Skip to main content

Advertisement

Log in

Synthesis of Poly(Lactic Acid) from Ammonium Lactate Fermentation Broth of Food Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, ammonium lactate from food waste fermentation broth was used as raw material to synthesize butyl lactate with butanol catalyzed by SnCl2-modified cation exchange resin (Sn-CER) followed by direct synthesis of lactide and final polymerization to obtain poly(lactic acid) (PLA). A new Lewis acidic center was formed in the Sn-CER by complexation reaction and the maximum loading of Sn was 31%. The Lewis acid center was converted to the Bronsted acid center by combining with water during the catalytic process, which facilitated the deammoniation and esterification reactions. The conversion yield of butyl lactate reached 87.7% at an esterification time of 6 h, an alcohol/ammonium lactate molar ratio of 3:1, an initial concentration of 30 wt% of ammonium lactate and a catalyst loading of 1.5 wt%. The synthesized butyl lactide was converted into lactide in the presence of stannous octanoate, and the yield reached 61.6% under optimal conditions (polymerization temperature of 160 °C, polymerization time of 7 h, and catalyst loading of 1.0 wt%). PLA with a molecular weight of 8.05 × 104 was synthesized by the polymerization reaction of lactide at 160 °C for 5 h. Therefore, it is feasible to synthesize PLA from food waste, which is an effective way to resource the waste.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during this study are not publicly available, due to the fact that subsequent related research is still ongoing, but are available from the corresponding author upon request.

References

  1. Mecking, S.: Nature or petrochemistry?—Biologically degradable materials. Angew. Chem. Int. Ed. 43, 1078–1085 (2004). https://doi.org/10.1002/anie.200301655

    Article  CAS  Google Scholar 

  2. Acid, P., Li, G., Zhao, M., Xu, F., Yang, B., Li, X., Meng, X., Teng, L.: Synthesis and biological application of polylactic acid. Molecules 25(21), 5023 (2020)

    Article  Google Scholar 

  3. Hamad, K., Kaseem, M., Ayyoob, M., Joo, J., Deri, F.: Polylactic acid blends: the future of green, light and tough. Prog. Polym. Sci. 85, 83–127 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  4. Chen, T., Zhao, X., Weng, Y.: Self-assembled polylactic acid (PLA): synthesis, properties and biomedical applications. Front. Chem. 10, 1–8 (2023). https://doi.org/10.3389/fchem.2022.1107620

    Article  CAS  Google Scholar 

  5. Balla, E., Daniilidis, V., Karlioti, G., Kalamas, T., Stefanidou, M., Bikiaris, N.D., Vlachopoulos, A., Koumentakou, I., Bikiaris, D.N.: Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties-from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers (Basel). (2021). https://doi.org/10.3390/polym13111822

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, X., Chen, G., Wang, G., Zhu, P., Gao, C.: Recent progress on 3D-printed polylactic acid and its applications in bone repair. Adv. Eng. Mater. (2020). https://doi.org/10.1002/adem.201901065

    Article  Google Scholar 

  7. Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., Bikiaris, N.D., Christodoulou, E., Koumentakou, I., Karavas, E., Bikiaris, D.N.: Poly(lactic acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 14, 1–37 (2022). https://doi.org/10.3390/pharmaceutics14020359

    Article  CAS  Google Scholar 

  8. Singhvi, M., Gokhale, D.: Biomass to biodegradable polymer (PLA). RSC Adv. 3, 13558–13568 (2013). https://doi.org/10.1039/c3ra41592a

    Article  ADS  CAS  Google Scholar 

  9. Jones, S.L., Gibson, K.E., Ricke, S.C.: Critical factors and emerging opportunities in food waste utilization and treatment technologies. Front. Sustain. Food Syst. (2021). https://doi.org/10.3389/fsufs.2021.781537

    Article  Google Scholar 

  10. Zhang, S., Guan, W., Sun, H., Zhao, P., Wang, W., Gao, M., Sun, X., Wang, Q.: Intermittent energization improves microbial electrolysis cell-assisted thermophilic anaerobic co-digestion of food waste and spent mushroom substance. Bioresour. Technol. 370, 128577 (2023). https://doi.org/10.1016/j.biortech.2023.128577

    Article  CAS  PubMed  Google Scholar 

  11. Xu, M., Yang, M., Sun, H., Meng, J., Li, Y., Gao, M., Wang, Q., Wu, C.: Role of multistage inoculation on the co-composting of food waste and biogas residue. Bioresour. Technol. 361, 127681 (2022). https://doi.org/10.1016/j.biortech.2022.127681

    Article  CAS  PubMed  Google Scholar 

  12. Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour. Technol. 247, 1069–1076 (2018). https://doi.org/10.1016/j.biortech.2017.09.109

    Article  CAS  PubMed  Google Scholar 

  13. Liu, S., Wang, Q., Li, Y., Ma, X., Zhu, W., Wang, N., Sun, H., Gao, M.: Highly efficient oriented bioconversion of food waste to lactic acid in an open system: microbial community analysis and biological carbon fixation evaluation. Bioresour. Technol. 370, 128398 (2023). https://doi.org/10.1016/j.biortech.2022.128398

    Article  CAS  PubMed  Google Scholar 

  14. Djukić-Vuković, A.P., Mojović, L.V., Semenčenko, V.V., Radosavljević, M.M., Pejin, J.D., Kocić-Tanackov, S.D.: Effective valorisation of distillery stillage by integrated production of lactic acid and high quality feed. Food Res. Int. 73, 75–80 (2015). https://doi.org/10.1016/j.foodres.2014.07.048

    Article  CAS  Google Scholar 

  15. Ma, X., Gao, M., Liu, S., Li, Y., Sun, X., Wang, Q.: An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid. Bioresour. Technol. 352, 127108 (2022). https://doi.org/10.1016/j.biortech.2022.127108

    Article  CAS  PubMed  Google Scholar 

  16. Lux, S., Siebenhofer, M.: Investigation of liquid-liquid phase equilibria for reactive extraction of lactic acid with organophosphorus solvents. J. Chem. Technol. Biotechnol. 88, 462–467 (2013). https://doi.org/10.1002/jctb.3847

    Article  CAS  Google Scholar 

  17. Zaini, N.A.M., Chatzifragkou, A., Tverezovskiy, V., Charalampopoulos, D.: Purification and polymerisation of microbial d-lactic acid from DDGS hydrolysates fermentation. Biochem. Eng. J. 150, 107265 (2019). https://doi.org/10.1016/j.bej.2019.107265

    Article  CAS  Google Scholar 

  18. Komesu, A., Martins, P.F., Lunelli, B.H., Oliveira, J., Maciel Filho, R., Wolf Maciel, M.R.: Evaluation of lactic acid purification from fermentation broth by hybrid short path evaporation using factorial experimental design. Sep. Purif. Technol. 136, 233–240 (2014). https://doi.org/10.1016/j.seppur.2014.09.010

    Article  CAS  Google Scholar 

  19. Wang, X., Wang, Y., Zhang, X., Xu, T.: In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: operational compatibility and uniformity. Bioresour. Technol. 125, 165–171 (2012). https://doi.org/10.1016/j.biortech.2012.08.125

    Article  CAS  PubMed  Google Scholar 

  20. Su, C.Y., Yu, C.C., Chien, I.L., Ward, J.D.: Control of highly interconnected reactive distillation processes: purification of raw lactic acid by esterification and hydrolysis. Ind. Eng. Chem. Res. 54, 6932–6940 (2015). https://doi.org/10.1021/ie5039133

    Article  CAS  Google Scholar 

  21. Min, D.J., Choi, K.H., Chang, Y.K., Kim, J.H.: Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J. Chem. Eng. 28, 1969–1974 (2011). https://doi.org/10.1007/s11814-011-0082-9

    Article  CAS  Google Scholar 

  22. Zhang, B., Gao, M., Geng, J., Cheng, Y., Wang, X., Wu, C., Wang, Q., Liu, S., Cheung, S.M.: Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction. Renew. Energy 164, 824–832 (2021). https://doi.org/10.1016/j.renene.2020.09.076

    Article  CAS  Google Scholar 

  23. Liu, L., Cai, Y., Li, H., Zhao, S., He, M., Hu, G.-Q., Liang, Y., Peng, N., Hu, J.: Bio-detoxification bacteria isolated from dye-polluted soils promote lactic acid production from ammonia pretreated corn stover. Appl. Biochem. Biotechnol. 189, 129–143 (2019). https://doi.org/10.1007/s12010-019-02993-4

    Article  CAS  PubMed  Google Scholar 

  24. VanWouwe, P., Dusselier, M., Vanleeuw, E., Sels, B.: Lactide synthesis and chirality control for polylactic acid production. Chemsuschem 9, 907–921 (2016). https://doi.org/10.1002/cssc.201501695

    Article  CAS  Google Scholar 

  25. Hu, Y., Daoud, W.A., Fei, B., Chen, L., Kwan, T.H., Ki Lin, C.S.: Efficient ZnO aqueous nanoparticle catalysed lactide synthesis for poly(lactic acid) fibre production from food waste. J. Clean. Prod. 165, 157–167 (2017). https://doi.org/10.1016/j.jclepro.2017.07.067

    Article  CAS  Google Scholar 

  26. Tempelman, C., Jacobs, U., Hut, T., de Pina, E.P., van Munster, M., Cherkasov, N., Degirmenci, V.: Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature. Appl. Catal. A Gen. 588, 117267 (2019). https://doi.org/10.1016/j.apcata.2019.117267

    Article  CAS  Google Scholar 

  27. Panek, P., Biczysko, M., Latajka, Z.: Reinvestigation of spectroscopic properties for ammonia-hydrogen halide complexes from car-parrinello molecular dynamics. Chem. Phys. Lett. 514, 44–48 (2011). https://doi.org/10.1016/j.cplett.2011.08.060

    Article  ADS  CAS  Google Scholar 

  28. Araujo, R.O., da Silva Chaar, J., Queiroz, L.S., da Rocha Filho, G.N., da Costa, C.E.F., da Silva, G.C.T., Landers, R., Costa, M.J.F., Gonçalves, A.A.S., de Souza, L.K.C.: Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Convers. Manag. 196, 821–830 (2019). https://doi.org/10.1016/j.enconman.2019.06.059

    Article  CAS  Google Scholar 

  29. Dechakhumwat, S., Hongmanorom, P., Thunyaratchatanon, C., Smith, S.M., Boonyuen, S., Luengnaruemitchai, A.: Catalytic activity of heterogeneous acid catalysts derived from corncob in the esterification of oleic acid with methanol. Renew. Energy 148, 897–906 (2020). https://doi.org/10.1016/j.renene.2019.10.174

    Article  CAS  Google Scholar 

  30. Lu, M., Runt, J., Painter, P.: An infrared spectrocopic study of a polyester copolymer ionomer based on poly(ethylene oxide). Macromolecules 42, 6581–6587 (2009). https://doi.org/10.1021/ma900978d

    Article  ADS  CAS  Google Scholar 

  31. Little, A., Wemyss, A.M., Haddleton, D.M., Tan, B., Sun, Z., Ji, Y., Wan, C.: Synthesis of poly(Lactic acid-co-glycolic acid) copolymers with high glycolide ratio by ring-opening polymerisation. Polymers (Basel). 13, 1–11 (2021). https://doi.org/10.3390/polym13152458

    Article  CAS  Google Scholar 

  32. Xue, X., Sun, Y., Sun, Q., Bao, W., Zhang, Z., Chang, L., Wang, J., Xie, K.: Esterification of 1-hexene and acetic acid catalyzed by a modified resin with a Lewis acid. Sustain. Energy Fuels. 6, 1131–1140 (2022). https://doi.org/10.1039/D1SE01738A

    Article  CAS  Google Scholar 

  33. Román-Leshkov, Y., Moliner, M., Labinger, J.A., Davis, M.E.: Mechanism of glucose isomerization using a solid lewis acid catalyst in water. Angew. Chemie - Int. Ed. 49, 8954–8957 (2010). https://doi.org/10.1002/anie.201004689

    Article  CAS  Google Scholar 

  34. Bayu, A., Yoshida, A., Karnjanakom, S., Kusakabe, K., Hao, X., Prakoso, T., Abudula, A., Guan, G.: Catalytic conversion of biomass derivatives to lactic acid with increased selectivity in an aqueous tin(II) chloride/choline chloride system. Green Chem. 20, 4112–4119 (2018). https://doi.org/10.1039/c8gc01022f

    Article  CAS  Google Scholar 

  35. Kasinathan, P., Hwang, D.W., Lee, U., Hwang, Y.K., Chang, J.S.: Effect of solvent and impurity on synthesis of ethyl lactate from fermentation-derived ammonium lactate. Chem. Eng. Sci. 66, 4549–4554 (2011). https://doi.org/10.1016/j.ces.2011.06.017

    Article  CAS  Google Scholar 

  36. Zhang, B., Gao, M., Tang, W., Wang, X., Wu, C., Wang, Q.: Substitution of liquid methanol with methanol vapour increases the activity and stability of carbon-based solid acid catalysts in biodiesel production process. Energy Convers. Manag. 278, 116708 (2023). https://doi.org/10.1016/j.enconman.2023.116708

    Article  CAS  Google Scholar 

  37. Khudsange, C.R., Wasewar, K.L.: Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. React. Kinet. Mech. Catal. 125, 535–554 (2018). https://doi.org/10.1007/s11144-018-1461-6

    Article  CAS  Google Scholar 

  38. Qu, Y., Peng, S., Wang, S., Zhang, Z., Wang, J.: Kinetic study of esterification of lactic acid with isobutanol and n-butanol catalyzed by ion-exchange resins. Chinese J. Chem. Eng. 17, 773–780 (2009). https://doi.org/10.1016/S1004-9541(08)60276-1

    Article  CAS  Google Scholar 

  39. Ehsani, M., Khodabakhshi, K., Asgari, M.: Lactide synthesis optimization: Investigation of the temperature, catalyst and pressure effects. E-Polymers 14, 353–361 (2014). https://doi.org/10.1515/epoly-2014-0055

    Article  CAS  Google Scholar 

  40. Ghadamyari, M., Chaemchuen, S., Zhou, K., Dusselier, M., Sels, B.F., Mousavi, B., Verpoort, F.: One-step synthesis of stereo-pure L, L lactide from l-lactic acid. Catal. Commun. 114, 33–36 (2018). https://doi.org/10.1016/j.catcom.2018.06.003

    Article  CAS  Google Scholar 

  41. Zhang, Y., Qi, Y., Yin, Y., Sun, P., Li, A., Zhang, Q., Jiang, W.: Efficient synthesis of lactide with low racemization catalyzed by sodium bicarbonate and zinc lactate. ACS Sustain. Chem. Eng. 8, 2865–2873 (2020). https://doi.org/10.1021/acssuschemeng.9b06987

    Article  CAS  Google Scholar 

  42. Meng, X., Yu, L., Cao, Y., Zhang, X., Zhang, Y.: Progresses in synthetic technology development for the production of l-lactide. Org. Biomol. Chem. 19, 10288–10295 (2021). https://doi.org/10.1039/d1ob01918j

    Article  CAS  PubMed  Google Scholar 

  43. Botvin, V., Karaseva, S., Khasanov, V.: Depolymerization of lactic acid oligomers into lactide: epimerization, stereocomplex formation, and nature of interactions of oligomers. Polym. Degrad. Stab. 182, 109382 (2020). https://doi.org/10.1016/j.polymdegradstab.2020.109382

    Article  CAS  Google Scholar 

  44. Kačuráková, M., Wilson, R.H.: Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 44, 291–303 (2001). https://doi.org/10.1016/S0144-8617(00)00245-9

    Article  Google Scholar 

  45. Kasyapi, N., Mehta, R., Bhowmick, A.K.: Raman and NMR spectroscopic studies on hydrolytic degradation of d, l-lactide - δ-valerolactone – d, l-lactide copolymer. ACS Sustain. Chem. Eng. 3, 1381–1393 (2015)

    Article  CAS  Google Scholar 

  46. Kopinke, F.D., Remmler, M., Mackenzie, K., Möder, M., Wachsen, O.: Thermal decomposition of biodegradable polyesters – II. Poly(lactic acid). Polym. Degarad. Stab. 53, 329–342 (1996)

    Article  CAS  Google Scholar 

  47. Seraji, A.A., Goharpey, F., Khademzadeh Yeganeh, J.: Highly crystallized and tough polylactic acid through addition of surface modified cellulose nanocrystals. J. Appl. Polym. Sci. 139, 1–19 (2022). https://doi.org/10.1002/app.52871

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support provided by the National Natural Science Foundation of China (Grant NO. 51978047 & 5217100753) and the National Key R&D Program of China (Grant NO. 2019YFC1906302 & 2019YFC1906304).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Bingxin Zhang, Yan Guo and Ming Gao. The first draft of the manuscript was written by Bingxin Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaohong Sun.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Guo, Y., Gao, M. et al. Synthesis of Poly(Lactic Acid) from Ammonium Lactate Fermentation Broth of Food Waste. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02422-6

Keywords

Navigation