Skip to main content
Log in

Proteolysis Coupled with Membrane Separation for the Isolation of Bioactive Peptides from Defatted Smooth Hound Byproduct Proteins

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The defatted viscera from smooth hound were the raw material used to produce four protein hydrolysates using three different microbial proteases (Neutrase, Esperase and Purafect) and the endogenous enzymes, named VPH-N, VPH-E, VPH-P and VPH-EE, respectively. Hydrolysates showed different degrees of hydrolysis (DH) depending on the enzyme used, where the VPH-P had the highest DH (30%). The amino acids (AA) characterization showed that Gly was the prominent AA (≥ 22%), followed by Ala, Glx, Lys, Asx, and Pro. In addition, the assessment of the antioxidant, ACE-inhibitory and antimicrobial activities revealed the high potentiality of the Purafect-hydrolysate. Therefore, it was selected to be fractionated by ultra-filtration according to their molecular weight (MW). Data showed that FIV (MW < 5 kDa) exhibited the best antioxidant and ACE inhibition potentials. The differences detected in the bio-activities may be attributed, not only to the peptides size, but also to their sequences and hydrophobic AA contents. The antibacterial activity showed that the best inhibition values were recorded with FIV, particularly against S. typhi. Thus, the present results demonstrated the high potential of low MW peptides from viscera hydrolysate to be used as a promising natural source of bioactive agents in functional food formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All analysis and data of the present study are included in this published article.

References

  1. FAO: Food and Agriculture Organization—FAO Fisheries and Aquaculture. FAO, Rome (2019).

  2. FAO: The State of World Fisheries and Aquaculture 2020: sustainability in action. In: The State of World Fisheries and Aquaculture (SOFIA). FAO, Rome (2020).

  3. Villamil, O., Váquiro, H., Solanilla, J.F.: Fish viscera protein hydrolysates: production, potential applications and functional and bioactive properties. Food Chem. 224, 160–171 (2017)

    Google Scholar 

  4. Riyadi, P.H., Suprayitno, E., Aulanni’am, Sulistiati, T.D.: Optimization of protein hydrolysate from visceral waste of Nile tilapia (Oreochromis niloticus) by response surface methodology. AACL Bioflux 12, 2347–2358 (2019)

    Google Scholar 

  5. Klomklao, S., Benjakul, S.: Protein hydrolysates prepared from the viscera of skipjack tuna (Katsuwonus pelmamis): antioxidative activity and functional properties. Turk. J. Fish. Aquat. Sci. 18, 69–79 (2018)

    Google Scholar 

  6. Hao, G., Cao, W., Li, T., Chen, J., Zhang, J., Weng, W., Osako K., Ren H.: Effect of temperature on chemical properties and antioxidant activities of abalone viscera subcritical water extract. J. Supercrit. Fluids 147, 17–23 (2019)

    Google Scholar 

  7. Giannetto, C., Esposito, E., Lanza, M., Oliva, S., Riolo, K., Di Pietro, S., Abbate, J.M., Briguglio, G., Cassata, G., Cicero, L., Macrì, F.: Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: in vitro and in vivo biological activities. Mar. Drugs 18, 86 (2020)

    Google Scholar 

  8. Melgosa, R., Trigueros, E., Sanz, M.T., Cardeira, M., Rodrigues, L., Fernández, N., Matias, A.A., Bronze, M.R., Marques, M., Paiva, A., Simões, P.: Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 164, 104943 (2020)

    Google Scholar 

  9. Sepúlveda, C.T., Zapata, J.E.: Effects of enzymatic hydrolysis conditions on the antioxidant activity of Red Tilapia (Oreochromis spp.) viscera hydrolysates. Curr. Pharm. Biotechnol. 21, 1249–1258 (2020)

    Google Scholar 

  10. Joshi, I., Mohideen, H.S., Nazeer, R.A.: A Meretrix meretrix visceral mass derived peptide inhibits lipopolysaccharide-stimulated responses in RAW264. 7 cells and adult zebrafish model. Int. Immunopharmacol. 90, 107140 (2021)

    Google Scholar 

  11. Vásquez, P., Sepúlveda, C.T., Zapata, J.E.: Functional properties of rainbow trout (Oncorhynchus mykiss) viscera protein hydrolysates. Biocatal. Agric. Biotechnol. 39, 102268 (2022)

    Google Scholar 

  12. Amponsah-Offeh, M., Diaba-Nuhoho, P., Speier, S., Morawietz, H.: Oxidative stress, antioxidants and hypertension. Antioxidants (Basel) 12, 281 (2023)

    Google Scholar 

  13. Abdelhedi, O., Nasri, M.: Basic and recent advances in marine antihypertensive peptides: production, structure-activity relationship and bioavailability. Trends Food Sci. Technol. 88, 543–557 (2019)

    Google Scholar 

  14. Saidi, S., Deratani, A., Belleville, M.P., Amar, R.B.: Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res. Int. 65, 329–336 (2014)

    Google Scholar 

  15. Guerard, F., Dufosse, L., De La Broise, D., Binet, A.: Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B 11, 1051–1059 (2001)

    Google Scholar 

  16. Bhaskar, N., Benila, T., Radha, C., Lalitha, R.G.: Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Biores. Technol. 99, 335–343 (2008)

    Google Scholar 

  17. Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., Yang, H.: Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 107, 1485–1493 (2008)

    Google Scholar 

  18. Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S.M., Kristinsson, H.G.: Fish protein hydrolysates: production, bioactivities, and applications. In: Kristinsson, H.G. (ed.) Antioxidants and Functional Components in Aquatic Foods, pp. 237–281. Wiley, Chichester (2014)

    Google Scholar 

  19. Abdelhedi, O., Jridi, M., Jemil, I., Mora, L., Toldrá, F., Aristoy, M.-C., Boualga, A., Nasri, M., Nasri, R.: Combined biocatalytic conversion of smooth hound viscera: protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Res. Int. 86, 9–23 (2016)

    Google Scholar 

  20. Kembhavi, A., Kulkarni, A., Pant, A.: Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38, 83–92 (1993)

    Google Scholar 

  21. Adler-Nissen, J.: A review of food hydrolysis specific areas. In: Adler-Nissen, J. (ed.) Enzymic Hydrolysis of Food Proteins, pp. 157–109. Elsevier, Copenhagen (1986)

    Google Scholar 

  22. AOAC: Official Methods of Analysis, 17th edn. Association of Official Analytical Chemists, Washington (2000)

    Google Scholar 

  23. Lowry, O.H., Rosebrough, N.J., Farr, L.A., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Chem. Biol. 193, 265–275 (1951)

    Google Scholar 

  24. Yildirim, A., Mavi, A., Kara, A.A.: Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49, 4083–4089 (2001)

    Google Scholar 

  25. Decker, E.A., Welch, B.: Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38, 674–677 (1990)

    Google Scholar 

  26. Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A., Evstatieva, L.N.: Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal. 13, 8–17 (2002)

    Google Scholar 

  27. Sentandreu, M.A., Toldrá, F.: A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 97, 546–554 (2006)

    Google Scholar 

  28. Berghe, V.A., Vlieinck, A.J.: Screening methods for antibacterial and antiviral agents from higher plants. Method Plant Biochem. 6, 47–68 (1991)

    Google Scholar 

  29. Mora, L., Toldrá, F.: Advanced enzymatic hydrolysis of food proteins for the production of bioactive peptides. Curr. Opin. Food Sci. 49, 100973 (2023)

    Google Scholar 

  30. Nikoo, M., Regenstein, J.M., Noori, F., Gheshlaghi, S.P.: Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. LWT Food Sci. Technol. 140, 110702 (2021)

    Google Scholar 

  31. Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., Rustad, T.: Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnol. Rep. 11, 99–109 (2016)

    Google Scholar 

  32. Chasquibol, N., Gonzales, B.F., Alarcón, R., Sotelo, A., Márquez-López, J.C., Rodríguez-Martin, N.M., del Carmen Millán-Linares, M., Millán, F., Pedroche, J.: Optimisation and characterisation of the protein hydrolysate of scallops (Argopecten purpuratus) visceral by-products. Foods 12, 2003 (2023)

    Google Scholar 

  33. Thiansilakul, Y., Benjakul, S., Shahidi, F.: Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103, 1385–1394 (2007)

    Google Scholar 

  34. Sato, K.: Comparative biochemistry of molecular species of fish and mammalian collagens. Trends Compar. Biochem. Physiol. 1, 557–567 (1993)

    Google Scholar 

  35. Hassan, M.A., Xavier, M., Gupta, S., Nayak, B.B., Balange, A.K.: Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods. Environ. Sci. Pollut. Res. 26, 8875–8884 (2019)

    Google Scholar 

  36. Sepúlveda, C.T., Zapata, J.E., Martínez-Álvarez, O., Alemán, A., Montero, M.P., Gómez-Guillén, M.C.: The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. LWT Food Sci. Technol. 139, 110530 (2021)

    Google Scholar 

  37. Joshi, I., Janagaraj, K., Noorani, K.P.M., Nazeer, R.A.: Isolation and characterization of angiotensin I-converting enzyme (ACE-I) inhibition and antioxidant peptide from by-catch shrimp (Oratosquilla woodmasoni) waste. Biocatal. Agric. Biotechnol. 29, 101770 (2020)

    Google Scholar 

  38. Im, S.T., Kang, N., Kim, J., Heo, S., Lee, S.: Antioxidant and anti-hyaluronidase activities of taurine-enriched enzymatic hydrolysates prepared from Turbo cornutus, a by-product of fish processing in Jeju Island. Fish. Sci. 88, 509–517 (2022)

    Google Scholar 

  39. Sajib, M., Albers, E., Langeland, Undeland, I.: Understanding the effect of temperature and time on protein degree of hydrolysis and lipid oxidation during ensilaging of herring (Clupea harengus) filleting co-products. Sci. Rep. 10, 9590 (2020)

    Google Scholar 

  40. Wu, H.C., Chen, H.M., Shiau, C.Y.: Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36, 949–957 (2003)

    Google Scholar 

  41. Wang, J., Zhao, M., Zhao, Q., Jiang, Y.: Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem. 101, 1658–1663 (2007)

    Google Scholar 

  42. Zou, T.B., He, T.P., Li, H.B., Tang, H.W., Xia, E.Q.: The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21(1), 72 (2016)

    Google Scholar 

  43. Cunha, S.A., Pintado, M.E.: Bioactive peptides derived from marine sources: biological and functional properties. Trends Food Sci. Technol. 119, 348–370 (2022)

    Google Scholar 

  44. Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V.: Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998)

    Google Scholar 

  45. Wang, X., Yu, H., Xing, R., Chen, X., Liu, S., Li, P.: Optimization of antioxidative peptides from mackerel (Pneumatophorus japonicus) viscera. PeerJ 6, e43730 (2018)

    Google Scholar 

  46. Vásquez, P., Zapata, J.E., Chamorro, V.C., Fillería, S.F.G., Tironi, V.A.: Antioxidant and angiotensin I-converting enzyme (ACE) inhibitory peptides of rainbow trout (Oncorhynchus mykiss) viscera hydrolysates subjected to simulated gastrointestinal digestion and intestinal absorption. LWT Food Sci. Technol. 154, 112834 (2022)

    Google Scholar 

  47. Sierra-Lopera, L.M., Zapata-Montoya, J.E.: Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnol. Rep. 30, e00611 (2021)

    Google Scholar 

  48. Murthy, L.N., Phadke, G.G., Unnikrishnan, P., Annamalai, J., Joshy, C.G., Zynudheen, A.A., Ravishankar, C.N.: Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valoriz. 9, 1735–1746 (2018)

    Google Scholar 

  49. He, R., Girgih, A.T., Malomo, S.A., Ju, X., Aluko, R.E.: Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 5, 219–227 (2013)

    Google Scholar 

  50. Emadi Shaibani, M., Heidari, B., Khodabandeh, S., Shahangian, S.S.: Production and fractionation of Rocky Shore Crab (Grapsus albacarinous) protein hydrolysate by ultrafiltration membrane: assessment of antioxidant and cytotoxic activities. J. Aquat. Food Prod. Technol. 30, 338–351 (2021)

    Google Scholar 

  51. Zhao, Y.-Q., Zhang, L., Tao, J., Chi, C.-F., Wang, B.: Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs). Food Res. Int. 121, 197–204 (2019)

    Google Scholar 

  52. Wald, M., Schwarz, K., Rehbein, H., Bußmann, B., Beermann, C.: Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 205, 221–228 (2016)

    Google Scholar 

  53. Ennaas, N., Hammami, R., Beaulieu, L., Fliss, I.: Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochem. Biophys. Res. Commun. 462, 195–200 (2015)

    Google Scholar 

  54. Offret, C., Fliss, I., Bazinet, L., Marette, A., Beaulieu, L.: Identification of a novel antibacterial peptide from Atlantic Mackerel belonging to the GAPDH-related antimicrobial family and its in vitro digestibility. Mar. Drugs 17, 413 (2019)

    Google Scholar 

  55. Pezeshk, S., Ojagh, S.M., Rezaei, M., Shabanpour, B.: Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: investigation of antibacterial and antioxidant activities. Probiot. Antimicrob. Proteins 11, 1015–1022 (2019)

    Google Scholar 

  56. Beaulieu, L., Bondu, S., Doiron, K., Rioux, L.-E., Turgeon, S.L.: Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods 17, 685–697 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Jridi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 90 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhedi, O., Mora, L., Jridi, M. et al. Proteolysis Coupled with Membrane Separation for the Isolation of Bioactive Peptides from Defatted Smooth Hound Byproduct Proteins. Waste Biomass Valor 15, 1959–1974 (2024). https://doi.org/10.1007/s12649-023-02303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02303-4

Keywords

Navigation