Skip to main content
Log in

TiO2/SO42− Solid Superacid Catalyst Prepared by Recovered TiO2 from Waste SCR and Its Application in Transesterification of Ethyl Acetate with n-butanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this contribution, the recovered TiO2 from waste Selective Catalytic Reduction (SCR) was transformed into a solid superacid catalyst (TiO2/SO42−) modified by sulfuric acid (H2SO4). The results of XRD suggest that the crystal structures of TiO2 are not destroyed during the recovery and sulfation processes. The recovered TiO2-modified superacid catalyst has a greater surface area (42.84 m2/g) than TiO2/SO42− catalysts produced from pure TiO2 reported by previous researchers. The Barrett-Joyner-Halenda (BJH) pore size distribution confirms that the samples are essentially mesoporous structures. The NH3-TPD analysis demonstrated that the formation of the superacid sites occurs at a temperature ranging between 400 and 500 °C. The prepared TiO2/SO42− solid superacid catalyst exhibits good catalytic activity with a conversion above 92% in the transesterification of ethyl acetate and n-butanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Wang, G., Cai, G.: Cooperative catalytic effects between Brønsted and Lewis acid sites and kinetics for production of methyl methacrylate on SO42−/TiO2-SiO2”. Chem. Eng. Sci. 229, 116165 (2021). https://doi.org/10.1016/j.ces.2020.116165

    Article  Google Scholar 

  2. Chiang, C.L., Lin, K.S., Shu, C.W., Jeffery Chi-Seng, W., Kevin Chia-Wen, W., Huang, Y.T.: Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catal. Today 348, 257–269 (2020). https://doi.org/10.1016/j.cattod.2019.09.037

    Article  Google Scholar 

  3. Chen, X., Wan, M., Gao, M., Wang, Y., Yi, D.: Improved flame resistance properties of unsaturated polyester resin with TiO2-MO solid superacid. Chin. J. Chem. Eng. 28(9), 2474–2482 (2020). https://doi.org/10.1016/j.cjche.2020.06.018

    Article  Google Scholar 

  4. Gonçalves, N.S., Rettori, D., Silva, G.M.G., Noda, L.K.: Spectroscopic study of radical cation species formed on sulfated TiO2 upon benzene adsorption. Vib. Spectrosc. 99, 80–85 (2018). https://doi.org/10.1016/j.vibspec.2018.08.012

    Article  Google Scholar 

  5. Gao, M., Wan, M., Chen, X.: Synthesis of a solid superacid and its application in flame-retardant poly(vinyl chloride) material. ACS Omega 4(4), 7556–7564 (2019). https://doi.org/10.1021/acsomega.9b00368

    Article  Google Scholar 

  6. Wang, A.Q., Wang, J.X., Wang, H., Huang, Y.N., Ming-Liang, X., Xiu-Ling, W.: Synthesis of SO42−/TiO2–ZnAl2O4 composite solid acids as the esterification catalysts. R. Soc. Chem. Adv. 7(23), 14224–14232 (2017). https://doi.org/10.1039/C7RA01386H

    Article  Google Scholar 

  7. Nivetha, N., Thangamani, A., Velmathi, S.: Sulfated Titania (TiO2-SO42−) as an efficient catalyst for organic synthesis: overarching review from 2000 to 2021. Chem. Sel. (2022). https://doi.org/10.1002/slct.202104505

    Article  Google Scholar 

  8. Shen, J., Gao, X., Liu, Z., Zhao, L., Xi, Z., Yuan, W.: Reaction mechanism study on transesterification in synthesis of thermotropic liquid crystalline polymer catalyzed by zinc(II) carboxylate: a combination of DFT and kinetics analyses. Chem. Eng. J. 446, 136848 (2022). https://doi.org/10.1016/j.cej.2022.136848

    Article  Google Scholar 

  9. Liu, Qi., Wand, B., Wang, C., Tian, Z., Wei, Q., Ma, H., Renshun, X.: Basicities and transesterification activities of Zn–Al hydrotalcites-derived solid bases. Green Chem. 16(5), 2604–2613 (2014). https://doi.org/10.1039/C3GC42648C

    Article  Google Scholar 

  10. Tan, S.X., Lim, S., Ong, H.C., Pang, Y.L.: State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 235, 886–907 (2019). https://doi.org/10.1016/j.fuel.2018.08.021

    Article  Google Scholar 

  11. Van de Steene, E., De Clercq, J., Thybaut, J.W.: Ion-exchange resin catalyzed transesterification of ethyl acetate with methanol: gel versus macroporous resins. Chem. Eng. J. 242, 170–179 (2014). https://doi.org/10.1016/j.cej.2013.12.025

    Article  Google Scholar 

  12. Nengah Simpen, I., Nyoman Suprapta Winaya, I., Dewa Gede Ary Subagia, I., Wayan Budiarsa Suyasa, I.: Green nano-composite of CaO/K-Sulfated TiO2 and its potential as a single-step reaction solid catalyst for biofuel production. Knf Life Sci. (2022). https://doi.org/10.18502/kls.v7i3.11146

    Article  Google Scholar 

  13. Wang, H., Liu, W., Gao, L., Yifan, Lu., Chen, E., Yuchao, Xu., Liu, H.: Synthesis of n-butyl acetate via reactive distillation column using Candida Antarctica lipase as catalyst. Bioprocess Biosyst. Eng. 43(4), 593–604 (2020). https://doi.org/10.1007/s00449-019-02250-2

    Article  Google Scholar 

  14. HoKim, K., XuanjunJin, A.J., AlvinaAui, M.W., Chun-JaeYoo, J.W., Ha, J.M., Kim, C.S., Yoo, C.G., Choi, J.W.: Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. Waste Manage. 144, 41–48 (2022). https://doi.org/10.1016/j.wasman.2022.03.005

    Article  Google Scholar 

  15. Liu, F., Yi, X., Chen, W., Liu, Z., Qi, W.Z., Song, Y.F., Zheng, A.: Developing two-dimensional solid superacids with enhanced mass transport, extremely high acid strength and superior catalytic performance. Chem. Sci. 10(23), 5875–5883 (2019). https://doi.org/10.1039/C9SC01988J

    Article  Google Scholar 

  16. Li, P., Yingying, Gu., Zhenzhen, Yu., Gao, P., An, Y., Li, J.: TiO2-SnO2/SO42− mesoporous solid superacid decorated nickel-based material as efficient electrocatalysts for methanol oxidation reaction. Electrochim. Acta 297, 864–871 (2019). https://doi.org/10.1016/j.electacta.2018.11.161

    Article  Google Scholar 

  17. Gardy, J., Osatiashtiani, A., Cespedes, O., Hassanpour, A., Lai, X., Lee, A.F., Wilson, K., Rehan, M.: A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B 234, 268–278 (2018). https://doi.org/10.1016/j.apcatb.2018.04.046

    Article  Google Scholar 

  18. Carlucci, C., Degennaro, L., Luisi, R.: Titanium dioxide as a catalyst in biodiesel production. Catalysts 9(1), 75 (2019). https://doi.org/10.3390/catal9010075

    Article  Google Scholar 

  19. de Oliveira, C.R., Batistella, M.A., de Souza, A.A., Ulson, S.M.: Synthesis of superacid sulfated TiO2 prepared by sol-gel method and its use as a titania precursor in obtaining a kaolinite/TiO2 nano-hybrid composite. Powder Technol. 381, 366–380 (2021). https://doi.org/10.1016/j.powtec.2020.11.063

    Article  Google Scholar 

  20. Wijaya, K., Putri, A.R., Sudiono, S., Mulijiani, S., Patah, A., Wibowo, A.C., Saputri, W.D.: Effectively synthesizing SO42-/TiO2 catalyst and its performance for converting ethanol into Diethyl Ether (DEE). Catalysts 11(12), 1492 (2021). https://doi.org/10.3390/catal11121492

    Article  Google Scholar 

  21. Chen, C., Cai, L., Shangguan, X., Li, L., Hong, Y., Guoqiang, W.: Heterogeneous and efficient transesterification of Jatropha curcas L. seed oil to produce biodiesel catalysed by nano-sized SO4 2−/TiO2. R. Soc. Open Sci. 5(11), 181331 (2018). https://doi.org/10.1098/rsos.181331

    Article  Google Scholar 

  22. Gardy, J., Hassanpour, A., Lai, X., Ahmed, M.H.: Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl. Catal. A 527, 81–95 (2016). https://doi.org/10.1016/j.apcata.2016.08.031

    Article  Google Scholar 

  23. Zhao, H., Jiang, P., Dong, Y., Huang, M., Liu, B.: A high-surface-area mesoporous sulfated nano-titania solid superacid catalyst with exposed (101) facets for esterification: facile preparation and catalytic performance. New J. Chem. 38(9), 4541 (2014). https://doi.org/10.1039/C4NJ00494A

    Article  Google Scholar 

  24. Zhang, Q., Wu, Y., Zuo, T.: Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent SCR catalysts. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b03038

    Article  Google Scholar 

  25. Li, M., Dong, B., Chang, Z., Dang, H., Ma, S., Li, W.: Synthesis of TiO2/g-C3N4 Photocatalyst with recovered TiO2 from spent SCR catalyst for photodegrading rhodamine B. Waste Biomass Valorization (2022). https://doi.org/10.1007/s12649-022-01917-4

    Article  Google Scholar 

  26. Zhang, Z., Huang, H., Ma, X., Li, G., Wang, Y., Sun, G., Teng, Y., Yan, R., Zhang, N., Li, A.: Production of diacylglycerols by esterification of oleic acid with glycerol catalyzed by diatomite loaded SO42−/TiO2. J. Ind. Eng. Chem. 53, 307–316 (2017). https://doi.org/10.1016/j.jiec.2017.05.001

    Article  Google Scholar 

  27. Wahyuningsih, S., Ramelan, A.H., Munifa, R.M.I., Saputri, L.N.M.Z., Chasanah, U.: Synthesis of TiO2 nanorods from titania and titanyl sulfate produced from ilmenite dissolution by hydrothermal method. J. Phy.: Conf. Ser 776, 012044 (2016). https://doi.org/10.1088/1742-6596/776/1/012044

    Article  Google Scholar 

  28. Bagheri, S., Shameli, K., Hamid, S.B.A.: Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J. Chem. 2013, 1–5 (2013). https://doi.org/10.1155/2013/848205

    Article  Google Scholar 

  29. Souza, I.P.A.F., Crespo, L.H.S., Spessato, L., Melo, S.A.R., Martins, A.F., Cazetta, A.L., Almeida, V.C.: Optimization of thermal conditions of sol-gel method for synthesis of TiO2 using RSM and its influence on photodegradation of tartrazine yellow dye. J. Environ. Chem. Eng. 9(2), 104753 (2021). https://doi.org/10.1016/j.jece.2020.104753

    Article  Google Scholar 

  30. Ma, B., Qiu, Z., Yang, Ji., Qin, C., Fan, J., Wei, A., Li, Y.: Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation. Waste Biomass Valorization 10(10), 3037–3044 (2019). https://doi.org/10.1007/s12649-018-0303-0

    Article  Google Scholar 

  31. Zhang, Q., Yufeng, Wu., Zuo, T.: Titanium extraction from spent selective catalytic reduction catalysts in a NaOH Molten-salt system: thermodynamic, experimental, and kinetic studies. Metall. Mater. Trans. B. 50(1), 471–479 (2019). https://doi.org/10.1007/s11663-018-1475-5

    Article  Google Scholar 

  32. Kirumakki, S.R., Nagaraju, N., Chary, K.V.R.: Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM5. Appl. Catal. A: Gen. 299, 185–192 (2006). https://doi.org/10.1016/j.apcata.2005.10.033

    Article  Google Scholar 

  33. Yang, H., Kim, E., Kim, S.H., Jeong, M.S., Shin, H.: Hole trap, charge transfer and photoelectrochemical water oxidation in thickness-controlled TiO2 anatase thin films. Appl. Surf. Sci. 529, 147020 (2020). https://doi.org/10.1016/j.apsusc.2020.147020

    Article  Google Scholar 

  34. Zhang, X., Houfang, L., Kejing, W., Liu, Y., Liu, C., Zhu, Y., Liang, B.: Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42−-TiO2 in water–ethanol solvent. Chin. J. Chem. Eng. 28(1), 136–142 (2020). https://doi.org/10.1016/j.cjche.2019.02.027

    Article  Google Scholar 

  35. Liu, F., Wang, T., Zheng, Y., Wang, J.: Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42− /TiO2 catalysts. J. Catal. 355, 17–25 (2017). https://doi.org/10.1016/j.jcat.2017.08.014

    Article  Google Scholar 

  36. Chechia, H., Tzer-Rurng, S., Lin, T.J., Chang, C.W., Tung, K.L.: Yellowish and blue luminescent graphene oxide quantum dots prepared via a microwave-assisted hydrothermal route using H2O2 and KMnO4 as oxidizing agents. New J. Chem. 42(6), 3999–4007 (2018). https://doi.org/10.1039/C7NJ03337K

    Article  Google Scholar 

  37. Huang, Z., Lin, Y., Li, L., Ye, C., Qiu, T.: Preparation and shaping of solid acid SO42−/TiO2 and its application for esterification of propylene glycol monomethyl ether and acetic acid. Chin. J. Chem. Eng. 25(9), 1207–1216 (2017). https://doi.org/10.1016/j.cjche.2016.11.006

    Article  Google Scholar 

  38. Ortiz-Islas, E., López, T., Navarrete, J., Bokhimi, X., Gómez, R.: High selectivity to isopropyl ether over sulfated titania in the isopropanol decomposition. J. Mol. Catal. A: Chem. 228(1–2), 345–350 (2005). https://doi.org/10.1016/j.molcata.2004.09.029

    Article  Google Scholar 

  39. Nguyen, T.L., Quoc, V.D., Nguyen, T.L., Le, T.T.T., Dinh, T.K., Nguyen, V.T., Nguyen, P.H.: Visible-light-driven SO42-/TiO2 photocatalyst synthesized from binh dinh (Vietnam) Ilmenite ore for rhodamine B degradation. J. Nanomater. 2021, 1–13 (2021). https://doi.org/10.1155/2021/8873181

    Article  Google Scholar 

  40. Patil, S.M., Deshmukh, S.P., More, K.V., Shevale, V.B., Mullani, S.B., Dhodamani, A.G., Delekar, S.D.: Sulfated TiO2/WO3 nanocomposite: an efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation. Mater. Chem. Phys. 225, 247–255 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.041

    Article  Google Scholar 

  41. Nakhate, A.V., Doke, S.M., Yadav, G.D.: Template assisted synthesis of nanocrystalline sulfated titania: active and robust catalyst for regioselective ring opening of epoxide with aniline and kinetic modeling. Ind. Eng. Chem. Res. 55(41), 10829–10838 (2016). https://doi.org/10.1021/acs.iecr.6b02619

    Article  Google Scholar 

  42. Dabbawala, A.A., Alhassan, S.M., Mishra, D.K., Jegal, J., Hwang, J.-S.: Solvent free cyclodehydration of sorbitol to isosorbide over mesoporous sulfated titania with enhanced catalytic performance. Mol. Catal. 454, 77–86 (2018). https://doi.org/10.1016/j.mcat.2018.05.009

    Article  Google Scholar 

  43. Berrones-Hernández, R., Trejo-Hernández, G., Pérez-Luna, Y.C., Sánchez-Roque, Y., Rojas-Blanco, L., Zamudio-Torres, I., Figueroa-Ramírez, S.J., Pérez-Hernández, G., Ramírez-Morales, E.: Catalytic activity of Srilankite nanoparticles in the esterification of oleic acid. Mater. Sci. (2020). https://doi.org/10.20944/preprints202007.0158.v1

    Article  Google Scholar 

  44. Yuan, H., He, J., Li, R., Ma, X.: Characterization of SO42−/TiO2 and its catalytic activity in the epoxidation reaction. Res. Chem. Intermed. 43(8), 4353–4368 (2017). https://doi.org/10.1007/s11164-017-2882-y

    Article  Google Scholar 

  45. Yang, W., Yong Sik, O.K., Xiaomin Dou, Y., Zhang, M.Y., Wei, D., Peng, X.: Effectively remediating spiramycin from production wastewater through hydrolyzing its functional groups using solid superacid TiO2/SO42-. Environ. Res. 175, 393–401 (2019). https://doi.org/10.1016/j.envres.2019.05.037

    Article  Google Scholar 

  46. Gao, A., Chen, H., Tang, J., Xie, K., Hou, A.: Efficient extraction of cellulose nanocrystals from waste Calotropis gigantea fiber by SO42-/TiO2 nano-solid superacid catalyst combined with ball milling exfoliation. Ind. Crops Prod. 152, 112524 (2020). https://doi.org/10.1016/j.indcrop.2020.112524

    Article  Google Scholar 

  47. Esteban Benito, H., Del Ángel Sánchez, T., García Alamilla, R., Hernández Enríquez, J.M., Sandoval Robles, G., Paraguay Delgado, F.: Synthesis and physicochemical characterization of titanium oxide and sulfated titanium oxide obtained by thermal hydrolysis of titanium tetrachloride. Braz. J. Chem. Eng. 31(3), 737–745 (2014). https://doi.org/10.1590/0104-6632.20140313s00002506

    Article  Google Scholar 

  48. Li, L., Yue, H., Ji, T., Li, W., Zhao, X., Wang, L., She, J., Xiaoli, G., Li, X.: Novel mesoporous TiO2(B) whisker-supported sulfated solid superacid with unique acid characteristics and catalytic performances. Appl. Catal. A: Gen. 574, 25–32 (2019). https://doi.org/10.1016/j.apcata.2019.01.025

    Article  Google Scholar 

  49. Wang, H., Jiang, L., Wang, Y., Zheng, Y., Jiao, X., Pan, D.: Synthesis of borneol from α-pinene catalyzed by a SO42−/TiO2–La3+ nanometer rare-earth solid superacid. Inorg. Nano-Met. Chem. 48(1), 23–30 (2018). https://doi.org/10.1080/24701556.2017.1357622

    Article  Google Scholar 

  50. Walton, I.M., Cox, J.M., Benson, C.A., Patel, D.G., Chen, Y.S., Benedict, J.B.: The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New J. Chem. 40(1), 101–106 (2016). https://doi.org/10.1039/C5NJ01718A

    Article  Google Scholar 

  51. Cho, S.M., Hong, C.Y., Park, S.Y., Lee, D.S., Choi, J.H., Koo, B., Choi, I.G.: Application of sulfated tin (IV) oxide solid superacid catalyst to partial coupling reaction of α-pinene to produce less viscous high-density fuel. Energies 12(10), 1905 (2019). https://doi.org/10.3390/en12101905

    Article  Google Scholar 

  52. Hossain, M.N., Bhuyan, M.S.U.S., Abul Hasnat, M.D., Alam, A., Seo, Y.C.: Biodiesel from hydrolyzed waste cooking oil using a S-ZrO2/SBA-15 super acid catalyst under sub-critical conditions. Energies 11(2), 299 (2018). https://doi.org/10.3390/en11020299

    Article  Google Scholar 

  53. Su, F., Guo, Y.: Advancements in solid acid catalysts for biodiesel production. Green Chem. 16(6), 2934–2957 (2014). https://doi.org/10.1039/C3GC42333F

    Article  Google Scholar 

  54. Hossain, M.N., Bhuyan, M.S.U.S., Abul Hasnat, M.D., Alam, A., Seo, Y.C.: Optimization of biodiesel production from waste cooking oil using S-TiO2/SBA-15 heterogeneous acid catalyst. Catalysts 9(1), 67 (2019). https://doi.org/10.3390/catal9010067

    Article  Google Scholar 

  55. Gashaw, A., Teshita, A.: Production of biodiesel from waste cooking oil and factors affecting its formation: a review. Int. J. Renew. Sustain. Energy 3, 92–98 (2014). https://doi.org/10.11648/j.ijrse.20140305.12

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21376022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.A., Wang, W., Chang, Z. et al. TiO2/SO42− Solid Superacid Catalyst Prepared by Recovered TiO2 from Waste SCR and Its Application in Transesterification of Ethyl Acetate with n-butanol. Waste Biomass Valor 14, 4035–4043 (2023). https://doi.org/10.1007/s12649-023-02132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02132-5

Keywords

Navigation