our scheme is practical

due to its computation cost and key length, while because

homomorphic multiplication can cause an increase in

ciphertext length, the scheme is somewhat but not fully

homomorphic. Further studies on controlling ciphertext

length and ultimately constructing fully homomorphic

encryption schemes will be our target in the future.

Acknowledgments This work was financially supported by the

National Natural Science Foundation of China (Grant No. 61272492,

61103230, 61103231).

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Bogdanov A, Lee C (2011) Homomorphic encryption from codes

(2011). Arxiv preprint arXiv:1111.4301. 1, 9, 14

Boneh D, Goh EJ, Nissim K (2005) Evaluating 2-DNF formulas on

ciphertexts. TCC 2005, LNCS 3378, pp 325–341

Brakerski Z, Vaikuntanathany V (2011a) Efficient fully homomorphic

encryption from (Standard) LWE. In: Electronic Colloquium on

Computational Complexity ECCC, vol. 18, pp 109–138

Brakerski Z, Vaikuntanathan V (2011b) Fully homomorphic

encryption from ring-LWE and security for key dependent

messages. Advances in Cryptology-CRYPTO2011, pp 505–524

(1, 9, 13)

Brakerski Z, Gentry C, Vaikuntanathan V (2012) Fully homomorphic

encryption without bootstrapping. ITCS, See also http://eprint.

iacr.org/2011/277

Cachin C, Micali S, Stadler M (1999) Computationally private

information retrieval with polylogarithmic communication. EU-

ROCRYPT 1999:402–444

Chen X, Li J, Ma J, Tang Q, Lou W (2012a) New algorithms for

secure outsourcing of modular exponentiations. ESORICS 2012,

LNCS 7459, Springer, pp 541–556

Chen X, Li J, Susilo W (2012b) Efficient fair conditional payments

for outsourcing computations. IEEE Trans Inf Forensics Secur

7(6):1687–1694

Dijk M, Gentry C, Halevi S, Vaikuntanathan V (2010) Fully

homomorphic encryption over the integers. Advances in Cryp-

tology-EUROCRYPT, pp 24–43

554 W. Zhang et al.

123

http://eprint.iacr.org/2011/277
http://eprint.iacr.org/2011/277


Gentry C (2009) Fully homomorphic encryption using ideal lattices.

In: Proceedings of STOC, pp 169–178

Gentry C (2009) A fully homomorphic encryption scheme. PhD

thesis, Stanford University

Gentry C, Halevi S, Vaikuntanathan V (2010) A simple BGN-type

cryptosystem from LEW. In Proceedings of EUROCRYPT’10,

LNCS vol 6110. Springer, Heidelberg, pp 506–522

Kushilevitz E, Ostrovsky R (1997) Replicationis not needed: single

data base, computationally-private information retrieval. In:

FOCS, pp 364–373

Lyubashevsky V, Peikert C, Regev O (2010) On ideal lattices and

learning with errors over rings. Eurocryt, 29th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques. pp 1–23

Regev O (2009) On lattices, learning with errors, random linear

codes, and cryptography. J ACM 56(6):34, Preliminary version

in STOC’05

Rückert M, Schneider M (2010) Estimating the security of lattice-

based cryptosystems. http://eprint.icur.org/2010/137.pdf

Smart NP, Vercauteren F (2010) Fully homomorphic encryption with

relatively small key and ciphertext sizes. PKC 2010, LNCS

6056, pp 420–443

Stehle D, Steinfeld R (2010) Faster fully homomorphic encryption.

ASIACRYPT LNCS 6477, pp 377–394

How to build a faster private information retrieval protocol? 555

123

http://eprint.icur.org/2010/137.pdf

	How to build a faster private information retrieval protocol?
	Abstract
	Introduction
	Related works
	Preliminaries
	Homomorphic encryption schemes
	RLWE assumption
	Canonical embedding in polynomial rings

	Multi-bit homomorphic encryption schemes based on RLWE assumption
	The basic scheme
	A new scheme using canonical mapping
	Homomorphic evaluations
	Efficiency

	Private information retrieval protocol basing on scheme 2
	A PBR protocol
	Analysis

	Conclusion
	Acknowledgments
	References




