
ORIGINAL RESEARCH

Cognitive hierarchical active partitions in distributed
analysis of medical images

Arkadiusz Tomczyk • Piotr S. Szczepaniak •

Michal Pryczek

Received: 4 June 2011 / Accepted: 15 February 2012 / Published online: 7 March 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Semantic oriented image analysis has always

been considered a challenging task, as it does not con-

centrate on segmentation process itself, but on interpreta-

tion of various image fragments. Contextuality of the

process has recently gained significant research interest,

with knowledge from image domain being repeatedly

highlighted as crucial in achieving satisfactory method

effectiveness. The present article elaborates on the recently

described contextual hierarchical active partitions (CHAP)

technique and its distributed reformulation. CHAP frame-

work lets domain knowledge to be injected to the auto-

mated medical study analysis in a seamless and transparent

manner by enabling a human expert to interactively par-

ticipate in the process, e.g. by solving subtasks currently

too difficult to solve by automated agents. Separation of

agents makes it easy to design complex analysis algorithms

from well tested and predictable components making it

easy to inject human expertise at any point as needed.

Keywords Medical image understanding �
Contextual data analysis Image analysis �
Structural pattern recognition

1 Introduction

The process of image understanding, as discussed by

Tadeusiewicz and Ogiela (2004), Tomczyk and Szczepaniak

(2007) and Tadeusiewicz et al. (2009), is usually more

complex than finding of the segments that represent

semantically-relevant objects. It can be regarded as a bot-

tom-up process, in which the objects are organized in terms

of increasing complexity. Within the process implemented

in the machine, both the relevant image information and

additional (expert) knowledge about the analyzed image

need to be considered. In the general case, the expert’s life

experience and even the cultural context can be necessary

to use for solving the task of image content interpretation

or understanding. Such an approach has already been

advocated by Tadeusiewicz et al. (2009).

Active contours is a group of methods developed orig-

inally for image segmentation. Since the basic image ele-

ment commonly considered in the analysis is a pixel, the

method is considered as a low-level one. The term active

contours was first introduced with reference to the snakes

method by Kass et al. (1988). In that work, contour,

defined as a parameterized curve, evolved until the desired

object was identified in the image. The purpose of the

contour’s evolution was defined by energy function, which

was the objective function of the optimization process. For

the purpose of optimization, calculus of variations was

used. Its application led to iterative solution of partial

differential equation set and, as a result, to iterative chan-

ges of the contour itself. The literature abounds in modi-

fications and improvements of this basic method. Cohen

(1991) introduced additional pressure forces able to com-

press or expand the contour, which was further elaborated

by Ivins and Porrill (1994), who introduced region energy

and region forces. Both of these changes allowed additional

A. Tomczyk (&) � P. S. Szczepaniak � M. Pryczek (&)

Institute of Information Technology,

Technical University of Lodz, ul. Wolczanska 215,

90-924 Lodz, Poland

e-mail: arkadiusz.tomczyk@p.lodz.pl

M. Pryczek

e-mail: michal.pryczek@p.lodz.pl

P. S. Szczepaniak

e-mail: piotr.szczepaniak@p.lodz.pl

123

J Ambient Intell Human Comput (2013) 4:357–367

DOI 10.1007/s12652-012-0110-6



knowledge to be taken into account, in order to prevent the

process from getting stuck in local minima of energy

function, which happened in the case of wrong initializa-

tion of the contour. Similar reasons can be ascribed to the

introduction of gradient vector flow by Xu and Prince

(1998) and distance potential by Cohen and Cohen (1991).

Other significant modifications can be found also in Amini

et al. (1990, McInerney and Terzopoulos (1995), Deling-

ette and Montagnat (2000).

The snakes method was the first but not the only vari-

ation of active contours to have emerged in the literature.

The most significant of them are geometric active contours,

which differ from the snakes method in that they do not

take into account the information about parameterization of

curves representing the contour (the snakes method is

regarded as a parametric active contours method). Such an

approach was introduced simultaneously by Casseles et al.

(1993) and by Malladi et al. (1995) and used during the

optimization of the level-set method, earlier applied by

Osher and Sethian (1988) for the solution of front propa-

gation problem. The main advantage of this method was

the possibility to change easily the contour’s topology

during its evolution. A variation of this technique was

geodesic active contours introduced in two different ways

by Caselles et al. (1997), Yezzi et al. (1997 and Kichen-

assamy et al. (1995). Here, similarly to the snakes method,

the purpose of evolution was formulated in the form of

energy function, and the evolution was formulated in the

form of forces that influence the contour. This enabled Xu

et al. (2000, 2001) to indicate the dependencies between

those methods, which helped to share experiences.

Other types of active contours include: active shape

models proposed by Cootes and Taylor (1992, 1994), where

the contour was described by a set of landmark points, and

the appropriately tested point distribution model helped to

impose additional limitations on the evolving contour,

Brownian strings introduced by Grzeszczuk and Levin

(1997), where the contour is described linguistically and

simulated annealing algorithm is used for the contour evo-

lution, the approaches discussed by Jacob et al. (2001) and

by Schnabel and Arridge (1995), in which the contour is

represented by splines, the approach of Staib and Duncan

(1989), in which Fourier descriptors are used and finally the

active ray approach described by Denzler and Niemann

(1996). Although substantially different in regard to con-

tour’s description model, the above methods share a few

characteristics, namely: application of the notion of con-

tour, specification of the expectations concerning the image

object (directly or indirectly) in the form of quality index

called energy function, and optimization of the contour

shape. In this paper, the analysis of medical images lies in

the center of consideration. Although the roots of the

method lie in the idea of active contours, the approach is

more sophisticated. Within the presented process of image

content interpretation a number of iteratively performed

stages of image partitions is performed (from pixels to

complex objects), with each part being ascribed a semantic

meaning in such a way that, after each iteration, newly

understood objects constitute additional knowledge about

the image. The new knowledge can be used in the next step,

and so on. The method called cognitive hierarchical active

partitions CHAP for short (Tomczyk et al. 2010) uses

external knowledge and experts experience, here the med-

ical one. The application of the internet technology makes it

possible that images can be analyzed instead of being col-

lected (e.g. in the medical radiology center) while the

physician is supporting the image understanding process in

the distance manner. This is possible not only because of the

use of computer networks but also because of the con-

struction of the CHAP algorithm.

The paper is organized as follows. First, the CHAP

method is presented. In Sect. 3, the pixel, line and circle

based approaches are described. Section 4 deals with the

description of system organization for distance semantic

image analysis. The summary closes the paper. It should be

emphasized that the intention of the authors is not to

present details regarding system implementation but to

present a new concept of image analysis system where

humans and computers can collaborate to understand

image content.

2 Cognitive hierarchical active partitions

As shown by Tomczyk and Szczepaniak (2005) and by

Tomczyk et al. (2007), the classic contour can be regarded

as a classifier of image points, and therefore, the classifier

of pixels, which assigns the pixels one of two labels: lo or

lb. The labels denote the object and the background,

respectively. The classifier partitions the set of image

points and, consequently, the set of pixels, into those

composing the object:

Olo ¼ fo 2 O : kðoÞ ¼ log ð1Þ

and those composing the background:

Olb ¼ fo 2 O : kðoÞ ¼ lbg ð2Þ

where O represents the whole set of pixels. Of course,

Olo [ Olb ¼ O and Olo \ Olb ¼ ; The new object detected

in the image by the active contour technique is thus rep-

resented by the set of all points corresponding to pixels

labeled with lo.

The classic active contour approach can be generalized,

given that image analysis generally consists in indicating

those image fragments that carry a certain semantic
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meaning, which does not necessarily have to be (and most

often is not) performed at the level of particular image

points. For the purpose of generalization, let us assume that

P represents a set of patches that have already been

assigned a semantic meaning. Individual patch p � R
2 can

denote, in the most simple case, a set containing a single

point that has been assigned a color like in the active

contour method, but also a division line between two

regions of different characteristics, regions of uniform

color or regions representing objects of higher-level

semantic meaning significant for a class of images ana-

lyzed. It is worth emphasizing that in the methodology

presented further every considered patch p 2 P represents

in the image an object o 2 O with a known semantic

meaning, e.g. at the beginning of the analysis each image

point represents a pixel. Moreover, although the patches

correspond to separate objects, in general they do not have

to be separate regions. Additionally, let us assume that k is

not a binary classifier, but it assigns each object one of the

L labels, denoted as l1, …, lL. Then the partition defined by

such a classifier consists of parts:

Ol ¼ fo 2 O : kðoÞ ¼ lg ð3Þ

for l being one of those labels that, like previously, are

separate and compose the whole set O: In this case, the

new object corresponding to label l is naturally represented

in the image by a patch being a sum of patches assigned to

objects with label l assigned by classifier k. If optimal

partition finding process is performed in the same way as in

active contours, that is, by selecting the model of the

classifier and then iterative finding of its optimal parame-

ters for a given energy function, then one can speak of a

new image analysis method referred to as active partitions.

The name of the method reflects evolution of the partition

that results from classifier’s evolution.

As mentioned, the process of automatic image content

interpretation can be regarded as a bottom-up process, in

which the objects are organized in terms of increasing

complexity. This complex process should include both

image information and external (human) knowledge about

the image analyzed. What is also important for image

content understanding is the experience of a person who is

analyzing the image, which refers to expert knowledge.

Since the approach requires the retrieval of semantically

meaningful objects, one can make use of the active parti-

tions approach described above. For this reason, the pro-

cess of image content interpretation can be presented as

iterative image partition, with each part being ascribed a

semantic meaning in such a way that, after each iteration,

newly understood objects constitute additional knowledge

about the image. The new knowledge can be used in the

next step.

Using notation described above, the presented concept

of image analysis can be described in a following way: at

the beginning assume that set O contains all the pixels in

the image (patch corresponding to each pixel contains a

single image point) and iteratively perform steps adding

new elements to set O (i.e. extending the knowledge about

image content) and remembering the patches correspond-

ing to those objects. Each step is composed of: selection of

subset of objects O; construction of the proper classifier

k of those objects, extraction of new objects basing on the

partition determined by that classifier.

Due to its structure and the fact that for partition finding,

especially in the more complex cases, one has to employ an

algorithm that uses external knowledge and expert’s expe-

rience, the described method has been called Cognitive

Hierarchical Active Partitions. Although it seems natural to

use active partitions during construction of the proper clas-

sifier (or active contours at a pixel level), the partitioning can

be performed by means of any segmentation algorithm or

either supervised or unsupervised classification algorithm.

Moreover, these approaches can be mixed.

A possible example of CHAP approach is depicted in

Fig. 1. The analysis of individual pixels in Fig. 1a allows

one to find only the regions of approximately the same

color, which represent structures that look the same on

images. However, these structures can represent various

anatomical structures, which are impossible to determine

without medical knowledge. In the example, it is particu-

larly visible in the attempt to segment articular cartilage in

a knee. Even though (due to contrast application) connec-

tive tissue is partially distinguishable from the neighboring

structures, there are still multiple similar objects that look

the same in the study. Nevertheless, anatomical knowledge

combined with accumulated knowledge about location of

other more specific structures in the knee (e.g. bones)

gathered on the earlier stages of CHAP can lead to a proper

analysis of an entire image. Moreover, it demonstrates that

in one CHAP step it is sometimes necessary to use different

kind of objects found so far. Localization of articular car-

tilage is possible when patches representing bones in

Fig. 1b, c and joint cavity are available (Fig. 1d).

The above discussion refers to traditional 2D images, in

which patches are subsets of R
2: However, CHAP can be
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applied also to image sequences, both spatial and video

ones. Then patches are subsets of a corresponding space R
n

for n 2 N: Therefore, instead of patches, a new term is

used, namely spatches—a blend of spatial and patch.

3 Sample spatch approaches

In order to understand an image, it is essential to combine the

knowledge contained in an image with external knowledge

and experience of an expert. This makes methods of

knowledge representation in CHAP systems important.

Knowledge about an image is contained in set O that

includes semantically defined objects visible in an image

(locations of those objects describe the corresponding

spatches from set P). Because they carry semantic mean-

ing, each of them can be described by such features as

location and color of a pixel, coordinates of a circle’s

center and circle’s radius, coordinates of end points of a

segment, coordinates of a centroid, color and descriptors of

a region’s shape, etc. Such information constitutes full

knowledge about the objects but might not be always

useful in that form, because it is different from human way

of description, which is a statement in a natural language.

Analogously, in order to find an object in an image, it is

necessary to use experience of an expert. However, to be

used in a computer system, such an experience has to be

expressed in an appropriate form. Unfortunately, the form

Fig. 1 The concept of CHAP

approach in a task of articular

cartilage segmentation:

a original image, b, c bones,

d joint cavity approximation,

e result
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of expression which is convenient to recognition algo-

rithms is not convenient for a human expert, especially

from non-technical domains. The problem is usually solved

in two ways: expert provides a set of examples, or

expressions in natural language reflecting their knowledge.

Although the first approach is often applied, it requires

accuracy and a big amount of work (the set should be

representative and consistent). It is also time consuming

(gathering a sufficient number of examples may take

years). The second, though it also needs a proper transla-

tion of natural language statements to the form that can be

used by computers, seems to be more convenient for the

experts. It may require a knowledge engineer to express it

as a mathematical formula or it can be done in semi-

automatic way using e.g. fuzzy controller with quasi-

natural language rules.

To sum up, the CHAP methodology can easily benefit

from all kinds of knowledge described above, with quasi-

natural language rules. which can be automatically tran-

sormed into a form of energy function for example by

using machine learning techniques. This makes this method

more humanized than the traditional methods of image

analysis. Further, sample CHAP approaches with different

types of spatch representations are presented.

3.1 Pixel spatch

In this example, the CHAP approach is used to detect the

shape of left heart ventricle in CT images depicted in

Fig. 2. Its localization is crucial since the analysis of

ventricle shape can be used during the diagnostic process

of pulmonary embolism.

The proposed approach is composed of three CHAP

steps where in every step the whole set of pixel spatches is

partitioned and where, after each step, a new object is

added to the set O: The expert knowledge that is used

during CHAP steps can be expressed in a natural language

using the following statements:

• Contour describing the interior of the ventricle should

contain all the pixels representing blood inside that

ventricle.

• Contour should be possibly small but smooth since the

interior of the ventricle can contain not only the blood

but also fragments of heart muscle.

• The blood with injected contrast is represented by

bright pixels.

• The interventricular septum is a part of the heart muscle

separating both ventricles.

• The interventricular is represented by darker pixels

between the interiors of left and right ventricle.

The first CHAP step uses potential active contours

(PAC), a variant of active partitions with pixel spatches

described by Tomczyk (2007) and Tomczyk et al. (2009),

to find the localization of both ventricles, which is shown in

Fig. 2b. During the second step, using that information

about ventricles, a parabola approximating interventricular

septum is sought. The result is shown in Fig. 2c. The

parabola partitions image into two parts: one containing the

left and one containing the right ventricle. Finally, in the

third step again PAC are used to determine the contour

circumscribing the left ventricle. In this example those steps

must be executed in a sequence because the next step

depends on the results of the previous one. In general,

however, if there are no such constraints they can be

computed in parallel. A sample resulting spatch is presented

in Fig. 2d. Of course, those three steps utilize the knowl-

edge mentioned above. In particular, the energy function

used during potential contour evolution in the first and third

step is composed of the following two components:

• Eo: outside energy corresponding to the expert’s second

statement, its value depends on the number of pixels

representing blood inside the ventricles that lie outside

of the contour (this component differs in the first and

the third CHAP step, as in the latter it considers only

pixels that lie on the right side of interventricular

septum and consequently it depends on the result of the

second CHAP step).

• Ea: area energy corresponding to the second expert’s

statement, its value depends on the area of the region

circumscribed by a contour.

The detailed description of the methodology used during

automatic interpretation of those images and study of

effectiveness can be found in works by Tomczyk et al.

(2009), Tomczyk and Szczepaniak (2009, 2011).

3.2 Line spatch

Here, the application of active partitions method to detec-

tion of spicular lesions in mammograms is presented.

Spicular lesions are pathological changes in breast with

irregular centers and numerous fibrous spicules. Due to the

spicules, a lesion is shaped like a star in radiological

images, which is shown in Fig. 3. Detection of those

changes is crucial, since they are often indicative of a

breast cancer.

In the proposed method, we look for the segments cre-

ating star-shaped forms. For this reason, in the mammo-

gram all visible lines should be detected. The attempts to

automate this process have not brought satisfactory results

due to the character of mammographic images. The seg-

ments detected are numerous and very small. Therefore,

the first step of CHAP has been performed manually and,

as a result, set O contains pixels described by their coor-

dinates and lines described by the coordinates of their end
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points. Of course, all those objects have their reflection in

spatches, which, for a line, is shown in Fig. 3b.

In active partitions, it is necessary to use energy

function, which applies the knowledge about the object

that we look for. In the example presented, the function

evaluates classifier k by taking into account two kinds of

knowledge in the form that is readable for a human

expert:

• Es: shape energy reflecting the following statement:

segments composing a spicular lesion should create a

star-shaped form, and they should intersect at right

Fig. 3 Sample results for line

spatches: a analysed image,

b all the considered segments

representing edges between

regions of different brightness
and bright lines, c the localized

spicular lesion

Fig. 2 Localization of the left

ventricle interior using pixel

spatch: a analysed image,

b circle circumscribing both

ventricles, c parabola

identifying the localization of

interventricular septum and the

left part of the heart, d left heart

ventricle interior
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angle a circle, the center of which is the centroid of

those segments, and the radius of which equals average

distance between the circle’s center and the segments’

midpoints.

• Et: center energy reflecting the following statement: the

center of the spicular lesion in the image is an area of

high brightness. Its value reflects the reward equal to

the square of average brightness of the pixels inside the

circle found in the above energy component.

The second component is necessary as without it another

set of segments that resembles a star could be found.

A more detailed description of this approach can be found

in work by Tomczyk et al. (2010).

3.3 Circle spatch

The present section focuses on the problem of automatic

localization of a ventricular system in CT images of the

brain. Exact recognition is important from the diagnostic

point of view, since changes in the system, particularly

deformities of shape, asymmetry, contraction or expansion

are indicative of pathological changes in the central ner-

vous system.

The CHAP approach requires the selection of compo-

nents of set O; which is indirectly determined by the

selection of types of classifiers k. Since the retrieval of

meaningful objects causes difficulties typical of such an

analysis, we look for an easier solution, which would

reduce the granularity problem (depart from pixel analysis)

and help to avoid the problem of complex retrieval of

objects.

The approach described in the present section is based

on image partition performed by connecting points of a

similar color into circular regions, which will constitute set

O: As a result, the number of objects is reduced drastically,

which enables the application of more complex analysis

methods. Moreover, the very definition of a circle carries

information about the size and location of a region of

approximately uniform color, while the set of circles

contains information about the neighboring regions.

Knowledge, which is absent if the image has not been pre-

processed, is used and structured by the methods presented

below.

Similarly to pixels, in the context of image analysis, it is

the neighborhood of the circles that determines their

meaning and importance. The description will be recorded

in whole in the circle graph, also referred to as the graph of

linguistic description. The choice of graph languages as a

tool of linguistic description is not accidental. Being formal

and semantically precise, it is also extensible and expres-

sive enough to carry information about both object’s

structure and external knowledge.

A fundamental characteristic of a linguistic description

is its information content. In the case of a circle graph,

circles defined for each node code information about

subareas that are cohesive color-wise. Edges carry infor-

mation about the neighborhood of such subareas and about

the possibility of their composition into larger areas which

may constitute potential candidates in the recognition

process. Above all, however, the edges carry information

about the shape of an area, supplementing surface infor-

mation contained in a set of vertices and associated circles.

The energy function of the process presented was the sum

of three components, basing on human expert suggestions:

• Em: shape energy reflects knowledge about anatomical

shape of the structure searched—it is given by an expert

in the form of a prototype graph and can be computed

using any similarity measure between candidate subset

of linguistic description and a prototype.

• Eb: blackness energy reflects the following statement:

study and platform profile dictates the region searched

is expected to be black, as it is filled with cerebrospinal

fluid. Consequently, it can be computed on the basis of

color of the circles of candidate graph.

• Ec: centrality energy is based on an average distance

between centers of circles of candidate graph and the

center of the image and reflects the following informa-

tion: head positioning and orientation during the study

position ventricular chambers close to the center of

images in which it is visible.

With a function constructed in this manner, one should

remember that both blackness and centrality have supple-

mentary meaning, which promotes well-located solutions,

whereas linguistic matching cost is to promote areas of an

expected shape, encoded in the prototype. What is impor-

tant, the prototype may not exist in a literal sense (e.g. in

the form of a circle graph). In this context, the term pro-

totype should be applied to the knowledge of the system’s

designer.

Various approaches to compute candidate-prototype

similarity can be considered. Two groups of methods can

be easily distinguished on the basis of how much knowl-

edge encoded in a linguistic description is actually used:

• Non-linguistic prototype matching: in this approach,

the selected candidate graph is recoded to the set of

pixels representation and the same is done with

prototype after it has been placed onto the image. The

surface similarity between the candidate and the

prototype can then be computed using various mea-

sures, e.g. using measures for evaluating supervised and

unsupervised classification, in particular those pre-

sented in Strehl (2002): purity, entrophy, precision,

recall and their combinations (e.g. F1 measure), mutual
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information, etc. Proper placement and scaling of the

prototype are crucial for maximizing the resulting

similarity measure.

• Linguistic prototype matching: it utilizes all informa-

tion explicitly encoded in the image description,

literally vertices, edges and their parametric descrip-

tion. In the work presented, an important observation is

used—similar shapes are likely to have similar circle

structures and spatial relations between them and their

groups. A well-defined measure based on graph

homeomorphism has been defined and used to measure

a candidate to prototype graph similarity.

The results shown in Fig. 4, produced by an algorithm

that uses linguistic matching demonstrate significant

resemblance of shape between the ventricular system and

the prototype. Again, emphasis is put on the shape locali-

zation problem, which is solved by adding to energy

function two components: blackness and centrality. A

detailed description of this methodology can be found in

works by Tomczyk et al. (2010) and Jojczyk et al. (2010).

4 System architecture and its functions

The rapid advance of imaging techniques and, conse-

quently, the growing number of images that should be

examined require perfectly trained specialists that are able

to analyze those images. And, although that development

brings such benefits as better medical diagnostic proce-

dures, it causes also new problems that must be overcome.

First of all, the growing complexity of the images

sometimes requires highly specialized experts to obtain the

proper interpretation of the image content. In consequence,

in many cases the process of image analysis can be diffi-

cult, specially if the experts were not there where the image

was taken. Such a situation can occur for example during a

diagnostic process in small provincial medical centers. The

other problem is the number of the images that must be

examined by a single expert. If he is the only specialist in a

given region or if many images are taken in medical

screening programs, there is no possibility to interpret all

those images correctly either because there is not enough

time or because of human tiredness. Those problems can be

solved if computers are used to support the interpretation

process. However, such systems are still very imperfect.

Not only are they are very imprecise and still require an

expert to verify their results, but they also need high

computational power to achieve satisfactory results. In the

latter case there exists a similar problem as the problem

with highly specialized experts, namely the lack of proper

computing units at the place where the image acquisition is

made. Because of all those reasons computer-aided dis-

tributed and collaborative analysis of images seems to be a

reasonable solution of the described problems.

The CHAP method is perfectly suited to be applied in

distributed and collaborative systems because each CHAP

step can be performed in different localizations where human

experts or computers identify successive image elements. As

an example of such a system the architecture presented in

Fig. 5 can be considered. Note that this architecture is flex-

ible and can be adapted to the particularly available human

and hardware resources. Of course, for human experts there

must be provided a proper user interface to allow easily

acquire expert knowledge. The image analysis starts in the A

node where either the computer or the expert takes the image

that should be interpreted. The initial knowledge about this

image is the information about its pixels. The B node

(computer) performs the first step of the analysis enlarging

the set of recognized image elements. This step requires a

high computational power, so it must be executed in a sep-

arate node located in a proper computational center. The next

step is performed by C node (computer) but in this case the

results must be verified by the expert in D node before the

identified objects could be added to the knowledge base.

Fig. 4 Sample results for circle spatches: a analyzed image, b all the circles representing regions of uniform color, c the localized part of

ventricular system
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Further, node E (expert) and node F (computer) perform an

additional analysis basing on the currently found objects.

The expert in node E cannot be replaced by a machine

because there are no automatic algorithms able to complete

this analysis. Finally, node A uses the gathered knowledge

to give the final interpretation of the image content. It is

worth mentioning that this example reveals an additional

advantage of the presented approach. In certain cases, some

elements of the image interpretation can be done simulta-

neously (for example node E and node F), which can

decrease the time of the whole analysis process. It is possible

if different objects can be found basing on the same set of

previously identified elements of the image.

Of course, the presented architecture is only a sample

distributed application of the CHAP approach. In practice,

any other arbitrarily chosen, simpler or more complex

architectures can be used. For example, in Fig. 6a the first

and the third step of the approach described in Sect. 3.1 can

be performed using the same machine (node A), whereas

the second one can be delegated to the remote computer

(node B). Similarly, in Fig. 6b the first step of the methods

presented in Sects. 3.2 and 3.3 can be assigned to the

remote machine (node B), the obtained results can be

verified by an expert in the original node (node A) and the

final analysis can be performed again in another localiza-

tion possessing sufficient computational power (node C).

5 Conclusions

The CHAP method applied to image content interpretation

has been presented. The approach draws upon the active

contours method, which employs not only the knowledge

contained in the image but also any other knowledge that

might be useful or sometimes indispensable for proper

localization of objects in an image. Since full utilization of

this knowledge can be complicated or even impossible, the

task of image understanding has to be divided into steps,

with each step contributing a new semantic knowledge.

This helps to avoid low-level pixel analysis and focus on

high-level spatch set analysis, which in many cases makes it

easier to use expert knowledge. The usage of expert

knowledge, which is a key element of the approach pre-

sented, should be performed in such a way as to let an expert

demonstrate the knowledge in the most natural way. That is

why this work presents three approaches based on the

knowledge described using natural language and examples.

This makes the proposed methodology more humanized.

The examples prove that the approach is very promising and

can be applied in many domains at different analysis levels.

The method presented brings two possible enhance-

ments to image analysis systems/processes. The first of

them is connected with its deployment. Logical separation

Fig. 6 Sample architectures of

distributed CHAP approach for

described examples of pixel,

line and circle spatches with

information where the

successive CHAP steps are

performed and what kind of

knowledge is sent between

nodes (numbers and letters
refer to the images presented

in Sect. 3)

Fig. 5 A sample architecture of a distributed system of image

interpretation based on the discussed CHAP approach. A initial node;

B automated node extracting initial knowledge; C automated object

extractor; D human verifier of objects recognised by C; E and F
addition nodes, human and automated, respectively
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and transparency of analysis steps allow remote node

deployment, bringing flexibility in both computational and

human resources management. What is more, the method

facilitates allocating human experts to subtasks of various

granularity and level of complication, which enables

effective use of their knowledge and abilities that are

currently unattainable for automated agents. As a result, if

properly implemented, the method presented may boost

both quality and speed of an analysis process allowing for

limited resources.

It is worth emphasizing that the distance/distributed

medicine can also benefit from the construction and fea-

tures of the described methodology. As shown, each CHAP

step can be easily performed in a different methodology. It

is a great advantage in a world where more and more

images must be analyzed.
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