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Abstract Most approaches to recognize human activities

rely on pattern recognition techniques that are trained once

at design time, and then remain unchanged during usage.

This reflects the assumption that the mapping between

sensor signal patterns and activity classes is known at

design-time. This cannot be guaranteed in mobile and

pervasive computing, where unpredictable changes can

often occur in open-ended environments. Run-time adap-

tation can address these issues. We introduce and formalize

a data processing architecture extending current approa-

ches that allows for a wide range of realizations of adaptive

activity recognition systems. The adaptive activity recog-

nition chain (adARC) includes self-monitoring, adaptation

strategies and external feedback as components of the

now closed-loop recognition system. We show an adARC

capable of unsupervised self-adaptation to run-time

changing class distributions. It improves activity recogni-

tion accuracy when sensors suffer from on-body displace-

ment. We show an adARC capable of adaptation to

changing sensor setups. It allows for scalability by enabling

a recognition systems to autonomously exploit newly

introduced sensors. We discuss other adaptive recognition

systems within the adARC architecture. The results outline

that this architecture frames a useful solution space for the

real-world deployment of adaptive activity recognition

systems. It allows to present and compare recognition

systems in a coherent and modular manner. We discuss the

challenges and new research directions resulting from this

new perspective on adaptive activity recognition.

1 Introduction

Recognizing human activities and gestures1 (Davies et al.

2008) is important in pervasive computing (Weiser 2002),

wearable computing (Mann 1998) and in human computer

interaction (HCI) (Myers et al. 1996). It enables systems

capable of pro-actively supporting users with just-in-time

assistance, systems responding to natural interactions, or

systems mining daily life patterns.

On-body sensing is emphasized in wearable computing,

mobile computing and HCI as it allows to devise smart

assistants or smart interfaces that do not require ambient

infrastructure, and thus that work anywhere. A wide range

of sensing modalities are now available, supported by

technological advances that enable the large scale

deployment of highly miniaturized, unobtrusive and inter-

connected (wireless) sensor systems (Benini et al. 2006) in

our living environments, in devices we carry with us, and

even in our outfits. We focus here on activity recognition

from on body sensors with sporadic use of simple ambient

sensors (e.g. presence, movement, contact switches).2

1.1 Problem statement

A relatively standard set of processing stages has emerged

as the dominant approach for activity recognition (Bao

and Intille 2004; Ward et al. 2006). We refer to this as the
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1 Sometimes also called behavior recognition, machine recognition

of human behavior or activities.
2 Vision-based approaches to activity recognition are also common

(Mitra and Acharya 2007; Turaga et al. 2008). We do not consider

these approaches here as they require specifically deployed ambient

infrastructure and the methods differ significantly from activity

recognition using on-body sensors.
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activity recognition chain (ARC, see Fig. 1 and for details

Sect. 2).

A key assumption underlying current ARCs is that there

is a mapping between sensor signal patterns and activity

classes that is known at design-time and remains identical

at run-time. ARCs may tolerate some signal variability

(e.g. hand gestures corresponding to a specific activity are

always slightly different) but this must be taken into

account at design time.3 This assumption is unrealistic for

real-world use of activity recognition, as envisioned in

pervasive, mobile and wearable computing. In such open-

ended environments, changes that are unpredictable can

occur. Even with predictable changes, it may be unrealistic

(experimental- or cost-wise) to collect design-time datasets

comprising all the variability against which the recognition

system must be immune at run-time.

In particular, the ARC is challenged to deal with the

following situations, where the mapping between the sen-

sor signal patterns and the activity classes can vary at run-

time and is usually hard to predict or even unknown. Yet,

such variations are likely in a long- running activity rec-

ognition system:

• Placing on-body sensors in the exact same place and

orientation day after day is not realistic. It limits the

comfort and appeal of a wearable assistant. Sensor

placement is rather likely to vary. The user may decide

to change the location of a sensor-enabled device (e.g.

in different pockets) or displace it from its nominal

position (e.g. moving a bracelet on the arm). Sensor

may also be displaced involuntarily (e.g. sensor slip-

ping on the arm).

• The behavior of a user may change over time, e.g. due

to aging (Winter et al. 1990) or increased proficiency at

a task. Also, preferences and motor-action strategies are

usually specific to an individual (Lester et al. 2006).

• The sensing infrastructure may change over time. New

sensors may be introduced that are unforeseen at design-

time. For instance, the user may buy a new sensor-

enabled piece of clothing, or the infrastructure of a

building may be upgraded with new sensing capabilities.
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Fig. 1 The adaptive activity recognition chain (adARC, the overall

system) builds upon the classical activity recognition chain (ARC,

bottom left box). The ARC is depicted with five sensors and the

typical processing stages. Data fusion is illustrated here at the feature,

classifier, or decision level. The outcome of the recognition chain is

the recognized activity that is used in an activity-aware application

with which the user interacts (bottom right). The adaptive activity

recognition chain adds to the ARC the components of self-monitor-

ing, adaptation strategies, and exploitation of available feedback

(gray area) which interacts with the ARC, the user, and external

systems (gray arrows). Self-monitoring identifies relevant changes in

the activity recognition system’s performance or the situation in

which it operates. Accordingly, adaptation strategies control the

parameters of the activity recognition chain to perform in the current

situation. The adARC capitalizes on available feedback to guide its

adaptation. Feedback sources include the user, the activity-aware

application, and external systems. The adARC is a closed-loop

dynamical system where the user is in the loop

3 This is usually realized by collecting activity datasets comprising

all the variability likely to be observed at runtime. This is costly for

the developer of the system and the subjects providing activity

datasets, as they must repeat a set of activities a large number of times

in numerous sensor configurations. In some cases the number of

possible variations cannot be predicted or is too large to create such

datasets.
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These new sensors provide information that may be

relevant to the recognition problem and thus that should

be exploited, yet current ARCs cannot take advantage of

them.

• Finally, we argue that in our ever more sensorized

environments, for increased user comfort, ease of

system deployment, and scalability, the paradigm of

activity recognition should shift from using sensors

specifically deployed for an application, to using

sensors that just happen to be present around the user.

We refer to this as opportunistic activity recognition,

capitalizing on recent advances in opportunistic sensing

(Conti and Kumar 2010). This requires to develop a

new kind of ARC that are able to cope with—and even

take advantage of—the highly dynamic and unpredict-

able availability of resources at run-time (see Roggen

et al. 2009; 2011a) for an insight into our approach).

1.2 Contribution

In this work we argue for a shift from a design-time stat-

ically defined ARC to a run-time adaptive ARC to address

the limitations of the state of the art.

We first detail the state of the art ARC derived from

representative examples of activity recognition systems in

Sect. 2, and explain how state of the art approaches attempt

to address its limitations.

In Sect. 3 we then introduce and formalize a pattern

analysis (data processing) architecture extending current

ARCs and that allows for a wide range of realizations of

adaptive activity recognition systems: the adaptive activity

recognition chain (adARC). The adARC is inspired by the

principles of autonomous computing, and organizes a class

of solutions to adaptive activity recognition by extending

the ARC with self-monitoring, adaptation strategies and

exploitation of external feedback as key components. The

adARC is a closed-loop dynamical system whereas the

ARC is an open-loop system. It adapts its future behavior

(e.g. changing classifier decision boundaries) based on past

classification results and activity occurrences. Thus it is

well suited to adapt an activity recognition system at run-

time when hard to predict changes may occur.

We demonstrate this architecture in two specific cases

illustrating different aspects of adaptation. In Sect. 4 we

show an adARC with unsupervised classifier self-adapta-

tion where, upon re-occurring activity instances, class

decision boundaries are adjusted through self-supervised

online learning. We show that self-adaptation increases

activity recognition accuracy when sensors are displaced

on body segments compared to a non-adaptive approach.

In Sect. 5 we show an adARC with principles of

autonomous evolution that allows an activity recognition

system to expand onto sensor nodes newly introduced in

the system. These new sensor nodes are initially not

capable of activity recognition. Through repeated interac-

tion with the pre-existing system, they autonomously learn

to recognize activities. This allows the activity recognition

system to operate in the new sensor environment without

the system’s designer or the user’s intervention.4 It can

confer fault-tolerance or self-repair capabilities to ambient

intelligence environments,5 or reduce ambient intelligence

deployment effort. This supports scalable, robust and long-

term operation of activity-aware systems.

We discuss the results in Sect. 6. In particular, the ad-

ARC architecture provides a descriptive frame suitable to

accommodate other adaptive activity recognition systems.

It allows the description and comparison of methods in a

coherent and modular manner. We show that recent

adaptive recognition systems by other groups can be

described within the adARC architecture. We also argue

that capturing the data processing structure of an adaptive

activity recognition system in a generic architecture will

support the development of software framework specifi-

cally dedicated to host the pattern analysis methods

required for adaptive activity recognition. We discuss the

benefits and challenges of the adARC and outline new

research directions. Finally, we conclude in Sect. 7.

2 Related works

In this section we review a few representative works in

human activity recognition systems. From these work, we

derive a common data processing architecture which is

followed by most work and which we refer to as the ARC.

We evidence the limitations of the ARC in coping with

activity recognition in open-ended environments or situa-

tions where the user’s motor-action strategies or preferences

change over time. We explain how state of the art methods

attempt to address this, while retaining the ARC architec-

ture, and we explain the ultimate limitations thus resulting.

2.1 Activity recognition: representative works

A large number of methods for activity recognition have

been proposed by the wearable, mobile and pervasive

computing communities. These methods were applied to

4 That is the designer of the system is not involved when a new

sensor configuration appears: the system can autonomously use the

new resource after some time. Also, the user is not requested to

explicitly provide training data for the system to be able to use the

new sensor.
5 We use ambient intelligence to describe activity- (or context-)

aware systems that rely on sensors placed on-body, in object, or in the

environment for activity recognition.
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activities ranging from simple isolated gestures or modes

of locomotion up to complex and hierarchical activities.

A large number of sensors suitable for on-body usage have

been proposed, including acceleration sensors, micro-

phones, or inertial measurement units. A few representative

examples of this diversity are provided here and further

examples can be found in Bao and Intille (2004):

• the recognition of complex manipulative gestures

performed by industrial workers on a car body to

check its functioning (Stiefmeier et al. 2008), with

gestures including checking the hood latch mechanism,

checking the seat sliding mechanism, and checking the

spacing between doors and car body, from sensors

including seven inertial measurement units;

• the recognition of seven modes of locomotion (sit,

stand, walk, walk upstairs, walk downstairs, ride

elevator up, ride elevator down) from one accelerom-

eter (Lester et al. 2006);

• the recognition of the assembly steps of a shelf or a

mirror from accelerometers (Blanke and Schiele 2010),

and the recognition of nine wood-making activities

(hammering, sawing, filing, drilling, sanding, grinding,

screwing, using a vise, operating a drawer) from one

accelerometer and a microphone (Ward et al. 2006);

• the recognition of five hand gestures (square, cross,

circle, fish, bend) for HCI from one accelerometer

(Kallio et al. 2006);

• the recognition of sports activities in a fitness room

from inertial sensors (Kunze and Lukowicz 2008).

The design of a recognition system starts by the selec-

tion of a set of sensors based on the activities to recognize.

Many on-body sensor modalities can be used. Motion

sensors (inertial measurement units or accelerometers) are

among the most common sensing modalities (Kallio et al.

2006). Another very common sensor is the microphone

(Ward et al. 2006), as many human activities generate

characteristic sound patterns. Other modalities include, e.g.

textile integrated sensors (Tognetti et al. 2006), or elec-

tromyography (Chen et al. 2007). A key design choice is to

select sensors that discriminate well the activities of

interest, that are comfortable for the user, and that mini-

mize the computational complexity of the data processing,

to ensure low-power and miniaturized implementation. In

Roggen et al. (2010b, 2011b) we present a more exhaustive

list of sensors used for activity recognition. Given these

sensors, signal processing, machine learning, or reasoning

techniques are used to infer the activities from the sensor

data. Despite the wide variety of sensors and activities,

most of the representative work cited here uses a common

data processing architecture. We refer to it as the ARC. It is

a roughly common processing structure that has emerged

across most published work in activity recognition (Bao

and Intille 2004; Figo et al. 2010; Ward et al. 2006). We

detail it in the next section.

2.2 The activity recognition chain

The ARC infers the activities that the user performs based

on the data from the body-worn sensors. At design time,

the ARC is devised based on the activities or gestures to

infer, and the selected on-body sensors (see Fig. 1).

Exemplary activities or gestures performed by users at

design time (i.e. a training dataset) are used to define

activity models and optimize the operating parameters of

the ARC. At run-time, the ARC essentially ‘‘compares’’ the

streaming sensor signals to the activity models. It identifies

sensor patterns matching sufficiently the activity models to

indicate that an activity has been ‘‘spotted’’. The ARC

operates as follows:

Sensor data acquisition A time series corresponding to

the sensor data is obtained. Since sensors can provide

multiple values (e.g. an acceleration sensor provides a 3D

vectorial acceleration), or multiple sensors are jointly

sampled a vectorial notation is used.

S ¼ fs0; s1; s2; . . .g

Signal pre-processing. The time series S leads to a pre-

processed time series P:

P ¼ fp0; p1; p2; . . .g

Typical transformations are calibration or de-noising.

Segmentation of the data stream into sections of interest

likely to contain a gesture. Segment i is delimited by its

start time ti
s and end time ti

e within the time series, yielding

a segmented time series Wi:

Wi ¼ fpts
i
; . . .; pte

i
g

A common type of segmentation technique is the sliding

window (for periodic movements) or energy-based or rest-

position based segmentation, when the user performs iso-

lated gestures or returns to a rest position between gestures.

Feature extraction Features are computed on the iden-

tified sections to reduce their dimensionality and discrim-

inate activities of interest. The result is a feature vector Xi:

Xi ¼ WðWiÞ

Classification of the feature vector Xi into an output

class (activity) ci:

Xi ! ci; pi

Usually, classification also yields an indication as to the

confidence in the resulting class. This is often a probability

pi with Bayesian approaches, and many classifiers can be

calibrated to provide probabilistic outputs (Cohen and

Goldszmidt 2004).
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Decision fusion combines multiple information sources

(multiple sensors, or multiple classifiers operating on one

sensor) into a decision about the activity that occurred.

‘‘Null-class’’ rejection In cases where the confidence

in the classification result is too low, the system may

discard the classified activity i based on pi, in the sim-

plest case by comparison to a threshold or using statis-

tical approaches.

Before operation, the classifiers used in the ARC are

trained using a training set D containing data instances

(feature vectors) x and the corresponding label c:

D ¼ fðxi; ciÞgN
i¼1

Other parameters, such as the thresholds to segment

activities or reject the null class, or the set of features are

also optimized prior to operation. Once specified and

trained, the ARC remains unchanged throughout operation

of the activity-aware system. In order to tolerate some run-

time signal variability despite the static nature of the ARC,

the training set D must comprise the variability likely to be

seen at run-time.

A wide range of method can be used at each stage. It is

outside of the scope of this paper to mention them all. A

few of the most common methods for features extraction

and segmentation are reviewed in Figo et al. (2010). The

selection of other parameters and methods depends on the

characteristic of the activities. For activities that are of

periodic nature (e.g. walking, running, bicycling, rowing,

hammering, tightening a screw) a sliding window seg-

mentation is generally used. The features that are used are

selected in the frequency domain to capture the repetitive

nature of the activity (e.g. zero or mean crossing rate,

power spectrum, dominant frequency, Figo et al. 2010).

These features are selected so that the activities form

separable clusters in the feature space. The typical classi-

fiers then used to distinguish these activities include sup-

port vector machines (Qian et al. 2010), decision trees,

k-nearest neighbor or naive Bayes classifiers (Randell and

Muller 2000). When ‘‘activities’’ are static postures (e.g.

stand, sit, lie, when taking specific postures in a rehabili-

tation scenario, or when pointing a location) a sliding

window approach is also commonly used with time-domain

or statistical features (e.g. limb angle or angle between

several limbs, mean of acceleration). Similar classifiers are

used as for periodic activities. When the activities are

sporadic (i.e. they are short and occur interleaved with

other activities which the system does not need to recog-

nize) then segmentation and classification techniques that

take the temporal unfolding of the sensor signal into

account are used. These segmentation and classification

techniques include, e.g. hidden Markov models (HMMs)

(Deng and Tsui 2000; Starner et al. 1998), dynamic time

warping (Ko et al. 2005; Stiefmeier et al. 2008), methods

based on feature similarities (Keogh et al. 2001), or neural

networks (Yang et al. 2008).

Generally multiple sensors are improving recognition of

complex real-world activities (Stiefmeier et al. 2008).

Multiple sensors are often combined with ensemble clas-

sifiers (Polikar 2006). Further methods are mentioned in

Figo et al. (2010), Bao and Intille (2004) and Roggen et al.

(2011b).

2.3 Limitations of current approaches

Regardless of the specific methods used, the ARC require a

mapping between the sensor signals and the activity classes

that is known at design-time and remains identical at run-

time. ARCs may tolerate some signal variability but it must

be taken into account at design-time. This is not suitable

for real-world activity recognition in open-ended environ-

ments, as envisioned in pervasive, mobile and wearable

computing. There, unpredictable changes tend to occur.

The dominant approach to cope with variability in the

sensor-signal to activity-class mapping, given a static

ARC, is to build generic activity models. Improved toler-

ance to on-body sensor placement variability has been

investigated by collecting training datasets from all the on-

body positions of interest, and extracting features dis-

criminative of the activities of interest on all body locations

(Lester et al. 2006). Another approach is multistage clas-

sification, where first on-body sensor placement (Kunze

et al. 2005) and orientation (Kunze et al. 2009) is detected

in order to select an ARC appropriate for the current sensor

configuration. Features that are robust to displacement can

also be designed using body models (Kunze and Lukowicz

2008). Robustness to variability in motor-action strategies

between users and within users is also generally tackled by

collecting rich datasets covering the variability likely to

occur during system operation (Lester et al. 2006). Bio-

mechanical models can also be used (Parvini and Shahabi

2005). Building more generic activity models is experi-

mentally costly as it requires acquiring data from all sensor

configurations that are likely to occur at run-time and from

a large number of users to cover all the motor-action var-

iability that underlies the richness of human activities. In

some cases it may even not be possible to foresee the

variability likely to occur at runtime. Generic models also

may limit the number of classes that can be distinguished,

as they tend to lead to overlapping class distributions in the

feature space. An initial calibration phase may be used to

adjust the system to new operating conditions. This has

been investigated in speech recognition (Tang et al. 2008),

EEG-based brain–computer interfaces (del R Millán 2004),

writing recognition (Huang et al. 2009), and recently in

activity recognition in wearable computing (Ohmura

et al. 2009). The calibration requires user supervision and
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therefore such approaches are not well suited for an

unobtrusive system.

So far there has been little work in devising systems

capable of exploiting new sensors without any training

data, and adapting to changing resources. Theoretical

insights from transfer learning have the potential to fill this

gap (Pan and Yang 2008). A statistical ‘‘concept matching’’

was proposed to infer the meaning of a new sensor com-

pared to pre-existing ones as a way to transfer activity

recognition systems across different, but related, smart

homes (van Kasteren et al. 2010). Semi-supervised learn-

ing approaches were proposed to collect sparse labels in

daily life to annotate and train recognition systems (Stikic

et al. 2009). Such approaches have been proposed for a

more convenient design-time training of recognition sys-

tems. They do not address the autonomous run-time

exploitation of newly discovered resources. Other fields

have considered the issue of handling changing resources,

but not for activity recognition. Nevertheless it is worth

mentioning frameworks in pervasive computing pursuing

self-organized data ecologies to ensure availability of ser-

vice (Bicocchi et al. 2009). In modular robotics, self-

assembly of new modules is pursued to allow robots to

self-reconfiguration and self-repair (Gross and Dorigo

2008). In bio-inspired electronics, new resources provide

self-repair and self-replication capabilities (Stauffer et al.

2001). In artificial life and bio-inspired systems, the growth

of multi-cellular systems onto new resources is a key

component towards scalability and robustness (Roggen

et al. 2007; Streichert et al. 2003).

3 Adaptive activity recognition chain

Autonomous adaptation has been previously proposed to

allow for systems to operate in complex, hard to predict or

changing situations in image processing (Vanzella et al.

2004), evolvable hardware (Miller 2003; Roggen et al.

2007) or evolutionary robotics (Floreano and Keller 2010).

It belongs to the broader class of optimization methods in

uncertain environments (Jin and Branke 2005) or in

dynamic environments (González et al. 2010). These

methods are a foundation for autonomous operation

(Kephart and Chess 2003). A common underlying charac-

teristics of these approaches are usually closed-loop

dynamical systems, running continuously, and constantly

adapting their future behavior based a monitoring of their

own internal states, behaviors, external inputs, past deci-

sions, and if available a ‘‘reward’’ signal.

Inspired by the principles of autonomous computing, we

present here a novel pattern analysis architecture for

the problem of adaptive activity recognition where the

sensor-signal to activity-class mapping is subject to adap-

tation during operation. Thus, upon detection of activities,

the ARC may adapt its behavior (e.g. change its class

decision boundaries) or structure (e.g. include additional

sensors in the processing chain). The ARC thus becomes a

closed-loop dynamical system. We refer to it as Adaptive

Activity Recognition Chain or adARC. We illustrate the

structure of the adARC in Fig. 1. As is the case with the

ARC, the adARC does not define a specific set of methods,

but rather defines processing principles. The adARC builds

on top of a classic ARC. It includes in addition system self-

monitoring, adaptation strategies, and exploitation of user

or external feedback, in a closed-loop dynamical system.

We describe below the general function of each of these

elements. In the next sections we exemplify two specific

instances of adARCs.

3.1 System self-monitoring

Self-monitoring estimates the suitability of the system at

recognizing activities in the environment where it currently

operates. This can be used to guide system adaptation, rate

the confidence of the system’s decisions, or prompt the user

for action. Self-monitoring assumes there is no external

ground truth that can be used to compare the effective

system behavior against the desired behavior. Thus, the

system must observe its own dynamics. Heuristics, change

detection and statistical approaches may be used for self-

monitoring (see Sect. 6 for a discussion of self-monitoring

methods). In essence, self-monitoring provides a signal

guiding adaptation.

3.2 Adaptation strategies

The adaptation strategies adjust the parameters of the

adARC in order to perform under the current operating

conditions. Relevant methods include, e.g. adaptive filter-

ing, evolutionary computation approaches, reinforcement

learning, or adaptive classifiers. Each stage of the adARC

may be subject to adaptation. For instance, the set of sen-

sors participating to activity recognition may be updated to

replace faulty sensors. Classifier decision boundaries may

be adjusted through incremental learning, and decision

fusion may update the weights assigned to individual

classifiers.

Formally, the adaptation rule by which the model nci
of

class ci is updated at the ith activity instance can be

expressed as:

nci
ðiþ 1Þ ¼ f ðL; nci

ðiÞ;Xi; ciÞ; ð1Þ

L is the learning rate and controls the trade-off between

adaptation rate and stability of the models.
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3.3 User and external feedback

In pervasive and wearable computing the user is an actor in

the context-aware system and he has the possibility to

provide input to the system, for instance by a mobile user

interface. Such feedback can be used to guide the system

adaptation according to the user’s preferences. Current

systems rarely attempt to exploit user feedback as this is

generally obtrusive.6 However, this is a matter of devising

adaptation strategies that can take advantages of mini-

malistic forms of feedback, provided only sporadically by

the user. In some cases, implicit feedback can be captured

as the user’s reaction to the behavior of the system may

indirectly indicate how the system performs (e.g. a user

being frustrated by a gestural interface may tend to perform

more nervous gestures). In Sect. 6 we give example of

forms of feedback using explicit user interaction, and

implicit feedback that is provided without conscious user

intervention via a brain–computer interface.

This component of the adARC has for goal to collect

occasional sources of feedback from the user or other

systems that are suitable to guide the system adaptation.

Thus it comprises interface design for the acquisition of

explicit feedback, or the implicit inference of feedback

from suitable sensor modalities. A typical feedback may be

for the user to signal moments when the system did not

behave as expected, and optionally to indicate the desired

behavior. When an activity recognition system is part of a

larger infrastructure, complementary sources of informa-

tion may provide this feedback. For instance a calendar or

meeting minutes provide information about the presence of

a person in a meeting that can be used as ground truth

feedback for an activity recognition system (see e.g. Lovett

et al. 2010) for the use of a calendar as ground truth

information).

4 adARC for unsupervised self-adaptation

We present an adARC with online unsupervised classifier

self-adaptation as adaptation strategy (see Fig. 2). Upon

re-occurring context occurrences, the class decision

boundaries are adjusted to better reflect the class statistics,

effectively adapting to class drift in the feature space, akin

to an expectation maximization principle.

We show this adaptive strategy in the recognition of

activities despite variability in sensor placement (e.g.

sensor slipping). This slipping typically leads to class dis-

placement in the feature space which affect the recognition

accuracy if the activity models are not adapted.

4.1 adARC characteristics

The ARC underlying the adARC is a nearest class center

(NCC) classifier capable of incremental learning. NCC is

commonly used in wearable computing due to its low

complexity and its suitability for low-power embedded

devices (Roggen et al. 2006).

Self-monitoring controls the operation of the adARC.

Under normal operation the adARC behaves as a non-

adaptive ARC (trained to operate with a pre-defined sensor

position). We simulate here self-monitoring by automati-

cally enabling adaptation whenever sensor displacement

occurs. This is comparable to a user noticing a degrading

system performance and triggering the self-adaptation.

Alternatively self-monitoring could enable adaptation

when the sensors are first worn (displacements compared to

nominal position are expected each time a sensor is worn).

The latter two alternatives map to the user or external

feedback envisioned in the adARC architecture.

In adaptive operation the system continuously classifies

the feature vectors Xi yielding classification results ci and

adapts the activity model using this ‘‘self-labeled’’ sample

ðXi; ciÞ with supervised online learning. For the NCC

classifier the online learning function is:

Cci
ðiþ 1Þ ¼ ð1� LÞ � Cci

þ L � Xi ð2Þ

with Cc the center of class c and L the learning rate. In the

following L is constant: L = 0.3.

4.2 Validation on a fitness activity dataset

We characterize this adARC on the recognition of physical

activities in a fitness scenario, with the NCC classifier

and parameters indicated above. The occurrence of fast

and repetitive movements may easily lead to sensor

displacements.

We simulate the sensor displacement. We recorded the

acceleration of the left leg for six typical aerobic move-

ments (Fig. 4) from ten wireless acceleration sensors7 at

the subjects leg (Fig. 3). We placed the sensors at equal

intervals and with the same orientation. An experienced

subject copied the movements of a teacher shown in a

video. The video, containing six activity classes of equal

duration, lasted 4:22 min. The subject repeated the session

five times.6 Exceptions are the use of ‘‘experience sampling’’ and semi-

supervised learning approaches, where users sporadically label their

activities as they are executing them (Stikic et al. 2009). This is

however a form of input used to train the system at design time, rather

than an online use of feedback to adapt the system’s behavior at run-

time.

7 Triaxial accelerometers, Analog Devices ADXL330, sampled at

64 Hz. The sensors are open hardware and described in Roggen et al.

(2010a).
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For the data of each sensor we calculated the accelera-

tion magnitude and extracted mean and variance features

based on a sliding window of 8 s with two-thirds of

overlap.8 The class distribution in the feature space is

depicted in Fig. 5. The class distributions are more similar

for adjacent sensor positions than for sensor positions

further apart.

We simulate the adARC with classifier self-adaptation

by training classifiers on the data from sensor position

s and by using data obtained from sensor position t for

adaptation (using Eq. 2) and testing (we consider the 5

sensors on the lower leg, similar results are obtained for the

upper leg). We apply a threefold cross validation, using

two folds to adapt the classifier on the new sensor position

and one fold to test the adapted classifier model. The data

samples used for the adaptation are picked randomly from

all classes and are not presented in any specific order. The
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Fig. 2 Principle of the adARC

with unsupervised classifier

self-adaptation (gray the

extension compared to a

traditional ARC). Upon

recognition of an activity

instance ci, the adaptation

strategy consists in re-training

the ARC classifier using online

learning with the self-labeled

data sample (Xi; ci). This is a

form of expectation

maximization. Self-monitoring

controls the start and stop of the

adaptation process. Optionally,

user feedback may enable

adaptation

Fig. 3 Placement of ten

wireless acceleration sensors in

the fitness scenario: five at the

thigh and five at the lower leg

Fig. 4 The fitness scenario includes six classes: (1) flick kicks, (2)

knee lifts, (3) jumping jacks, (4) superman jumps, (5) high knee runs,

(6) feet back runs. For each class, the extent of the body movements is

shown on two rows

8 We selected on purpose a two-dimensional feature vector for the

lesser computational costs incurred in wearable activity recognition

systems, and at the same time it simplifies visualization of the feature

space.
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accuracies obtained when training a classifier on one body

location and testing it on the same location (t = s) is in

average 83.0%. If we test on the direct neighboring sen-

sors |t - s| = 1 the average accuracy drops to 65.7%. If

we test on sensor positions which are even further apart

(|t - s| [ 1) the accuracy of the classifiers trained on

s decreases to 42.0%.

The adaptation results are illustrated in Table 1 and

Fig. 6. In the figure, all the points above the diagonal

represent configurations where adaptation was beneficial.

The adaptation of classifiers operated on displaced sensor

positions on the lower leg is beneficial in most of the cases

(average of 13.4% relative performance improvement on

displacements to the immediate neighboring position,

20.5% on further away positions). Good classifiers on

displaced sensor position (in this case above 70%) are less

likely to benefit from adaptation.

The conditions under which self-adaptation is beneficial

is function of the separability between the classes and the

amount of class displacement in the feature space with

respect to the nominal distribution (Förster et al. 2009).

Well separated activity classes tend to benefit more from

adaptation than when class distributions overlap. On the

other hand, the improvement potential brought about by

self-adaptation is lesser with well separated classes as

classifiers tend to be more robust and have a higher initial

accuracy before adaptation. This is illustrated in Table 1

where we repeat this analysis on a reduced four-class

dataset where the confusing classes 1 and 3 are removed. In

this case sensor displacement has less influence on the

accuracies of classifiers working on displaced sensors

compared to the full dataset, due to the better separability

of the classes.

In Fig. 7 we show an example of the adaptation

dynamics for the full datasets. For the confused class 4 the

calibrated class centers do not end up close to the optimal

class center. This is a typical case where less class sepa-

ration (here between classes 3 and 4) confuses the self-

adaptation. Here only one class center benefits, (class 3).

Some class centers (e.g. for class 6) end up quite far from

the optimal class centers even though their paths seem to

lead directly to the optimum. This indicates that an insuf-

ficient number of activity instances were used for the self

adaptation so that the optimal class centers could be

reached (i.e. this means that sufficient operating time is

required before the benefit of adaptation is fully realized).

class 1: flick kicks
class 2: knee lifts
class 3: jumping jacks

class 4: superman jumps
class 2: high knee runs
class 3: feet back runs

Fig. 5 Class distributions in the feature space with visible differences

from sensor to sensor. Each point represents one activity instance of

the dataset

Table 1 Accuracies without

adaptation and with adaptation

with the relative improvement

brought about by the adaptation

The improvement is given

relative to the accuracy before

adaptation

Accuracy t = s |t - s| = 1 |t - s| [ 1

l r l r l r

Fitness dataset (6 activities)

w/o adapt. (%) 83.0 5.7 65.7 4.1 42.0 9.1

w/ adapt. (%) 82.8 5.9 74.4 9.9 49.5 9.4

Rel. imp. (%) -0.2 1.8 13.4 14.8 20.5 23.1

Reduced fitness dataset (4 activities)

w/o adapt. (%) 95.1 3.4 89.4 4.8 67.3 9.5

w/ adapt. (%) 95.4 3.6 95.8 3.6 69.8 10.8

Rel. imp. (%) 0.4 4.0 7.2 5.1 4.1 12.6

Fig. 6 Accuracies after adaptation versus the accuracies before

adaptation for all sensor displacement combinations for the full

fitness dataset
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In Förster et al. (2009) we characterized this approach in

a HCI gesture recognition system with similar benefits, and

we modeled the approach on a synthetic dataset.

5 adARC for autonomous exploitation of changing

resources

Here we envision a system able to expand the activity

recognition capabilities onto new resources discovered in

the user’s surrounding, akin to organic growth or self-

replication investigated in simulated organisms and bio-

inspired hardware (Stauffer et al. 2001; Tempesti 2007).9 It

may also allow for fault-tolerance or self-repair by having

new resources replicating and replacing the behavior of

pre-existing ones.

The adARC introduced here exemplifies a recognition

system capable of coping to changes in sensor infrastructure

(Fig. 8). The adARC is distributed on several networked

sensor nodes called ContextCells. A ContextCell contains

sensor(s) and a corresponding adaptive recognition chain.

When it detects an activity instance it exchanges the class

label with its neighbors. Upon reception of labels from its

peers, a ContextCell incrementally learns the mapping

between the signal measured on its sensor and the received

class label.

We demonstrate this adARC in a scenario where a

wearable system, unable to recognize activities, learns

autonomously to do so when the user interacts with

instrumented furniture.

5.1 adARC characteristics

The ARC underlying the adARC is an NCC classifier (see

Sect. 4). Self-monitoring encompasses networking aspects

for the coordinated emergence of a sensing network so that

ContextCells autonomously form a networked ensemble

and can exchange information with each other. We assume

that this is addressed using existing technical solutions.10

Self-monitoring also controls the learning rate to

achieve a specific stability-plasticity trade-off. Here self-

monitoring ensures that newly introduced ContextCells

learn until a given number of activity instances of each

classes are observed. Afterwards the activity models do not

adapt.

The ContextCell recognizing an activity instance

i broadcasts the start and end time of the activity ti
s and ti

e

and the label ci associated with it. The ContextCells

receiving this information compute the sensor signal fea-

ture Xi on the segment between ti
s and ti

e and updates the

model of class ci. Upon first reception of a label of class

c, a new activity class model is created. Upon reception of

a label corresponding to an existing activity model, this

model is updated following Eq. 2. Here, L ¼ 1
ncþ1

: nc is the

number of received instances for class c.

In principle, all ContextCells continuously perform

activity recognition and adaptation and the ensemble of

ContextCells is a dynamical system. When all ContextCells

are able to recognize the same set of activities, the behavior

of this adARC bears similarities to the unsupervised self-

adaptive adARC but in a distributed manner.

5.2 Validation: expanding activity recognition

to new resources

We consider a simple storage management scenario, in

which a user opens and closes drawers in order to store

o
*

data sample
calibrated class center
uncalibrated class center
optimal class center
adaptation path

+

Fig. 7 Adaptation paths of the class centers during adaptation shown

for a NCC classifier trained on sensor position 1 and calibrated on

sensor position 2 for the full fitness dataset

9 A number of application scenarios benefit from this. For example, a

user performs a short stay in a rehabilitation center with activity-

aware assistance provided by sensors placed in the environment. He

eventually expects the same level of assistance when he is at home or

on the move. His own wearable system can automatically learn how

to recognize and react to the relevant activities during the user’s stay

in the instrumented environment. This happens without user or expert

intervention, using the resources that the patient happens to have in

his body-area network. Another case is when labeling the user’s

activities must be done without the presence of an experimenter or of

video cameras for privacy reasons, such as when developing a

wearable assistant for activities of daily living, or to avoid

conditioning the behavior of the user by the presence of the

experimenter.

10 For example Zigbee wireless protocol provides some self-organi-

zation capabilities, and this is the object of active research (Beal and

Bachrach 2006; Dressler 2007).
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goods in them. The activity classes are instances of

‘‘opening drawer’’ and ‘‘closing drawer’’ for 13 closely

spaced (5–15 cm) drawers in a drawers set. The recogni-

tion goal is to classify these 26 tasks. Each drawers is

instrumented with a trained Ambient ContextCell (a.k.a.

trainer cell, initially capable of activity recognition) con-

taining an accelerometer. The subject wears three wearable

ContextCells (a.k.a. learner cells, initially not capable of

activity recognition) with accelerometers on the mid-back,

shoulder and mid-arm (see Fig. 9).

As a simulation dataset, we collected a minimum of

ten instances of opening and closing each drawer. All

sensors are synchronously recorded at 100 Hz. The sig-

nals are manually labeled and segmented. Each instance

consists of a rest position, followed by the gesture

(opening or closing of the drawer) and ends with the same

rest position.

5.2.1 Ambient ContextCells

The ambient ContextCells placed on each drawer locally

classify based on the acceleration data whether the

drawer to which they are attached is being opened,

closed or left untouched. An NCC classifier in the

ContextCells is trained offline to detect the opening/

closing of the drawer or no action (3-class problem).

Three feature sets are used (FS1, FS2, FS3) for com-

parison purposes.11

Table 2 shows the average accuracy obtained by the

ContextCells mounted on the drawers for each feature set.

Classification accuracy varies between individual drawers.

Mechanical coupling between the drawers makes the

classification challenging as the interaction with one

drawer generates strong vibrations throughout the drawer

set.

5.2.2 adARC simulation

We simulate the behavior of the adARC when the user

interacts with the drawers. To account for the many ways

in which drawers can be activated, the instances in the

dataset are randomly shuffled in a run to simulate a casual

sequence of opening and closing of the drawers. The data is

partitioned into a training and test set with a 4–1 size ratio

between them. We perform 2,000 simulation runs and

average the results.

Autonomously evolving AARC

Context

P S F C

A M F

P S F C

A M F

P S F C

A M F
ContextCell

ci

(ci,ti
s,ti

e)

Activity-aware application
ARC

after decision fusion
Recognized activity

Decision fusion

Fig. 8 The autonomously evolving adARC is distributed over several

sensor nodes or ContextCells. ContextCells contain a set of sensors

and a dedicated activity recognition chain (lower layer, the ARC

processing stages are indicated by P, F, S, C). Self-Monitoring

(M) allows ContextCells to form a sensing network, and exchange

information (upper layer). The user activity may be detected by a

single ContextCell, or after decision fusion (as depicted here). Upon

recognition of an activity instance (Feedback F), the ContextCell

notifies its peers of the time of occurrence and the label of the activity

(M). Upon reception of a notification, a ContextCell incrementally

updates the sensor signal to class mapping (Adaptation A). In this

article we analyze a case where there are two ContextCells one

training the other one. Thus the learning ContextCell receives directly

the notification of activity occurrence from the trainer ContextCell

without going through the decision fusion block

11 The features outline characteristics of the signal linked to the

action performed on the drawers. They are: (1) variance of the

magnitude of the acceleration vector in five signal windows; (2)

variance of the x, y and z components of the acceleration vector in the

whole signal; (3) mean of the magnitude of the acceleration vector in

five signal windows.
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The sensor data corresponding to each instance of the

training set are successively presented to the ContextCells

on the drawers. In Fig. 10 we show the activities that are

recognized by each ambient ContextCell on the drawers in

one run. Each time an ambient ContextCell detects an

opening or closing, it transmits the action and drawer

number. The ContextCells may make conflicting classifi-

cations. When labels conflict, one label is chosen at random

for the training of the wearable ContextCell. Some drawer

actions may also be undetected.

We analyze the behavior of the mid-back wearable

ContextCell. The tilt of the mid-back sensor relates to the

bending of the subject when he reaches the various draw-

ers. We selected as feature vector the average tilt of the

acceleration sensor with respect to the vertical axis in five

signal windows, thereby capturing the temporal sequence

of movement of the user.

In Fig. 11 we show the temporal evolution of the NCC

classifier on the wearable ContextCells. New class centers

appear and their position is adjusted as more activity

instance are recognized by the ambient ContextCells. In the

initial steps many new centroids appear and there is major

displacement of existing ones. Then the centroids tend to

reach stable positions.

The performance of the wearable ContextCells is eval-

uated at each time step on the test set. In Fig. 12 we show

the evolution of the average accuracy with the three feature

sets used on the ambient ContextCells, and the upper bound

on the performance with accurate ground truth labels. The

performance of the wearable ContextCells relates to the

capacity of the ambient ContextCells at providing accurate

activity labels. However, the longer the interaction with the

environment and the better the classification accuracy

becomes. This outlines that it is important that the Con-

textCells operate on a long period of time. This is the

situation envisioned for this adARC, as changes in sensor

environments tend to occur on long time scales.

Overall, the activity recognition capabilities can be

expanded from the ambient to the on-body ContextCells by

repeated interactions between them. Eventually, as the

wearable ContextCell is capable of recognizing the rele-

vant activities of the user, the same context-aware assis-

tance can be provided to the user also outside of

instrumented environments. Further improvements may be

obtained by considering labels as noisy labels and taking

their label confidence into account in the learning rate

(Angluin and Laird 1988). We present in Calatroni et al.

(2009) further details on the technical realization of the

ContextCells. In Calatroni et al. (2011) we show how this

adARC can be used to transfer the capability to recognize

modes of locomotion from existing to newly deployed and

untrained sensors on the body, thus reflecting the situation

that a user faces when he buys a new and untrained sens-

orized gadget or garment, yet wants to keep the recognition

capabilities pre-existing in his current body-worn system.

6 Discussion

We discuss hereafter the two exemplary adARCs presented

in this paper. We then show in Sect. 6.3 that recently

proposed adaptive systems introduced by other groups fit

within the adARC architecture as well. We finally discuss

new research directions.

6.1 adARC for unsupservised self-adaptation

The unsupervised self-adaptive adARC is worth consider-

ing when a generic model cannot be obtained either due to

hard to predict or hard to model run-time variability, or

when a generic model leads to class confusions. In such

cases, it may also reduces design-time data collection and

modeling effort.

We expect this adARC to be advantageous under these

assumptions: the run-time variability cause the existing

classifier to under-perform on the new class distributions,

the classes remain separable in the new distribution, the

adaptation rate is matched to the speed at which the class

distributions change. We expect these assumptions to be

verified in a set of real-world problems. Besides adaptation

to changing sensor position, this adARC may be applicable

to: gradual changes in sensor characteristics (e.g. sensitivity

of a textile-integrated strain sensor as it degrades over time

due to washing and stress), gradual change in user behavior

(e.g. due to motor learning, aging, recovery from injuries),

adaptation to different users performing the same activity

but with some differences in motor-actions. This method is

not applicable to large (with respect to the distance between

Fig. 9 Setup: 13 drawers equipped with ambient ContextCells

(trainer) and 3 wearable ContextCells (learner) on body
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the classes in the feature space and the size of the activity

clusters), non-gradual changes.12 We showed this in the

case of the sensor displacement. Small displacements (up to

10 cm) are tolerated, whereas adaptation to displacement on

a longer distance, or across limb segments is not possible,

due to the significant change of the class mapping in the

feature space. As with other unsupervised approaches, the

adaptation rate needs to be adjusted to ensure the system

remains stable. This adARC bears some similarity to

growing neural gas or online k-means but it remains a

classification method, rather than a distribution represen-

tation or clustering method. This adARC can build upon any

classifier capable of incremental learning. We showed this

with incremental versions of the NCC, kNN and SVM

classifiers in Calatroni et al. (2011).

6.2 adARC for autonomous exploitation of changing

resources

This adARC may be used to train a wearable system

without the presence of experimenters (e.g. for privacy

reasons). It may also confer fault-tolerance and self-repair

capabilities to ambient intelligence environment. Deploy-

ment effort can be reduced, as the activity recognition can

autonomously expand onto new resources, as well as

expand to new activity classes, without re-programming of

the sensor nodes in the system. In larger-scale ambient

intelligence environments these characteristics are benefi-

cial to support scalability and robustness, and thus support

long-term operation of activity-aware systems in open-

ended environments.

Currently the set of features that is used is defined at

design-time based on expert knowledge of the expected

type of activities and sensor kinds. Future work should

consider how the set of features can itself evolve autono-

mously at run-time. Evolutionary computation approaches

for feature extraction have been proposed (Zhang and

Rockett 2009). The objective function might be defined as

the degree of agreement between the classification results

of multiple nodes. Other approaches of interest include,

e.g. Learn?? (Polikar et al. 2001) to adapt both features

and classifiers, incremental PCA to adapt the feature space

(Zhao et al. 2006). This adARC also bears some similari-

ties to transfer learning or inductive learning (Taylor and

Stone 2009).

6.3 Other instances of adARCs

The adARC architecture can be used to organize the

solution to other kinds of adaptive activity recognition

systems.

In Zappi et al. (2008) we presented an adARC distrib-

uted over a dynamic set of sensor nodes (as in Sect. 5). It

makes a trade-off between the recognition performance of

an activity recognition system and the operation time of the

system (energy use). Self-monitoring assesses whether

the current set of sensors allows to reach the desired

classification accuracy, and uses an adaptation heuristics to

recruit an adequate set of sensors to reach the desired

power-performance trade-off at run-time. Finally user

or application feedback can control the desired system

performance or operation time at run-time.

Recently other groups have proposed related systems

although they do not explicitly formalize them as an

instance of a broader pattern analysis architecture geared at

providing adaptivity to activity recognition systems. Bayati

et al. (2011) present another approach to cope with sensor

displacement. As the adARC presented in Sect. 4 it relies

on self-monitoring of the class distribution in the feature

space, and the adaptation strategy consists of expectation

maximization.

Rossi et al. (2010) presented a pervasive computing

system for unsupervised speaker identification with

Table 2 Classification accuracy of the ambient ContextCells for feature sets FS1–FS3

Ambient ContextCell (trainer) accuracy Wearable ContextCell (learner) accuracy

Individual best (%) Individual worst (%) Combined (%) Average (%) r (%)

GT 100 100 100 79 8.1

FS1 88 33 79 69 8.2

FS2 100 40 72 67 8.6

FS3 87 45 34 35 7.8

‘‘Individual best and worst’’ indicate the performance of the best and worst performing Ambient ContextCell for the 3-class individual drawer

action classification problem. ‘‘Combined’’ indicates the resulting performance of all 13 ambient ContextCells at detecting which of the 13

drawers is being opened or closed (single 26-class problem). The performance of the Wearable ContextCell (26-class problem) located on the

mid-back alone is indicated after the system autonomously expanded to it. ‘‘GT’’ is the upper bound performance of the wearable ContextCell

assuming perfect ambient ContextCell recognition

12 In that case, user-feedback could be exploited to update the class

centers and then come back to the unsupervised mode. We explored

implicit user feedback with a brain–computer interface system in

Förster et al. (2010a) and an explicit user feedback by means of a

push-button in Förster et al. (2010b).
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autonomous incremental learning of new speakers in a

collaborating set of microphones. Their approach follows

the adARC presented in Sect. 5 with each microphone

implementing a functionality akin to the ContextCell. Their

approach addresses autonomous adaptation to new classes,

rather than to new resources.

6.4 New research directions

6.4.1 Self-monitoring

Self-monitoring approaches that detect relevant run-time

changes in system operation are required to control adap-

tation. It is especially important for the adARCs presented

here to detect trends in the activity class distributions in the

feature space. To our knowledge there are few methods

specific to the problem domain of activity recognition. In

Betta and Pietrosanto (2000) the authors differentiate

between methods based on physical redundancy and ana-

lytical redundancy. Translating this to activity recognition,

the first approach may correspond to measuring the degree

of agreement in ARCs individually applied to different

sensors. The second approach may correspond to modeling

the typical distribution of the activity classes and detecting

a significant trends towards a deviation from this model. A

number of approaches exist to detect unexpected changes,

anomalies or deviations from expected behavior (Chandola

et al. 2009). Sagha et al. (2011) in particular presented

an approach suitable for activity recognition in sensor

networks.

6.4.2 Adaptation strategies

The adARC relies on a strategy to adapt activity models at

run-time. Thus an important research direction is the design

of classifiers that have some of these properties: incremental

learning, possibility to guide adaptation by an external sig-

nal, robustness to hidden context and concept drift (Widmer

and Kubat 1996), and low complexity. As alternatives to the

NCC classifier used here several other classifiers may be

considered: incremental SVM (Cauwenberghs and Poggio

2000), incremental ensembles (Freund and Schapire 1997),
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Fig. 11 2D projection of the class centroids in the wearable

ContextCells at four instants of the simulation showing the evolution

of the learning process. The legend shows the order in which the

centroids appear. Displacement of centroids is visible, e.g. for the

opening of drawer 7 (D7 O, triangle) between the first apparition of

the class and the end of the simulation
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online hidden Markov models (Stiller and Radons 1999), or

neural networks (Polikar et al. 2001), etc. In wearable or

pervasive computing the computational costs and memory

requirements must be minimized for implementation on

miniature sensor nodes (Roggen et al. 2006). New adapta-

tion strategies may also be pursued towards: adaptation to

the motor patterns of a specific user, adaptation to changing

user preferences, as well as adaptation to variable run-time

goals (e.g. changing performance target as in Zappi et al.

2008).

6.4.3 User feedback

Exploiting user feedback requires further investigation of

the kind of feedback and the mobile input modalities suited

for pervasive and mobile computing. It also requires

research on the methods suitable to exploit this feedback.

In particular, the information gained from the user feed-

back should be maximized, but the feedback should be

minimally obtrusive, thus simple, infrequent, and mini-

mizing cognitive load.

Active learning can be used to prompt for labels when

the system benefits most from the user input (Settles 2009).

We presented how to use a minimally obtrusive explicit

feedback in Förster et al. (2010a). The feedback consists in

the user sporadically tagging the system’s behavior as

‘‘correct’’ or ‘‘incorrect’’. In order to exploit this form of

feedback we devised a novel classifier capable of adapta-

tion with a true/false sporadic feedback (Förster et al.

2010a).

Besides this explicit feedback we also considered

implicit feedback, where the adaptation of the system is

guided by the user’s unconscious brain signals (Förster

et al. 2010a). The system detected error-related potentials

(ErrP) from an electroencephalography cap. These signals

arise when the user observes an incorrect behavior of a

system he interacts with. Thus, the brain signal replaces the

explicit button press. This form of implicit feedback may

also be considered a form of self-monitoring that takes

advantage of the presence of the user in the system.

6.4.4 Performance metrics

Classical ARCs are characterized offline on pre-recorded

datasets. adARCs are dynamical systems. They are influ-

enced by feedback from the user or interactions with other

context aware systems. This feedback is usually not pre-

dictable and thus the adARC must be characterized online.

This poses new simulation and experimental challenges.

For instance, a user-adaptive system cannot be character-

ized on a pre-recorded dataset to optimize the system’s

parameters, as the behavior of the user would likely be

different with each new set of parameters. However, the

degree of satisfaction of the user with respect to the sys-

tem’s behavior can be compared for various parameter sets

in an online evaluation. When dealing with changing

sensing environment, methods ought to be compared on the

same variations, thus calling for new simulation approa-

ches, or experimental testing on a larger number of

instances of variations. Traditional machine learning per-

formance metrics (Ward et al. 2006) must be expanded to

include the aspects of dynamical systems such as stability

or adaptability, and the convergence conditions.

7 Conclusion

Motivated by the limitations of current activity recognition

approaches in dealing with a number of variations that can

be expected in the long-term use of pervasive, mobile and

wearable activity-aware systems, we presented a new

pattern analysis architecture that allows for adaptation

mechanisms: the adaptive activity recognition chain

(adARC). It attempts to relax the need for generic design-

time activity models in favor of an autonomous adaptation

of the system to runtime conditions. The adARC extends

the classical activity recognition approaches with self-

monitoring, adaptation strategies, and the inclusion of user

or external feedback. Self-monitoring detects relevant

changes in the sensor signal to activity mapping or in the

sensor environment. Adaptation strategies adjust accord-

ingly the recognition system to operate in the new condi-

tions. Finally, the user is part of the activity-aware system
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in most scenarios. The system ought to exploit user feed-

back to guide adaptation, as well as the feedback from

other context aware systems. The adARC forms a closed-

loop dynamical system. The adARC defines an architec-

ture suitable to host a variety of processing methods. Its

main point is to organize a class of solutions to the problem

of adaptive activity recognition in changing situations. It

allows to describe adaptive activity recognition systems in

a coherent manner. It allows to modularize the investiga-

tion of new methods, and it helps identify new research

directions within the adARC elements.

We presented two instances of adARCs. The first is an

unsupervised self-adaptive adARC. This approach can

increase the accuracy of an activity recognition system in a

scenario where sensors are unpredictably displaced on the

body, compared to a non-adaptive system. This adARC

may be applicable to other problems such as adaptation to

degrading sensors, to changing user behavior, or to dif-

ferent users.

The second adARC provides autonomous adaptation

capabilities in changing sensor configurations. It is dis-

tributed over several sensor nodes and allows to extend the

capability of a system to recognize activities to new nodes

introduced into the environment. We showed that this ad-

ARC can be used to train a wearable system without

manual intervention while the user performs in a pre-

existing ambient intelligence environment. Eventually, the

same activity-aware assistance can be provided outside of

the instrumented environment by the wearable system. This

adARC may also confer fault-tolerance and self-repair

capabilities to ambient intelligence environment, or reduce

deployment efforts. These characteristics are important to

support long-term operation of activity-aware systems in

open-ended environments. These two adARCs also play a

key role in the development of activity recognition systems

operating in opportunistic sensor configurations as envi-

sioned in Roggen et al. (2009, 2011a), thus using effi-

ciently resources that just happen to be available, rather

than requiring specific sensor deployments.

We discussed other works that follow the adARC

structure. These results show that the adARC allows to

frame a set of solutions to the problem of real-world

deployment of activity recognition systems. The adARC

supports the investigation of further adaptive activity rec-

ognition systems by modularizing research along methods

for self-monitoring, adaptation strategies and exploitation

of feedback. This may lead to a pool of building block

methods that can be combined to form adARCs.

Finally, current software frameworks dedicated to

activity recognition are mostly targeting a static ARC. The

formalization of the adARC captures a wide range of

adaptive activity recognition systems, yet in a well-defined

data processing architecture. This supports the development

of generic frameworks specifically designed to host adap-

tive activity recognition algorithms.
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