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Abstract Cognitive algorithms, integrated in intelligent

systems, represent an important innovation in designing

interactive smart environments. More in details, Cognitive

Systems have important applications in anomaly detection

and management in advanced video surveillance. These

algorithms mainly address the problem of modelling

interactions and behaviours among the main entities in a

scene. A bio-inspired structure is here proposed, which is

able to encode and synthesize signals, not only for the

description of single entities behaviours, but also for

modelling cause–effect relationships between user actions

and changes in environment configurations. Such models

are stored within a memory (Autobiographical Memory)

during a learning phase. Here the system operates an

effective knowledge transfer from a human operator

towards an automatic systems called Cognitive Surveil-

lance Node (CSN), which is part of a complex cognitive

JDL-based and bio-inspired architecture. After such a

knowledge-transfer phase, learned representations can be

used, at different levels, either to support human decisions,

by detecting anomalous interaction models and thus com-

pensating for human shortcomings, or, in an automatic

decision scenario, to identify anomalous patterns and

choose the best strategy to preserve stability of the entire

system. Results are presented in a video surveillance sce-

nario, where the CSN can observe two interacting entities

consisting in a simulated crowd and a human operator.

These can interact within a visual 3D simulator, where

crowd behaviour is modelled by means of Social Forces.

The way anomalies are detected and consequently handled

is demonstrated, on synthetic and also on real video

sequences, in both the user-support and automatic modes.

Keywords Cognitive systems � Bio-inspired learning �
Anomalous interactions � Crowd monitoring � Self

organizing map

1 Introduction

Several works have been devoted in the last decade to link

traditional computer vision tasks to high-level context

aware functionalities such as scene understanding, behav-

iour analysis, interaction classification or recognition of

possible threats or dangerous situations (Remagnino et al.

2007; Trivedi et al. 2000, 2007; Lipton et al. 2003).

Among the several disciplines which are involved in the

design of next generation security and safety systems,

cognitive sciences represent one of the most promising in

terms of capability of provoking improvements with

respect to state of the art. As a matter of fact, several recent

studies have proposed the application of smart functional-

ities to camera and sensor networks in order to move from

object recognition paradigm to event/situation recognition

(Espina and Velastin 2005). Such a trend change has sub-

stantial implications for what concerns the processing of

signals, as it will be shown throughout this work. The

application of bio-inspired models to safety and security

tasks represents a relevant added value. In fact, such

models enhance the capability not only of detecting the

presence of an intruder in a forbidden area or recognizing

the trajectory of an object in an urban scenario (e.g. a
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baggage in a station or a car on the road) but also of

interpreting the behaviour of the entity, or properly

selecting events of interest with respect to normal situa-

tions, or even to automatically take decisions and perform

actions on the environment.

The application of neurobiological sciences to the field

of cognitive radar and cognitive radios lately led to the rise

of a new broad discipline which was formalized in some

works by Haykin (2011, 2012, 2012a) under the name of

Cognitive Dynamic Systems, These works eventually

gather and synthesize some of the main intuition of the last

decades in this field. A working definition of Cognitive

Dynamic Systems is given:

Cognitive dynamic systems build up rules of behaviour

over time through learning from continuous experiential

interactions with the environment, and thereby deal with

environmental uncertainties.

The underlying hidden assumption behind the formal-

ization of this discipline is that animal and human brains

are the best cognitive systems on the market and are thus to

be emulated.

In this work, the features of a cognitive architecture,

motivated by the work of Damasio (2000) and based on the

Joint Directors of Laboratories model (JDL) (Hall and

Llinas 1997), are described. Damasio’s theories describe

cognitive entities as complex systems capable of learning

based on the experience of interactions between them-

selves and the external world. The application of the pro-

posed framework to crowd analysis is presented. A novel

fashion for signals to be organized and processed is also

proposed. Such a fashion is implicitly accounted for in

previous works (Dore et al. 2010, 2011; Chiappino et al.

2012, 2013d) and motivated by the fact that it traces

intelligent biological patterns.

In a video surveillance scenario, the proposed Cognitive

Node (CN) can be applied to the crowd analysis domain in

order to identify patterns that deviate from expected

behaviour: an abnormal behaviour is defined as any kind of

deviation from central tendencies defined as normality

condition. The CN operating mode is made up of learning

and detection phases. During the learning period the CN

stores the observed interactions between human operator

actions and the resulting crowd state changes. It is

important to note that the human actions acquired are

devoted to avoid abnormal situation, e.g. overcrowding or

abnormal flow directions. The automatic system is able to

effectively learn representations of normal user-environ-

ment relationships for standard crowd behaviour mainte-

nance through the aforementioned data structure and

architecture. After such a knowledge acquisition phase,

learned representations can be used at two different levels:

first, to support human decisions by detecting anomalous

crowd-operator interactions and compensating for human

shortcomings; secondly, in an automatic decision scenario,

to autonomously identify anomalous crowd-environment

configurations and choose the best strategy to preserve

stability of the entire system (i.e. a proper security level in

the monitored area) by putting in action effective

countermeasures.

Many video analysis algorithms have been developed in

order to identify crowd behaviours. For instance, in

(Mehran et al. 2009) a method for crowd behaviour ana-

lysis based on social forces and optical flow is proposed.

More recently, in Solmaz et al. (2012) the authors present

an innovative method based on people flow estimation. A

new abstract viscous fluid field is proposed in Su et al.

(2012) for detecting crowd events. The main contribution

of this paper is to propose and develop an innovative

cognitive video surveillance system, which is able to detect

anomalies by learning behavioural models from observa-

tions of crowd evolution and consequent human operator

(re)actions. The system acquires the crowding states, by

video analysis techniques, and it receives from the user his

countermeasures, in order to maintain stability and to avoid

abnormal situations. This knowledge (i.e. models of normal

interactions) is transferred from a human operator to the

system, providing it with crowding dynamic models aug-

mented by user actions. A simulated crowd monitoring

environment have been used for training and testing.

The issue of modelling and simulating crowds will not be

discussed in details for the sake of brevity, although it

represents a central matter in applying the theory which will

be presented. A comprehensive traction of such intercon-

nected fields is given in (Chiappino et al. 2013a). We here

point out just a few concepts. First, the use of a simulator is

necessary in order to gather enough data for training and

testing, as video sequences of the desired kind are not

available for training. A simple CN application on real

video sequences is presented in order to show the capabil-

ities of the system, which is however trained with simulated

data. Secondly, it is unrealistic to track every single person

in a high density crowded scene, especially if a single

camera is available: the visual information gathered by the

sensor is simply not enough to accomplish such a task. This

remark has led to consider global approaches to crowd

monitoring such as in Moore et al. (2011, 2012). At last, the

model employed in simulation combines technical and

social aspects following the current trend in literature. As

shown for instance in (Mehran et al. 2009; Pellegrini et al.

2009; Luber et al. 2010; Mazzon et al. 2013), a social force

model describing interactions among the individual mem-

bers of a group of people has been proposed to detect

abnormal events in crowd videos. Here people are treated as

interacting particles subject to internal and external physical

forces which determine their motion and global behaviour.

Such a point of view is also widely employed in this work.
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The remaining of this work is organised as follows.

Sections 2 and 3 present the proposed bio-inspired models

for cognition and knowledge representation respectively.

The applications of such models to crowd monitoring are

presented in Sect. 4. Section 5 describes the proposed

approach for anomaly detections, while results are given in

Sect. 6. Conclusions are drawn in Sect. 7.

2 A bio-inspired cognitive model for cognitive

surveillance systems

The proposed approach to Intelligent Video Surveillance

(IVS) has been implemented according to a bio-inspired

model of human reasoning and consciousness grounded on

the work of the neuro-physiologist (Damasio 2000).

As already mentioned, Damasio’s theories describe

cognitive entities as complex systems capable of incre-

mental learning based on the experience of relationships

between themselves and the external world. Two specific

brain devices can be defined to formalize the aforemen-

tioned concept: Damasio names them proto-self and core-

self. Such devices are specifically devoted to monitor and

manage the internal status of an entity (proto-self) and the

external world (core-self). Thus, crucial aspects in model-

ling a cognitive entity following Damasio’s model are first

of all the capability of accessing entities’ internal status

and secondly the analysis of the surrounding environment.

Relevant information comes from the relationships

between the two. This approach can be mapped into a

sensing framework by dividing the sensors into endo-sen-

sors (or proto-sensors) and eso-sensors (or core-sensors) as

they monitor, respectively, the internal or external state of

the interacting entities.

Applying these concepts to the video analysis domain,

interacting entities can be represented either by a guard

monitoring a smart environment or by a subject driving an

intelligent vehicle as well as a guard and an intruder

interacting in some monitored area, while considering a

crowd management scenario, eso-sensors can monitor the

crowd, while endo-sensors can provide information about

system parameters, as it will be clearer in the following.

Referring to the sample proposed framework, four main

blocks have been identified as representative of a cogni-

tive-based sensing architecture as the control centre, the

CN, the (intelligent) sensing nodes and the mobile terminal

and/or actuators. The tasks which can be accomplished by

each block are shown in Fig. 1, establishing a preliminary

bridge between the concepts introduced by Damasio and

the effective implementation of the system.

The core of the proposed architecture is the already

mentioned CN, which can be described as a module that is

able to receive data from sensors of all kinds, to process

them, defining different configurations as interactions

between proto and core states. Such a bio-inspired

knowledge representation permits to asses potentially

dangerous or anomalous events and situations and possibly

to interact with the environment itself.

2.1 Cognitive cycle for single and multiple entities

representation

Within the proposed scheme, the representation of each

entity has to be structured in a multi-level hierarchical way.

As a whole, the closed processing loop realized by the CN

in case of a given interaction between an observed object

and the system can be represented by means of the so-

called Cognitive cycle (CC—see Fig. 1) which is based on

four fundamental logical blocks:

– Sensing: the system has to continuously acquire

knowledge about interacting objects and their own

internal status.

– Analysis: the collected raw knowledge is processed in

order to obtain a precise and concise representation of

occurring events and causal interactions.

– Decision: the precise information provided by the

analysis phase is processed and a decision strategy is

selected according to the goal of the system.

– Action: the system fulfils the configuration computed

during the decision phase as a direct action over the

environment or as a message provided to some

actuator.

The proposed model for cognition has many analogies

with the one adopted by Haykin in its formalization of

Cognitive Dynamic Systems (Haykin 2012b) and referred to

as the Fuster’s Paradigm: Joaquin Fuster proposes in fact

the concept of cognit and an abstract model for cognition,

Fig. 1 Cognitive cycle (single object representation)
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based on five fundamental building blocks, namely per-

ception, memory, attention, intelligence and language

(Fuster 2005). Perception represents the information gain

block, and corresponds to the sensing block of the CC;

similarly, intelligence matches the analysis logical block

and also, according to the Fuster’s paradigm, includes the

decision-making stage. Memory is associated, within the

CC, to a learning phase which is continuous and basically

involves all the stages of the cognitive cycle: this will be

explained more in details in Sects. 3.3 and 4. The attention

block is meant to optimize the information flow within the

Dynamic Cognitive System: this aspect goes beyond the

purposes of this work. Eventually, the language block is

intended to provide efficient communication on a person to

person basis but it is not considered here (and not even by

Haykin in his works).

The CC, by experiencing interactions between the CN

and the external object, provides different configurations

also called cause–effect relationships. Starting from these

relations it is possible to define object representations

based on theirs dispositional capabilities, i.e. the objects

can be disposed (or not) to change in some way. More

formally, an observed object x is disposed to D in different

C-cases (i.e. situations), where D defines the dispositional

propriety of x by a set of C configurations (i.e. cause–effect

relationships), called dispositional statements (Bird 2012).

A set of dispositional proprieties gives a dispositional

embodied description of an object, and it includes reactions

it generates in the cognitive system, i.e. possible actions

that the system can plan and perform when a situation

involving that object is observed or predicted. According to

this statement, it is possible to refer to the representation

model depicted in Fig. 1 as to an Embodied cognitive cycle

(ECC). The cognitive cycle can be seen as a way of rep-

resenting generic observed objects within the CN by means

of a multi-level representation involving both the bottom-

up analysis chain and the top-down decision chain (see

Fig. 2). With respect to security and safety domains, in

which the ECC is here applied, the above mentioned dis-

positional proprieties are associated to a precise objective:

to maintain stability of the equilibrium between the object

and the environment (i.e. maintenance of the proper level

of security and/or safety). Anomaly is a deviation from the

normality and it can be considered as a violation of a

certain dispositional propriety.

As a consequence, each entity is provided with a

’security/safety oriented ECC (S/S-ECC)’ which is repre-

sentative of the entity itself within the CN. Moreover, the

mapping of the S/S-ECC onto the CN chain shown in

Fig. 2 can be viewed as the result of the interaction

between two entities, each one described as a cognitive

cycle too. In particular, if the external object (eso) and the

internal autonomous system (endo) are represented as a

couple of Interacting Virtual Cognitive Cycles (IVCC), the

IVCCs can be matched with the CN structure (i.e. the

bottom-up and the top-down chains) by associating parts of

the knowledge related with the different ECC phases to the

multilevel structure processing parts of the CN (Fig. 2).

More in detail, the representation model of the ECC (top

left corner of Fig. 3) is centered on the cognitive system that

can be considered by itself as a cognitive entity. Therefore, it

is possible to map the proposed representation as in the top

right corner of Fig. 3, where two IVCCs, the one repre-

senting the entity (or object—IVCCO) and the other repre-

senting the cognitive system (IVCCS), interact in a given

environment. In this model, the sensing and action blocks of

the IVCCS correspond to the sensing and action blocks of the

ECC (see bottom right corner of the figure). However, in the

IVCCS, such blocks assume a parallel virtual representation

of the physical sensing and action observed corresponding

respectively to the Intelligent Sensing Node and the Actu-

ator blocks in the general framework.

Fig. 2 Cognitive Node-based

object representation: Bottom-

up analysis and top-down

decision chain
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The analysis phase of the IVCCS (Analysis - IVCCS)

can be considered as including a virtual representation of

the four stages characterizing the state of the interacting

object. Sensing phase can be mapped in the event detection

sub-block of the An - IVCCS (EDSystem) as well as the

object event detection (EDObject). Similarly, the system

situation assessment sub-block (SASystem) includes a virtual

representation of the object situation assessment (SAObject).

Finally, as shown in the bottom left corner of Fig. 3, the

prediction, decision and action parts of the object can be

considered as knowledge that allows the cognitive system

to predict the future behaviour of the interacting object

itself (the interacting objects are here the system and the

one observed external object). Prediction, decision and

action can be included in the prediction sub-block of the

system (PSystem).

The proposed interpretation of the matching among the

embodied cognitive model, the interactive virtual cycles

representing the entities acting in the environment

(including the system) and the CN, allows considering the

CN as a universal machine for processing ECCs with

respect to a large variety of application domains. In

general, each ECC starts with ISN (intelligent Sensor

Node) data, including an interacting entity (eso-sensor) and

a system reflexive observation (endo-sensor). The observed

data are considered from two different perspectives (the

object’s and the system’s) by creating a description of the

current state of the entities using knowledge learned in

previous experiences. Such process happens at event

detection and situation assessment sub-blocks. Then, a

prediction of future actions taken by the IVCCO, contex-

tualized with the self-prediction of future planned actions

of the system, occur at the prediction sub-block. The use of

the knowledge of the IVCCO ends at this stage. Finally, the

IVCCS is completed by adjusting plans of the system in the

representation of its decision and action phases that are, as

stated above, a parallel virtualization of the ECC. In

addition, it is relevant to briefly point out that a similar

decomposition can be adopted in the case when two

interactive entities are observed. The description of the

interacting subjects can be modelled observing that the two

entities can form a single meta-entity to which is associated

a meta cognitive cycle interacting with the autonomous

system. The meta-entity (ME) can simply be considered as

Fig. 3 Embodied Cognitive Cycle, Interactive Virtual Cognitive Cycles and Cognitive Node matching representation
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a composition of the two cognitive cycles associated to the

initial entity couple. The advantage of the proposed rep-

resentation, involving the description of an ECC by means

of an IVCC couple is that the same mechanism used to

represent the interaction of a ME with the autonomous

system can be also used to represent the interaction

between two observed entities forming an observed meta-

entity, as proposed in (Dore and Regazzoni 2009).

Dynamic Bayesian Networks (DBNs) can be used to rep-

resent cognitive cycles and IVCCs based on a structure

called Autobiographical Memory (AM) (Dore et al. 2010).

DBNs provide a tool for describing embodied objects

within the CN in a way that can allow incremental learning

from experience (Murphy 2002). Section 3 is devoted to

the demonstration of such a claim.

2.2 The cognitive node

The general architecture of the cognitive node is depicted

in Fig. 4. Intelligent sensors are able to acquire raw data

from physical sensors and to generate feature vectors cor-

responding to the entities to be observed by the CN.

Acquired feature vectors must be fused spatially and tem-

porally in the first stages of the node, if they are coming

from different intelligent sensors.

As briefly introduced in the previous section, the CN is

internally subdivided into two main parts, namely the

analysis and the decision blocks. These two stages are

linked together by the cognitive refinement block, whose

role will be shortly explained. Analysis blocks are

responsible for organizing sensors information and finding

interesting or notable configurations of the observed enti-

ties at different levels. Those levels can communicate

directly with the human operator through network inter-

faces in the upper part of Fig. 4. This is basically what can

be done by a standard signal processing system being able

to alert a supervisor whenever a specific anomalous inter-

action behaviour is detected. A prediction module is able to

use the stored experience of the node through the internal

AM for estimating a possible evolution of the observed

environment. All the processed data and predictions gen-

erated by the analysis steps are used as input of the cog-

nitive refinement block. This module can be seen as a

surrogate of the human operator: during the configuration

of the system it is able to learn how to distinguish between

different levels of potentially dangerous situations. This

process can be done by manually labelling different zones

of the observed data or by implementing a specific algo-

rithm for the particular cognitive application. In the on-line

phase, the CN works in two different ways: for operator

support and in automatic mode. In both cases the cognitive

refinement module is able to detect if a predicted condition

starts to drift away from the standard observed interaction,

thus getting the overall system closer to a warning situa-

tion. Specifically, in the human support case, the switch,

depicted in Fig. 4, is opened. The CN, by means of the

cognitive refinement block, can detect anomalies as pos-

sible discrepancies from standard operator-crowd interac-

tions. During the automatic mode, the switch is closed and

the information contained into the cognitive refinement is

employed to identify specific crowd-environment situa-

tions. The communication link towards the operator per-

mits a direct warning about anomalous situations relative to

crowd normal behaviours. Decision modules of the CN are

responsible for selecting the best actions to be automati-

cally performed by the system for avoiding a dangerous

situation. Those actions can be performed on the fully

cooperative parts of the observed system; all the decisions

taken by the CN are made with the precise intent of

maintaining the environment in a controllable, alarm-free

state. If all the actions of the node are unable to keep the

system in a standard state and the measured warning level

Fig. 4 Cognitive node

architecture
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continues to increase, the node itself can decide to stop the

cognitive cycle and to give command of the controllable

parts of the system back to the human operator, who is

always given the possibility to decide on his own and

completely bypass the automatic system or to be

acknowledged of each single action that the CN is pro-

cessing (Interfaces, Fig. 4).

As a final remark, we would like to point out that, as

well as the proposed perception-action cycle for crowd

monitoring, robot control mechanisms also are often

motivated by biology. However, there are some conceptual

differences between the two approaches. Robot control

strategies, such as Reinforcement Learning, allow for

optimizing actions by evaluating their rewards. The pre-

sented mechanism, based on Damasio’s concept of Auto-

biographical Self, during an off-line phase, acquires and

mathematically models interaction information by obser-

vations of two entities operator and crowd (i.e. proto and

core). During the on-line phase, the cognitive system uses

the previously stored knowledge for actively interacting

with the external world. In the case of operator-crowd, a

prediction mechanism drives the system actions, selecting

the possible countermeasure according to learned rules

during the training. The proposed algorithm is a general

framework for acquiring and building up the rule sets in

different context.

3 Information extraction and probabilistic model

for knowledge representation

Interactions between two entities can be described in terms

of mathematical relationships. Such a mathematical

description must obviously rest on a feature extraction

phase, which is addressed to get relevant information about

the entities.

This section is devoted to the analysis of the main fea-

tures that allow to design a probabilistic model able to

learn interactions. After information is extracted, DBNs

can be used to represent cognitive cycles and IVCCs (Dore

et al. 2010), as already mentioned in Sect. 2.1, based on the

AM algorithm, thus providing a tool for describing

embodied objects within the CN in a way that can allow

incremental learning from experience. It was already

pointed out that also interactions between the operator and

the system can be represented as an IVCC. In that case, the

operator-system interaction can be differently used as an

internal reference for the CN as the operator can be seen as

a teaching entity addressing most effective actions towards

the goal of maintaining security/safety levels during the

learning phase. This learning phase represents an effective

knowledge transfer from human operator towards an

automatic system.

A proposed framework for information extraction is

composed of two main blocks: data fusion (DF) and event

detection (ED). DF involves source separation and feature

extraction: these two phases permit to recognize the same

entities monitored by different heterogeneous sensors. The

ED block extracts information related to changing in the

signals acquired by sensors. Events will be eventually

defined, in order to develop a specific probabilistic models

able to describe different kinds of the relationships per-

mitting to detect anomalous interactions.

3.1 Data fusion

Many different approaches can be used for designing

architectures embedded on system, which are able to col-

lect heterogeneous environmental information. According

to the functionalities provided by the systems, data fusion

mechanisms should be considered as logical tasks which

can be subdivided in a multi-modal architecture. An

interesting method of the data fusion model is the JDL

model (Hall and Llinas 1997).

The JDL model includes five levels of processing, that

represent the description of increasing level of abstraction

(Dore et al. 2009). In our description, information on two

distinct entities are fused and aligned at different levels.

The data fusion module is able to receive data from

intelligent sensors on the field, and to fuse them from a

temporal and spatial point of view. If one considers a set of

S intelligent sensors, each k 2 S sends to the CN a vector of

features xðk; tkÞ ¼ x1; x2; . . .; xNk
f g where k ¼ 1; 2; . . .; Sf g

at time instant tk. Intelligent sensors send feature vectors

asynchronously to the CN, that must be able to register

them temporally and spatially before sending data to upper

level processing modules.

From a temporal point of view, the data fusion module

collects and stores into an internal buffer all newest mea-

surements xk;t�
k

from intelligent sensors k ¼ 1; 2; . . .; Sf g:
The time instant tk

* represents the last time when the feature

vectors are acquired from each sensor that are received.

Data acquisition time can vary from sensor to sensor.

As soon as a new feature vector is acquired from sensor

k, the data fusion module can compute an extended feature

vector by combining all measurements from all considered

intelligent sensors uðt̂Þ ¼ f ðx1;t�
1
; x2;t�

2
; . . .; xS;t�

S
Þ; where

t̂� t�1; t
�
2; . . .; t�S

� �
:

Thus the generation rate of the data fusion module can

be estimated by considering the minimum time interval

between two sequential measurements of the higher fre-

quency sensor. If Dtn
k ¼ ðtn

k � tn�1
k Þ is the time interval

between arrival times of feature vectors xðk; tnÞ and

xðk; tn�1Þ for sensor k, the actual data rate of the fusion

block can be estimated by computing minkðDtn
kÞ:
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The analytic expression of the fusion function u t̂ð Þ;
depends on the physical relationship between measured

quantities and cannot be studied with a generic approach. In

the following scenarios, feature vectors are mainly gener-

ated by (real, but possibly simulated) video analytics

algorithms that are able to process images acquired from

video-surveillance cameras and extract scene descriptors

(i.e., trajectories of moving objects, crowd densities within

a certain environment, human activity related features, etc.).

In any case one can suppose that the fused feature

vectors produced as output of this module have the fol-

lowing form:

xðtÞ ¼ xC; xPf g ¼ xC1
; xC2

; . . .; xCn
; xP1

; xP2
; . . .; xPm

f g;
ð1Þ

where n and m represent feature numbers of the core and

proto state vectors, xC and xP respectively (i.e. the

dimensionality of the vectors). Equation 1 expresses a

general form for the global feature vector that is the result

of the data fusion module. Vector xC identifies features

related to so-called core objects, i.e., entities that are

detected within the considered environment but that are not

part of the internal state of the system itself. Vector xP

identifies proto object features that are specific for entities

that can be completely controlled by the CN.

3.2 Event detection

The data fusion phase permits to obtain a high dimen-

sionality core and proto multi-dimensional space, where

each point represents a state vector of features at a specific

time instant: xP(t) and xC(t). Using this representation it is

possible to interpret the changes of state vectors as

movements, trajectories, in a multi-dimensional space.

Furthermore, as the dynamic evolution of one entity

depends on the other entity, relationships between such

trajectories describe interactions.

A self organizing map (Kohonen 1990) (SOM) unsu-

pervised classifier is employed in this work at two different

logic levels: first, to detect events in term of relevant state

changing, secondly to represent complex relationships

between the entities in a low-dimensional space. The latter

logic level will be discussed in detail through the next

sections. The SOM operates a dimensionality reduction, by

mapping the multidimensional proto or core state vectors

(xP(t) and xC(t)) onto a lower M-dimensional space, where

M is the dimension of the Kohonen’s neuron layer (from

here on we consider M = 2 without loss of generality).

Input vectors are clustered according to their similarities,

after the neural network is trained.

The choice of SOMs to perform feature reduction and

clustering is motivated by their capabilities to reproduce in

a plausible mathematical way the global behaviour of the

winner-takes-all and lateral inhibition mechanism shown

by distributed bio-inspired decision mechanisms. Besides,

a SOM allows for the establishment of a representation of

reality based on analogies: similar (though not necessarily

identical!) input vectors are likely to be mapped by the

Kohonen’s map to the same neuron (in a non-injective

way). Similarity is, in our case, measured by simple

euclidean distance between vectors; however more com-

plicated metrics can be employed to this end.

More in details, neural networks such as SOM, Neural

Gas (NG) (Martinetz and Schulten 1991) and growing

natural gas (GNG) algorithms (Fritzke 1995) are inspired

by Hebbians theory and permit the adaptation of neurons

during the learning process. The Neural Gas represents a

very interesting and powerful tool for vector quantization

and data compression techniques. NG derives from SOM

and it improves the input data topology preservation

through an adaptive method based on neighbourhood

relationships learning between the weight vector (associ-

ated to neuronal unit) and each external stimuli (associated

to input vector). In this paper we have supposed that the

global environment is divided in different rooms, each one

controlled by cameras. A camera-embedded people counter

is able to provide an estimation of number of people. The

considered state vectors xC are multidimensional and we

are interested in reducing it to a 2-D space. However in

other applications, where it is highly desirable to conserve

the topology, we have explored the possibility of auto-

matically determining the set of regions to monitor

according to environmental topology. In this case the input

information can be the people trajectories and an we use

the Instantaneous Topological Map (ITM) for learning

structured input data manifold (Chiappino et al. 2013b).

SOMs present a fixed number of neuronal units, while for

GNG the number of neurons is automatically decided

during the training phase. The study of the dimension of

the reduced space is very important for us, because it is

correlated to definition of the events. Fixing the dimension

of the SOM layer it is possible to maintain limited the total

number of possible events. A common learning problem, in

designing models, is to acquire all possible configurations,

i.e. all possible events. To this end, in this stage of our

study, a fixed number of neurons is better than a self-

adaptable topology. The Growing Hierarchical SOMs (GH-

SOMs) represent another interesting tools (Rauber et al.

2002). They can increase the number of neurons and layers

by means of distance measurements between neuronal

weights and input data. These mechanisms of adapting

layer sizes permit accuracy on original data reconstruc-

tions. On the other hand, we are interested in studying the

optimum number of units for balancing the learning effi-

ciency, the knowledge representation and the prediction

capabilities of the AM. These facts will become clearer in
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Sect. 4.1 A technique for the definition of contextual

knowledge was prosed in (Marchesotti et al. 2005). By

using a single 2-D SOM, an event classifications was

obtained by fusing of the heterogeneous vectors, shown in

Eq. 1. But in this case the relationships between the entities

are ‘‘fused’’ in the neurons. According to Damasios theory,

by means of different SOMs, for separately mapping core

and proto vectors, it is possible to detect relevant transi-

tions between SOM neurons, i.e. the events. Such distinct

core and proto events are basic units of the AM, which

represents a bio-inspired fusing method for modelling the

dependences between two entities (Chiappino et al. 2013c).

The clustering process, applied to internal and external

data, allows one to obtain a mapping of proto and core

vectors xP(t) and xC(t) in 2-D vectors, corresponding to the

positions of the neurons in the SOM-map, that we call

respectively proto Super-states SxP and core Super-states

SxC. Each cluster of Super-states, deriving from the SOM

classifiers, is then associated with a semantic label related

to the contextual situation:

Sxi
P 7! li

P; i ¼ 1; . . .;NP

Sx
j
C 7! l

j
C; j ¼ 1; . . .;NC

ð2Þ

where the notation SxP
i and SxC

j indicates that the Super-

state belongs, respectively, to the i-th proto label and to the

j-th core label; NP and NC are, respectively, the maximum

number of the proto and core Super-states labels. Then, the

result of this process is the building of a 2D map divided in

regions labelled with a meaningful identifier related to the

ongoing situation. It must be noted that changes of state

vectors xP(t) and xC(t) do not necessary imply a change of

Super-state labels Sxi
P 7! liP and Sx

j
C 7! l

j
C: This means that

there are some modifications which are irrelevant from the

point of view of the chosen semantic representation of the

situation. On the other hand, when the Super-state labels

SxP
i and SxC

j change in subsequent time instants, a con-

textual situation modification, i.e. an event occurs. It is then

possible to define proto (�P) and core (�C) events. Actually,

even null events (i.e. null changes in Super states) can be

defined. In fact, these could be relevant while considering

very slowly changing systems and dynamics or whenever

lengthy immobility could become relevant.

A Kohonen’s layer consists of a 2-D matrix of neurons,

identified by an hexagonal location. The network is con-

structed based on competitive learning: all the output

neurons that win the competition are subsequently acti-

vated by input state vectors. Two SOM-nodes are consid-

ered as near if they are consecutively active at two

successive time instants. It is possible to connect all fired

neurons describing a temporal proximity trajectory among

neurons. Not necessarily different input state sequences

describe different trajectories in the Super-state space. By

sequentially analysing the dynamic evolution of Super-

states, proto and core events can be detected and visualized

by trajectories into 2-D SOM-map.

The output of the SOM algorithm is in fact a list of

clusters (or zones) within the Kohonen’s layer, that

describe a trajectory. Two trajectories for two different

core state sequences are presented in Fig. 5. The ED

module also considers dynamical aspects of the evolution

of clustered features: transition probabilities between dif-

ferent Super-states (i.e. zones) are computed, in such a way

that the outcome of the training process can be ideally

compared to a DBN. Instead of considering sequences of

Super-states to describe the evolution of each entity, it is

possible to consider proto and core event series, which can

be modelled by two Event based DBNs (E-DBNs) (Patnaik

et al. 2009) as explained in the next section.

3.3 Autobiographical memory

According to Damasio’s theory, the sequences of proto

(internal) and core (external) events can be organized into

two kinds of triplets in order to account for interactions

between entities: f��P ; �C; �
þ
P g (passive interaction) and

f��C ; �P; �
þ
Cg; (active interaction), to represent the causal

relationships, in terms of initial situation (first event), cause

(second event) and consequent effect on the examined

entity (third event).1

The resulting information becomes an approximation of

what Damasio himself calls the Autobiographical Memory

where these triplets, which encode possible interactions

between entities, are memorized. The basic idea behind the

algorithms is to estimate the frequency of occurrence of the

effects caused by a certain external event in order to derive

two probability distributions:

pð�þP j�C; �
�
P Þ; ð3Þ

pð�þC j�P; �
�
C Þ; ð4Þ

representing the causality of observed events in the inter-

action. The sequence of events is represented by a statis-

tical graphical model in order to introduce a mathematical

description of the proposed interaction model. This choice

is motivated by the fact that the interaction pattern is

composed by a temporal sequence of interdependent events

and then it can be seen as a stochastic process. Therefore,

an approach for modelling sequences of events that relies

on a probabilistic model results particularly appropriate.

1 An active interaction (represented by a triplet) is defined when an

internal modification (proto event) is the cause of external environ-

mental change, i.e. the third event in the triplet is a core event. Vice

versa the passive triplet is defined when an external environmental

change (core event) provokes an internal modification, i.e. the third

event in the triplet is a proto event.

Bio-inspired relevant interaction modelling 179

123



The interaction patterns are modelled by a Coupled

Event based DBN (CE-DBN) in order to have a repre-

sentation able to statistically encode the relevant data

variability. The proposed CE-DBN graph, shown in Fig. 6,

aims at describing interactions taking into account the

neuro-physiologically motivated model of the Autobio-

graphical Model. The conditional probability densities

(CPD) pð�P
t j�P

t�1Þ and pð�C
t j�C

t�1Þ encode the motion pattern

of the objects in the environment regardless the presence of

other objects. Note that each triplet can be seen as one

dispositional statement (configuration) with an associated

conditional probability, Eqs. 3 and 4. The AM provides a

dispositional description, a set of dispositional proprieties,

for proto and core entities.

The dispositional proprieties describe a precise objec-

tive: to maintain stability of the equilibrium between the

object and the environment (i.e. maintenance of the proper

level of security and/or safety). Anomaly can be seen as a

deviation from the normality and it can be considered as a

violation of a certain dispositional propriety. The interac-

tions between the two objects are described by the CPDs:

p �P
t j�C

t�DtC

� �
; ð5Þ

p �C
t j�P

t�DtP

� �
: ð6Þ

In particular, Eq. 5 describes the probability that the events

�C; occurred at time t � DtC and performed by the object

associated to the core context, has caused the event �P in

the proto context. Reversed interpretation in terms of

causal events should be given to p �C
t j�P

t�DtP

� �
:

Considering the definition of the core consciousness, the

causal relationships between the two entities are encoded in

two conditional probability densities (CPDs):

p �P
t j�C

t�DtC ; �
P
t�DtP

� �
ð7Þ

p �C
t j�P

t�DtP ; �C
t�DtC

� �
ð8Þ

As a matter of fact, the probability densities in Eqs. 7–8

consider both the interaction (i.e. Eq. 5 or Eq. 6) and the

initial situation (i.e. �P
t�DtP or �C

t�DtC ).

4 Autobiographical memory domain applications:

surveillance and crowd management scenarios

In the previous section a probabilistic model based on CE-

DBN was sketched in order to describe multiple entity

interactions. The knowledge thus represented inside the

proposed CN can be employed in many different domains:

Fig. 5 Examples of temporal

proximity trajectories among

fired neurons in 2-D SOM-map

(5 9 5) for different core state

vector sequences. The

trajectories are non-linear and

discontinuous

Fig. 6 Coupled event based

dynamic bayesian network

model representing interactions

within an AM
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surveillance scenarios and crowd analysis-management are

just two limited examples. Generally, in surveillance sce-

narios the goal of the system is the analysis of interactions

and recognition of specific behaviour between two or more

people (external entities). On the other hand, in the crowd

analysis domain, the focus of the system can be shifted

toward the analysis and classifications interactions that

occur between the crowd and a human operator who is in

charge of maintaining a proper security level within the

monitored area (for this purpose, the crowd can be seen as

a unique macro-entity). The two entities can be represented

as a couple of IVCCs, as proposed in Sect. 2.2, namely an

IVCCO and an IVCCs respectively.

In this section two aspects will be discussed, namely the

probabilistic model learning phase and the detection phase for

surveillance and crowd scenarios. During the (off-line)

learning phase the CN observes both entities, i.e. the human

operator and the crowd, storing their interactions within the

AM. As for the (on-line) detection phase, it will be shown how

different definitions of the probabilistic model are needed.

The system is designed to support a human operator in

crowd management during the on-line phase. This task is

accomplished by recognizing specific operator-crowd

abnormal interactions. Typically, in people flow redirection

problems, an abnormal interaction can be detected when-

ever the user puts in action wrong countermeasures to

avoid the panic or overcrowding situations. In this case the

CN ought to drive the operator to choose correct actions by

either simply signalling the anomaly or by suggesting

actions to be performed based on its learned experience.

4.1 Learning phase: interaction representations

During an off-line phase, the CN is able to learn and store into

the AM a set of triplets (i.e. interactions) for different situa-

tions: f��P ; �C; �
þ
P g (passive triplet) and f��C ; �P; �

þ
Cg (active

triplet). The crowd configurations are captured by core sen-

sors, while the operator actions are mapped into proto sen-

sors. Each triplet represents a point of a 3-D space. In Fig. 7

an example of 3-D space mapping of a passive triplet is

depicted. This representation allows to sketch the set of

triplets stored into an AM. We point out that the ordering of

the events along the E�P ; EC and EþP axes is not relevant as

what is really significant is only the number of occurrences of

a certain triplet. However, each generic triplet of events can

be associated to an influence model, i.e. a specific AM can

model the dynamic evolutions of interactions for a specific

context. It is possible to define a switching variable h as

influence parameter (Pan et al. 2012).

Each triplet is associated to a probability, derived from an

estimate of two conditional probability densities:

pð�þP j�C; �
�
P ; hÞ and pð�þC j�P; �

�
C ; hÞ (cfr. Eqs. 7 and 8), which

are proportional to the number of votes that the particular

triplet received, i.e. the number of occurrences observed

during the AM training phase that represents a specific inter-

action (i.e. an influence model). Figure 8 shows an example of

conditional relationship for a passive triplet: �þP given the two

previous events �C �
�
P and the interaction model h:

A temporal histogram is associated to each AM element

(i.e. to each triplet), in order to store the temporal infor-

mation related to events of the triplets. For example, taking

into consideration a passive triplet f��P ; �C; �
þ
P g; with given

events, the histogram permits to evaluate the probability

that a specific proto event �þP takes place sCPþ seconds after

the core event �C: The histogram bin dimension must be

selected by performing a trade off between the precision of

the temporal prediction that it is required by the application

and the number of training samples available.

4.2 Detection phase: surveillance scenarios

After a learning phase, the CN, by using the AM, has the

capability of recognizing the interactions while they take

place, in an on-line timing. In (Dore et al. 2010) the

exploitation of an AM for the detection of different kinds

of interactions between two people was proposed. For

this reason, a cumulative measure is computed exploit-

ing the information encoded in the proposed Coupled

E-DBN model. To accomplish this task, for each interac-

tion i : i ¼ 1; . . .;NI ; where NI is the number of considered

interactions, a set of couple of trajectories (core and proto)

are used to train the model (hi), originating a trajectory into

a 3-D space (as shown in Fig. 7). To detect the type of

cause–effect relationship between entities, for each triplet

�P;C
t ; �C;P

t�DtC;P ; �
P;C
t�DtP;C

� �
the following measure is computed:

li
t ¼ lit�DtC;P þ p �P;C

t ; �C;P
t�DtC;P ; �

P;C
t�DtP;C jhi

� �
; ð9Þ

where li
t�DtC;P is the measure computed at the time in which

the previous event has been observed and with

pð�P;C
t ; �C;P

t�DtC;P ; �
P;C
t�DtP;C jhiÞ the probability that the observed

triplet belongs to the i-th interaction model is indicated. For

each triplet of events, the best matching influence model is

chosen as i� ¼ arg maxi li with i ¼ 1; . . .;NI : The high level

of criticality of the detection phase entails that, if mis-

matching between the observed data and learned knowl-

edge is detected, the system can call the attention of the

operator. In this case the learning phase starts up again.

4.3 Detection phase: crowd management scenarios

In human-to-human interactions, at each state change of

one entity typically corresponds a state change of the other.

In this case it is possible to affirm that the entities have the
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same (or at least a similar) dynamic. On the contrary, in

crowd scenarios, the dynamics of the entities are extremely

different, namely the crowd changes its status more fre-

quently than the operator. Generally the number of people,

in a room or in a zone, can change without any operator

actions. In all the cases in which the dynamics between

entities show significant differences, the AM can be con-

sidered as a sparse collection of triplets. In order to design

a robust classification algorithm for abnormal interaction

recognitions, an approach to encode a statistical sparse

model using the self organizing map is needed. The fol-

lowing section is dedicated to this scope.

5 Proposed approach for abnormal interaction

detection in crowd monitoring domain

The proposed cognitive video surveillance system has two

main purposes. The first and most important one is to

detect the interaction anomalies between operator and

crowd. The second is to substitute or to help the user during

the crowd management, recognizing anomaly interactions

with crowd. The presented cognitive system accomplishes

both these goals by learning a specific behavioural model

for operator-crowd interactions, in which the crowd is

correctly controlled by a user. This model describe normal

conditions of crowding management. CN can detect

anomalous operator-crowd interactions as deviation from

normality situation. In automatic operating mode, the sys-

tem substitutes the operator and interacts directly with the

crowd. When crowd reaction patterns are not conform to

expected behaviour an anomalous configuration (i.e.

interaction) is detected. The method used for interaction

modelling and above mentioned anomalous detections is

here presented. An interaction behaviour cannot be com-

pletely represented by a triplet alone: a set of triplets must

be analysed in order to individuate a model. A common

learning problem can be formalized as follows: the generic

Fig. 7 Graphical representation

of the mapping into AM 3-D

space of passive triplet

f��P ; �C; �
þ
P g: The symbols lP/C

x

represent the contextual SOM-

label associated to each cluster.

In this example the proto or core

events are represented by:

lxP=Cl
y

P=C
; where x 6¼ y: The

transitions into Proto and Core-

Map are dashed for representing

the non-linearity and

discontinuity of the trajectories

Fig. 8 Example of CE-DBNs

for passive triplet, e.g.

f��P ; �C; �
þ
P g; with a parameter h

tied across proto-core-proto

transitions
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sequence of triplets Trj ¼ f��P;C; �C;P; �
þ
P;Cg; j ¼ 1; . . .;NT ;

where NT is the number of triplets in that specific sequence,

can belong to different observed models hi; i ¼ 1; . . .;NI

(NI is the number of operator-crowd interaction models).

Figure 9 shows triplet encoding by means of a mapping

function f(.). For sparse collected data, i.e. sparse triplets,

the mapping function defined as f ��P;C; �C;P; �
þ
P;C

� �
¼

p �þP;Cj�C;P; �
�
P;C; hi

� �
is not potentially useful in order to

distinguish triplet associations with specific kinds of

operator-crowd interaction models.

A different transform function, f̂ ð��P;C; �C;P; �
þ
P;CÞ; is

defined for triplet mapping into 2-D space to decrease

miss-classification errors. A specific dimensionality

reduction method can be employed to encode the AM. In

this way, it is possible to obtain a probabilistic model for

rare-interaction detections, in order to describe high-

complexity relationships between entities by means of

simpler formulas (Rish and Grabarnik 2009). The mapping

function f̂ ð:Þ must meet the following requirements: max-

imum information preservation of the operator-crowd

interactions and correct reconstruction of original data

optimizing the classification accuracy.

5.1 Dimensional reduction and preservation

of the information

A large number of methods have been addressed for

dimensional reduction: they are typically classified in lin-

ear and non-linear methods. This section addresses a fun-

damental issue rising in reduction problems: interaction

information contained in primary data must be preserved.

Two well-known feature reduction techniques, namely

Principal Component Analysis (PCA) (linear method)

(Shlens 2005) and self organizing map (non-linear method)

are compared.

In Table 1, a comparison between PCA and SOM is

presented, where binary formats are varied for output

vectors encoding. The binary format is expressed by

[wl, fl], where wl represents word-length and fl is the

fraction-length. In particular Table 1 presents the error

measures, calculated as average Euclidean distance,

between original data D and reconstructed data D̂. It is

possible to note that, by increasing the number of bits, the

SOM behaves better than PCA.

5.2 Self organizing map: classification evaluation

Taking into account a SOM layer formed by K neurons, its

dimensions are adapted in order to find the best matching

couple (l;w) such that l� w ¼ K: The number of core (or

proto) Super-states is then K and the total number of pos-

sible core (or proto) events is K2, taking null-events as

relevant as explained in (Chiappino et al. 2013e). The

parameter K must be tuned: in fact, by decreasing the

SOM-map size, many different input state vectors can fall

into the same cluster: this fact generates a rougher classi-

fication but ensures that only relevant events are likely to

be selected. On the other hand, by employing high-

dimensional Kohonen’s layers, the classification is

improved, whereas the total number of irrelevant events

increases.

The dimension of the layer is a relevant parameter in our

system. A small layer allows the system to summarize its

knowledge in a few concepts, which is positive, although

classification of situations may result too rough in some

cases. On the other hand, very large layers result in a very

sparsely populated Superstate space, meaning that the

system would need massive training in order to observe,

and later recognize, any possible situation. At the moment

such a parameter was empirically tuned.

We define a data set D as follows:

Fig. 9 Model learning

problem: triplet recovering from

model. Trj represents jth generic

triplet, hi is ith interaction model

Table 1 SOM and PCA comparison

Binary format SOM-map PCA err SOM err

[3, 1] 8 9 8 0.1857 1.4430

[5, 1] 32 9 32 0.1954 0.0938

[5, 2] 32 9 32 0.0846 0.0938

[6, 2] 64 9 64 0.0803 2.8175 9 10-1
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D ¼ DðtÞ : t 2 0; . . .; Tf g; ð10Þ

where DðtÞ 2 R
N is a vector DðtÞ ¼ ½d1ðtÞ; . . .; dNðtÞ�0 in

which each component di(t) will represent, in our application

(Sect. 6), the number of people in the ith room at instant t. The

clustering process performed by the SOM is defined by

means of a transformation function fnðDÞ : D! S with S ¼
SkðtÞ : t 2 0; . . .; Tf g; k ¼ 1; . . .;K is the index of the

neuron and T maximum training time. The vectors

SkðtÞ 2 R
M; with M \ N (M = 2 in our case), represent the

coordinates into the SOM Map of the neurons fired at the

time t. Each element of the data set can be determined as:

D(t) = Ck(t) ? nk(t), where CkðtÞ 2 R
N is the vector of

weights for the kth neuron which is associated with

Sk(t). nk(t) can be considered as a Gaussian noise

N kð0;RkÞ: The covariance matrix Rk is computed in each

kth SOM node considering all the training vectors which

have activated the kth neuron. It is possible to define a

conditional probability density function p(D|Ck) as follows:

pðDjCkÞ ¼ ½pðCkÞwkðtÞ��1
exp�

XT

t¼0

XðtÞ0R�1
k X

( )

; ð11Þ

where p(Ck) is the probability neuron activation and it is

computed as the number of samples in the node over the

total number of training samples. XðtÞ ¼ DðtÞ � Ckþ and

wk ¼ ½ð2pÞNj2ðdetðRkÞÞ0:5�:
A possible criterion to evaluate a SOM, given a data

set D, relies on Average Mutual Information (AMI)

IM(D, C), (Finn 1993), defined by Eq. 12:

IMðD;CÞ ¼ HðDÞ � HðDjCÞ; ð12Þ

where H(D) is the data set entropy, while the conditional

entropy of the normal multivariate distribution of

p(D|C) =
P

k=1
K p(D|Ck) is defined as

HðDjCÞ :¼ 0:5 ln½ð2peÞN jRj�; ð13Þ

where R is the covariance matrix of normal multivariate

p.d.f. p(D|C). To investigate the capabilities of the self

organizing maps we set up a test: an artificial data set D for

training was constructed consisting of 143 vectors, with

sampling time equal to 4[s], provided by our crowding

simulator. Each vector is formed by N = 6 components

and contains the number of people in each room.

Table 2 lists entropies for different size of the SOM layer.

Over 7 9 7 the quality of the classification have not signifi-

cant improvements from AMI point of view. However, we are

not concerned with an extremely precise description of the

core state space (we do not want to maximize IM(D, C) at all

costs). We certainly need a sufficient amount of information

to be preserved, but at the same time, as explained in this

subsection, we need our system to be capable of synthesizing

knowledge by establishing analogies.

A representation of reality based on analogies is nec-

essary in order to deal with situations never seen during the

training phase.

The SOM can be used for dividing a set of training data

D into different multivariate time series {Dk}k=1
K where

Dk ¼ D1;k; � � � ;Dn;k

� �
associated to the k-th neuron, such

as Dk [ Dj ¼£ with k = j and
SK

k¼1 Dk ¼ D: These sub-

sequences of vectors can be modelled by local Vector Auto

Regressive (VAR) models (Pfaff 2008). The number of

generated VAR models correspond to the number of neu-

rons of the SOM. The local matching measurement

between the sequence of input data and the output of the

local VAR models specifies how much of the output var-

iation has been represented by the SOM. Considering a

multivariate time series Dk, an auto regressive model of

order p, denoted as VAR(p), describes i-th vector Di,k as

linear combination of the previous state vectors:

Di;k ¼ U0 þ U1Di�1;k þ U2Di�2;k þ � � � þ UpDi�p;k þ �i;

ð14Þ

where U0; � � � ;Up are (N 9 N) parameter matrices and �i

represents a (N 9 1) white noise. By the multivariate time

series Dk we have modelled a VAR(2) as Di;k ¼ Û0 þ
Û1Di�1;k þ Û2Di�2;k þ �i; where Û0; Û1 and Û2 are

estimated coefficient matrices which have stored in each

SOM node. Each VAR model has been used as linear

predictor filter. A dataset Dc, different from D, has been

used for the classification phase. Also in this case the SOM

divides the data into different multivariate time series

fDc
kg

K
k¼1 where Dc

k ¼ Dc
1;k; � � � ;Dc

n;k

n o
associated to the

k-th neuron, such as Dc
k [ Dc

j ¼£ with k = j and
SK

k¼1 Dc
k ¼

Dc: We have compared one period ahead forecast sequences

D̂k obtained by VAR(2) model built over different SOM layer

sizes with Dk
c. Figure 10 shows an example of curve trends for

predicted vector sequences by VAR(2) model built over

different SOM layer sizes. A comparison between simulated

data and the predictor filter outputs is provided by FIT

measurement:

FIT ¼
Pn

i¼1 kDc
i;k � D̂i;kk

Pn
i¼1 kDc

i;k � D
c

kk
; ð15Þ

where Dc
i;k 2 Dc

k; D̂i;k is the output of the k-th VAR(2)

model and D
c

k ¼ EfDc
kg: The averages of the FIT between

Table 2 Classification evaluation for different SOM-layer

SOM-map H(D) H(D|C) IM(D, C)

2 9 2 6.3750 0.7249 5.6501

4 9 4 6.3750 0.1291 6.2459

5 9 5 6.3750 0.0384 6.3366

7 9 7 6.3750 0 6.3750
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one period ahead forecast obtained by VAR(2) models and

simulated data (formed by 140 vectors) show that a SOM

with small layers are able to build analogies between the

stored data into the same neurons during the training phase

and the classification phase.

After a training phase of the chosen SOM, a mapping

function f̂ ðTrjÞ to project each triplet into 2-D SOM-map

can be defined. The output of this function is a list of zones,

i.e. trajectories (which can be actually discontinuous),

within the SOM-map. Dynamic aspects of the evolution of

clustered triplets are also considered: transition probabili-

ties between different zones are computed, in such a way

that the outcome of the training process can be ideally

compared to an Hidden Markov Model (HMM) (Oliver and

Pentland 2000).

6 Results

The simulated monitored environment is shown in Fig. 11.

The configuration of doors, walls and rooms is however

customizable and a wide range of scenarios can be set for

tests. A crowd enters a room of the simulator and is given

the motivation of moving toward the exit of the building.

Births of new characters occur during the simulation,

modelled by a Poisson distribution (we hypothesize a fixed

average incoming rate: data coming from different simu-

lations are thus comparable). The human operator must act

on door configuration in order to direct crowd flows, thus

preventing overcrowding

The use of a graphical engine (freely available at http://

www.horde3d.org/) has been introduced in order to make

the simulation realistic in the AM (Sect. 4) training phase.

Here a human operator acts on doors configuration in order

to prevent room overcrowding, based on the visual output,

which need to be as realistic as possible. Namely, the

simulator has to output realistic data both from the

behavioural point of view, in order to effectively interact

with the human operator, and from the visual point of view,

in order to grant an effective interface by truly depicting

reality. Reactions of an operator faced with an unrealistic

visual output could be extremely different and strongly

depend on rendering quality. For this reason, characters are

also animated to simulate walk motion (at first glance a

crowded environment with still people could look less

populated than it really is).

Crowd behaviour within the simulator is modeled based

on Social Forces, which were mentioned in Sect. 1 This

model assimilates each character on the scene to a particle

subject to 2D forces, and treats it consequently from a

Fig. 10 Example of graphical

comparison between VAR(2)

models and simulated data

which represent the number of

the people within the zone 1.

The averages of the matching

between VAR(2) model outputs

and 140 simulated vectors

(expressed in percentages) are

the following: SOM 4 9 4 fit:

67.14 %; SOM 5 9 5 fit: 53.6

%; SOM 7 9 7 fit: 40.18 %

Fig. 11 The simulated monitored environment
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strictly physical point of view. Its motion equations are

derived from Newtons law F = ma. The forces a character

is driven by are substantially of three kinds (Luber et al.

2010). An attractive motivational force Fmot pulls charac-

ters toward some scheduled destination, while repulsive

physical forces Fphy and interaction forces Fint prevent

from collision into physical objects and take into account

interactions within characters. An additional linear drag

(viscous resistance) Fres takes into account the fact that no

character actually persists in its state of constant speed but

tends to stop its motion as motivation runs out. This force

is in fact accounted for and included in Fmot. Such forces

are sketched in Fig. 12. Chaotic fluctuations are included,

according to the modified social force model proposed in

(Soh et al. 2004). These fluctuation account for random

individual variations in behaviour and lead to crowd

motion self organization.

The three forces are estimated at each time instant for

each character, whose position is then updated according to

the motion equation and normalized according to the cur-

rent fps rate supported by the graphical engine (which

strongly depends on the number of characters to be han-

dled). As already mentioned, people incoming rate is

modelled as a Poisson distribution. Their death occurs as

they get to their final scheduled destination. A human

operator interacts with the crowd by opening doors to let it

flow, while trying to minimize the time a door remains

open. Although somehow simplified with respect to more

complex works, such as (Luber et al. 2010) (where addi-

tional assumptions on trajectories’ regularity are made), the

developed model results in a good overall output, where

people behave correctly and realistically.

The simulator also includes (simulated) sensors. These

try to reproduce (processed) sensor data coming from dif-

ferent cameras looking at different subsets (rooms) of the

monitored scene. A virtual people estimation algorithm

outputs the number of people by simply adding some noise

to the mere number of people framed by the virtual camera,

thus trying to mimic the output of real image processing

algorithms, such as (Kilambi et al. 2008). The state vector

of the system (which corresponds to the external object,

eso) is (cfr. Eq. 10)

XCrðtÞ ¼ xCr1
ðtÞ; xCr2

ðtÞ; . . .; xCrN
ðtÞf g; ð16Þ

with N = 6 in our case (six cameras, one for each room).

xCrn
ðtÞ is the number of people in room n. The people flow

starts in a hall room, that corresponds to xCr1
: A 7 9 7 2D

SOM is then trained in order to cluster the state vector

space. The SOM Super States (better say, their variations)

define events. The internal (endo) state of the system

(namely, the doors’ configuration) is simply modelled by a

binary vector storing the state of each door (true if open,

false if closed). Variations of such a vector define proto

events.

An AM is then trained by a human operator who opens

virtual gates in order to let the crowd stream outside in case

high occupancy states are reached and, at the same time, to

minimize the time gates remain open.

In our case, four kinds of simulated scenarios for dif-

ferent crowd behaviours (see Table 3), have been taken

into consideration, in order to memorize the interactions

between a human operator (proto-self) and the crowd

(core-self) as formalized in 2. For instance, the first crowd

behaviour, identified by 1d, has l ¼ r2 ¼ 1 for the Poisson

probability mass function, weak interaction force, and a

relatively short interaction range.

After mapping the AM into a 2-D space, by means of a

SOM, the operator’s reactions to different crowd fluctua-

tions, stored and encoded by f̂ ; can be used on-line to

choose an optimal strategy, i.e. to emulate the actions of a

human operator, by predicting not only his behaviour but

also crowd’s reaction to it.

A reference model hi for operator-crowd interactions is

then designed (refer to Fig. 9). We define a sequence of

passive triplets (related to i = 1d crowd behaviour,

Table 3) as:

fTrkg ¼ ðTr1; Tr2; . . .; Trk; . . .; TrKÞ; ð17Þ

where Tr ¼ f��P ; �C; �
þ
P g: The mapping function f̂ ðTrkÞ ¼

Sk defines a corresponding sequence of Super states into the

Fig. 12 Vectorial sum of forces FTOT and influence range of

characters

Table 3 Different crowd behaviours in simulated scenarios

ID No. persons/sec Interaction

range

Interaction

forces

1d 1 1 m Low

2d 2 2 m Low

1p 1 1 m High

2p 2 2 m High

186 S. Chiappino et al.

123



SOM-map as follows: fSkg ¼ ðS1; S2; . . .; Sk; . . .; SKÞ: In

the simulation, the maximum time between two subsequent

Super states ð. . .; Sk; Skþ1; . . .Þ is taken as 8[s]. After such a

time lapse, a new interaction (Super state) is considered.

The kth Super state probability is a vector P whose ele-

ments are defined as: Pk = P(Sk); it corresponds to the

number of occurrences of Sk over {Sk} with k ¼ 1; . . .;K:

The elements of the transition probability matrix M, are

defined as: M(Sk,Sk?1) = Pk?1|k = P(Sk?1|Sk).

A test sequence of passive triplets TrID
k

� �
(one for each

crowd behaviour listed in Table 3) is simulated and pro-

cessed by SID
k ¼ f̂ ðTrID

k Þ in order to generate {Sk
ID} with

k ¼ 1; . . .;K: A weighted average of transition probabili-

ties between subsequent Super states ð. . .; SID
k ; S

ID
kþ1; . . .Þ is

computed as follows:

PID
i ðtÞ ¼

1

W

XW

k¼1

PID
k PID

kþ1jk; ð18Þ

where PID
k ¼ PðSID

k jhiÞ and PID
kþ1jk ¼ MðSID

k ; S
ID
kþ1jhiÞ; while

W, called moving evaluation windows, defines the number

of test sequence triplets considered at each step t. We

define the probability to reach k ? 1th Super state starting

from the kth, as follows: PID
k 7!kþ1 ¼ PID

k PID
kþ1jk: The recog-

nition of the interaction model is performed by taking

the maximum probability: i�; tð Þ ¼ arg maxi PID
i ðtÞ with

i ¼ 1; . . .;NI and t ¼ 1; . . .; T : The couple (i*, t) defines the

kind of recognized operator-crowd interaction hi and also

the maximum time W � 8þ t � 8½s� in which the detection is

performed.

Different average of transition probabilities curves, with

W = 2, 5, 10, 15 and T = 10 steps, are evaluated. An

example with W = 10 is shown in Fig. 13. The four

interaction behaviours (red curve) are compared with the

reference model (blue curve).

Using only a few triplets (i.e. lower W values, e.g.

W = 2 and W = 5) for each time step, some behaviour

models result confused. The separation distance between

the curves increases when the evaluation window values

increase, e.g. with W = 10 and W = 15.

The Mean Square Error (MSE) is computed, in order to

evaluate the distances between the observed interaction

behaviour curves and the reference behaviour model. The

minimum MSE provides a similarity measure between

interaction behaviours. At each time step t ¼ 1; . . .; T as

follows: MSEðtÞ ¼ 1
W

PW
k¼1ðP�k 7!kþ1 � Pk 7!kþ1Þ2; where

Pk 7!kþ1 and P�k 7!kþ1 correspond to probability values over

{Sk} and S�k
� �

, i.e. reference and observed sequences.

The anomalous interactions between an operator and the

monitored crowd could emerge after a normal behaviour,

e.g., a careless user does not open some doors. In this

situation the CN, working in its on-line modality, is able to

recognize anomalous crowd management. Figure 14 shows

the normal behaviour, in the specific case of ID = 1d (blue

curve) and compares it the with observed operator-crowd

interactions (red curve). Using an evaluation window

W = 10, two processes start to drift away at t = 6.4 [s]. In

a corresponding manner MSE starts to grow up. The rule of

detection is rMSE(t) [ 0 for t 2 ½tmin; tmax�: The system

detects operator-crowd anomalous interactions when the

curve gradient is positive for an evaluation period tep =

tmax - tmin. In the on-line modality the CN when an

anomalous interaction has been recognized, the system

alerts the operator sending a message. Such a message can

contain the last detected abnormal passive triplet, e.g. first

user action (proto event), evolution of the crowd (core

event) and consequent operator action (proto event). In the

case shown in Fig. 14, the anomalous situation is due to

wrong consequent user action, i.e. the operator does not

open some doors and the number of people increase.

6.1 Example of application on real video sequences

In order to give consistence to the proposed cognitive video

surveillance system, an experiment has been conducted on

a available video sequences from the ‘‘Performance Eval-

uation of Tracking and Surveillance’’ (PETS) workshop

dataset (Ferryman and Crowley 2009) for single camera

(S3 High level, Time 14-16, View_0001, sequence length

is 223 frames, frame rate is *7 [fps]).

The main target of this experiment is to demonstrate

how the system is able to recognize interaction between an

operator and the crowd behaviour in a video sequence. For

this purpose the real environment has been partitioned in

three zones, which are supposed to be monitored by cam-

eras, as shown in Fig. 15a. In the simulated environment,

the zones correspond to three rooms, Fig. 15b. In the

sequence, two crowd behaviours corresponding to different

people flows have been individuated. The fist flow direc-

tion when the people go across the scene from zone 1 to

zone 3 (i.e. from frame_0000 to frame_0107), while the

second flow when the people move from zone 3 to zone 1

(i.e. from frame_0108 to frame_0222). By using the sim-

ulator these two different people behaviours have been

reproduced: for the first flow the people enter the scene in

zone 1 and head out in zone 3, while for the second the

people enter in zone 3 and leave in zone 1 (second flow). In

the simulator a human operator can manage the crowd

flow, from a room to another, by acting on doors,

d1 d2 d3 d4. The user opens the door when the people are

near to it. In order to reproduce the same interaction using

the real video sequences, it has been supposed to have the

same configuration of the doors. A people counting algo-

rithm (Morerio et al. 2012) provides an estimate of the

total number of people in the zones present in video
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sequences, Fig. 15a. In this virtual environment a people

counting module is simulated in order to count the people

into a sub-area of the room (dashed circular areas,

Fig. 15b).

The test is composed by two parts: learning and detec-

tion (on-line). During the learning phase, the cognitive

system has learned two probabilistic models from the

simulation, i.e. two AMs, in order to describe two crowd

behaviours. The rules used to memorize such two models

are specified as follows: if the operator sees the people

moving from zone 1 to zone 3 must open only d1 d2

according to the people flow; the user has to act on d3 d4 if

people flow is in opposite direction. Four scenes for the two

Fig. 13 Classification

examples of interaction

behaviour using evaluation

window W = 10

Fig. 14 Detection of anomalous operator-crowd interactions. The

system detects an anomalous interaction when the operator does not

open two doors and the number of people increase. This incorrect

crowding management situation is shown in the figure and compared

with the correct situation

Fig. 15 Example of real environment (a) and simulated scenario

(b) used for the test, the virtual rooms correspond to the zones. The

red dashed line corresponds to people flow direction from zone 1 to

zone 3; the blue dashed line describes people movement from zone 3

to zone 1. Dashed circular areas qualitatively correspond to the parts

of the rooms monitored by cameras equipped with people counter

module. d1 - d4 are the doors (color figure online)
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people flows have been simulated, each scene is 60[s] long.

The simulated people counters provide number of people in

each zone per second. During the second part the system

works on real video sequences. The CN recognizes the

observed situations according to the memorized knowl-

edges. During autonomous phase, the CN, to the end to

interact directly with the crowd, must discriminate differ-

ent crowd-environment configurations. Figure 16 presents

four sample frames about different crowd behaviours: in

case (a) the people flow moves leading red arrow (i.e. from

zone 1 to zone 3), in case (b) the opposed people move-

ment direction is presented (i.e. from zone 3 to zone 1). In

cases (c) and (d) the groups of the people have different

movement directions, namely people splitting and merging.

In these last two cases, the system does not find any cor-

respondence between observed scene and stored interaction

models. In particular, the CN can consider the scene (c) as

anomalous crowd-environment interaction compared with

(a) situation. The same consideration can be done for

(d) and (b) situations. When anomalous crowd-environ-

ment interactions are detected, the cognitive system sends

an alarm message in order to inform the human operator.

After this phase, the CN is able to predict most likely

future actions and when it will be performed. During the

operator support phase, the cognitive system individuates

anomalies in terms of differences between predicted

actions and user actions.

The SOM-map dimensions produce different results in

terms of knowledge representation for crowd-environment

interactions. In particular, small Kohonen’s layers increase

SOM capability of creating analogies between different

input data. This effect becomes much relevant when the

input data is corrupted by noise. A test has been conducted

employing two people counters, namely PC1 and PC2,

characterised by different accuracies, i.e. aPC1 = 80 %,

aPC2 = 60 %. The experiment can be divided in two parts.

Fig. 16 Sample frames for four different crowd-environment interactions. Different people flows are presented: two opposite directions of

movement (a, b), people splitting (c), people merging (d). a and b represent normal behaviours, while c and d represent two abnormal behaviours

Table 4 People flows detections using different people counters and

SOMs

Direction SOM 16 SOM 25 SOM 36

PC 1 PC 2 PC 1 PC 2 PC 1 PC 2

Zone 1 7! Zone 2 1 1 1 1 1 0

Zone 2 7! Zone 3 1 0 1 0 0 0

Zone 3 7! Zone 2 1 1 1 1 1 0

Zone 2 7! Zone 1 1 1 1 0 1 0

Accuracy of the precision: aPC1 = 80 %, aPC2 = 60 %. Success = 1,

Failure = 0
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Firstly, we have manually built the ground truth for the

video sequence. We use this information in order to gen-

erate the sequences of the super-states. Through three

different SOMs, i.e. SOM 16, SOM 25 and SOM 32, the

original data have been mapped into SOM-spaces. Sec-

ondly, by using of people counter (Morerio et al. 2012), it

is possible to obtain the number of people (PC1) with

estimated accuracy of 80 % (aPC1 = 80 %). Tuning a

people counter parameter another set of number of people

(PC2), with less accuracy, has been acquired

(aPC2 = 60%). We have manually corrupted the parameter

for decreasing the accuracy of people number estimation.

The data provided by PC1 and PC2 are classified by using

the three different SOMs so that six different sequences of

fired neurons are obtained. The events (i.e. super states

transitions), which correspond to passages across the zones

(i.e. Zone 1 7! Zone 2, Zone 2 7! Zone 3 and Zone 3 7!
Zone 2, Zone 2 7! Zone 1), are compared with the events

Fig. 17 The qualitative results

of the normal and anomalous

operator-crowd interaction

detection, during the operator

support phase. The ground truth

bar represents the operator

actions in corresponding with

video frames. Prediction and

action bar represents the

cognitive system actions
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generated from ground truth. When the system recognizes

the same events it is possible to affirm that a specific SOM

is able to provide an efficient crowd-environment interac-

tion representations. Vice versa a failure will be detected.

Failures are due to the poor capability of larger SOM layers

of finding analogies between input data: similar inputs may

be mapped to different neurons (see Sect. 5.2). In Table 4,

the performances (in people flow detections) of three

SOMs (16, 25 and 36 neurons respectively) are shown. The

interesting result is that a 16-neuron SOM is able to detect

three zone passages also in the presence of corrupted data

input.

For the test, a SOM 25 and PC1 have been employed. In

Fig. 17 the cognitive system predictions and detections of

normal and abnormal interactions between an operator and

the crowd are shown. In the figure, the operator actions and

corresponding video frames are represented (blue operator

action rectangle) in the ground truth bar. The prediction

(yellow prediction rectangle) and action bar represents the

cognitive system actions. The anomaly is represented by a

red anomaly rectangle. Considering the case (a), the system

predicts the first zone crossing (i.e. from zone 1 to zone 2)

as to open d1 (specified by blue triangle). In this case, the

operator action finds a correspondence with the predicted

action (i.e. d1). During the second zone crossing (i.e. from

zone 2 to zone 3) the system detects an anomalous oper-

ator-crowd interaction behaviour: the user opens an

uncorrected door (i.e. d3 indicated by blue circle). The case

(b) presents the same analysis for a different people flow

direction.

7 Conclusion

An automatic systems called Cognitive Surveillance Node

(CSN), which is part of a complex cognitive JDL-based

and bio-inspired architecture was presented in this work.

Also, a bio-inspired structure was proposed, for encoding

and synthesizing signals for modelling cause–effect rela-

tionships between entities. In particular, the case where one

of such entities is a human operator was studied. Interac-

tion models are stored within an AM during a learning

phase. Knowledge is thus transferred from a human oper-

ator towards the CSN. Learned representations can be used,

at different levels, either to support human decisions by

detecting anomalous interaction models and thus compen-

sating for human shortcomings, or, in an automatic deci-

sion scenario, to identify anomalous patterns and choose

the best strategy to preserve stability of the entire system.

Results are shown in a simulated visual 3D environment

in the context of crowd monitoring. The simulated crowd is

modelled according to the Social Forces Model. The results

show two possible applications of the CSN for crowd

surveillance applications: first, the system can support the

operator for crowd management and people flow redirec-

tion by detecting drift from some learned interaction

models; secondly, to work in automatic mode and thus

autonomously detecting anomalies in crowd behaviour.

Furthermore, it has been shown how user-crowd interaction

knowledge, learned from the simulator and modelled as

proposed is useful in order to detect anomalies on real

video sequences.

Future developments of this work will include a detailed

study on the impact of other self organizing maps, e.g.

GNG or GH-SOM on the performances of our system. In

particular, we are interested to design a cognitive control-

based architecture that is able to switch among various

contextual knowledge representation levels provided by

different AMs.
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tribution, and reproduction in any medium, provided the original
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