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Abstract
Tons of waste from residential, commercial and manufacturing activities are generated due to the growing population, 
urbanization and economic development, prompting the need for sustainable measures. Numerous ways of converting waste 
to aerogels, a novel class of ultra-light and ultra-porous materials, have been researched to tackle the issues of waste. This 
review provides an overview of the status of aerogels made from agricultural waste, municipal solid, and industrial waste 
focusing on the fabrication, properties, and applications of such aerogels. The review first introduced common methods to 
synthesize the aerogels from waste, including dispersion and drying techniques. Following that, numerous works related to 
aerogels from waste are summarized and compared, mainly focusing on the sustainability aspect of the processes involved and 
their contributions for environmental applications such as thermal insulation and oil absorption. Next, advantages, and disad-
vantages of the current approaches are analyzed. Finally, some prospective waste aerogels and its applications are proposed.
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Statement of Novelty

This review is undertaken to summarize, compare and 
evaluate several approaches to utilize different types of 
waste for the preparation of aerogels in terms of sustain-
ability and engineering applications. Compared to previous 
works, this review focuses on the status and environmental 
impacts of wastes, and efforts from researchers worldwide 
to convert these wastes into aerogels for diverse applica-
tions through ecofriendly methods. Environmental aspects 
including impacts of synthesis procedures and solutions for 
environmental problems such as heat insulation and oil spill 
cleaning are highlighted. Our perspectives on the advan-
tages and disadvantages of the mentioned approaches are 
presented in detail. Furthermore, we propose the prospects 
of the development of aerogels from waste as suggestions for 
future works. Hopefully, this review can inspire more stud-
ies to create high value materials from waste by ecofriendly 
fabrication methods to partly combat the increasing waste 
generation and offer solutions for engineering problems.

Introduction

Driven by a rapid growing population, urbanization and 
economic development, waste generation is significantly 
increasing all over the world. Primary waste sources include 
residential households, municipal services, treatment plants, 
and industrial and agricultural processes [1]. Municipal solid 
waste refers to waste generated in a community from house-
holds, offices, restaurants, schools, and other institutions. 
According to a report of the World Bank Group in 2018 [2], 
approximately 0.74 kg of municipal solid waste is produced 

per capita per day. This figure varies widely by country, 
ranging from 0.11 to 4.54 kg per capita per day. Waste gen-
eration is related to income levels. Despite only accounting 
for 16% of the world’s population, high-income nations pro-
duce around 34 percent, or 683 million tons annually, of the 
world’s waste. The global municipal solid waste is around 
2.01 billion tons in 2016 and is projected to reach 3.40 bil-
lion tons by 2050.

However, municipal solid waste is only one of the waste 
sources that the world is facing. Figure 1 shows the amount 
of waste generated per capita per day worldwide by source. 
Industrial waste generation is much higher than that of 
municipal solid waste, of approximately 17.2 times higher. 
Statistics show that the industrial waste generation grows 
significantly with increase in income level. In high-income 
nations, the average amount of industrial waste is 42.62 kg/
capita/day, while this figure is only 0.36 kg/capita/day in 
lower-middle income nations [2]. Therefore, a rapid industri-
alization seen in recent decades can exacerbate environmen-
tal problems without a proper waste management strategy. 
The number for agricultural waste generation is 3.35 kg/
capita/day and can be higher in large agricultural produc-
ing countries. Construction and demolition waste accounts 
for 1.68 kg/capita/day, mainly emerged from demolition 
and rehabilitation of existing sites [3]. Although only mak-
ing up a small fraction, hazardous, medical and electronic 
waste (e-waste) can severely damage the environment and 
human health if disposed improperly. Especially, the gen-
eration of e-waste is significantly increasing with the rapid 
development of technology that accompanies with modern 
urbanization.

Due to the negative impacts of waste on the environment 
and community health, governments have put forth many 
efforts into waste management. Solid waste management 

Fig. 1   Global average waste 
generation by source [2]
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accounts for more than 10% of municipal budgets in mid-
dle-income countries, and 4% in high-income countries [2]. 
According to the waste management hierarchy, waste should 
be managed in accordance with the following order of pref-
erence: prevention, reuse, recycling, treatment and disposal 
[4]. Despite not being the first priority, recycling offers 
numerous benefits such as saving energy, conserving natural 
resources, protecting the environment, and reducing waste 
amount to landfills and incinerators. Recycling is integral in 
converting a linear economy into circular economy to meet 
the sustainable development goals. Items such as papers, 
plastics, food, glass, metals, textiles and tires are recyclable. 
In 2019, Singapore recycled 99% of metal, 98% of slag and 
94% of tires [5]. Moreover, waste can be recycled to high 
value materials such as activated carbon [6], graphene [7], 
building materials [8], membrane [9], and metals [10], add-
ing more economic values.

Aerogels, a class of ultra-porous solid materials, are well-
known for their low density (0.0011–0.5 g/cm3), high poros-
ity (90–99%) and large surface area (10–2000 m2/g) [11]. 
The first aerogels were reported by Kistler in 1931 and fol-
lowed by various aerogels from different precursors such as 
silica, cellulose, and organic compounds. The most commer-
cially popular aerogels are silica aerogels, mainly used for 
thermal insulation. However, the main restriction of the wide 
use of aerogels is their high cost. One m2 of a commercial 
aerogel for thermal insulation with a thermal conductivity of 
15 mW/mK costs 280 USD, while it costs only 15 USD per 
m2 for a conventional insulator with a thermal conductivity 
of 32 mW/mK and the same overall heat transfer coefficient 
[12]. A monolithic cylinder carbon aerogel for catalyst sup-
port with the size of 1 cm × 0.4 cm (diameter × height) costs 
80 USD [13], while the same amount of silica gel with the 
same surface area costs approximately 3 USD [14]. One rea-
son for this high cost is expensive starting materials, which 
limits the diversity of commercial aerogels. To obtain silica 
aerogels via supercritical drying, the precursor costs 95.4% 
and 42% of the production cost, when tetramethyl orthosili-
cate and sodium silicate are used, respectively. For carbon 
aerogels, the organic precursors cost makes up from 63% 
(phenolic-furfural) to 80% (resorcinol-formaldehyde) of the 
production cost [15]. Therefore, it is necessary to find low-
cost precursors to reduce the cost of aerogel production.

Inspired by recycling, many approaches to aerogels from 
waste have been reported. These are advanced solutions for 
reducing the cost of starting materials and the amount of 
waste to landfills and incinerators. Researchers have mainly 
utilized municipal solid, agricultural and industrial wastes as 
precursors of aerogels due to their abundance. Many novel 
applications of aerogels besides thermal insulation have 
been discovered such as personal care products, medical 
devices, oil and organic solvents sorption, filtration, sound 
insulation, energy absorption, energy storage, bioelectronics, 
water treatment and catalyst, offering sustainable solutions 
for environmental and energy problems. Previous reviews 
mainly focused on a specific types of aerogel such as silica 
aerogel [16], cellulose aerogel [17], and carbon aerogel, [18] 
or on certain application such as acoustic insulation [19], 
photocatalyst [20] and biomedical applications [21]. How-
ever, taking advantage of wastes such as municipal solids, 
agricultural and industrial by-products to create high-value 
engineering aerogels has been a general trend in the world. 
This review will focus on analyzing the outstanding prop-
erties and applications of recycled aerogels from different 
wastes.

Fabrication of Aerogels from Waste

Common preparation methods of aerogels from waste are 
illustrated in Fig. 2. Generally, the fabrication of aerogels 
from waste is similar to that of conventional aerogels. The 
most well-known method for the synthesis of aerogels is 
sol-gel process, in which the precursor forms a colloid by 
hydrolysis and condensation reactions, and then turns into 
a gel by the formation of crosslinks. The resulting gel can 
be aged to strengthen the crosslinked network, and then sol-
vents are replaced by air to obtain the aerogels. This is the 
approach using by Kistler et al. [22] for the synthesis of the 
first aerogel. In this work, the silicate precursor was hydro-
lyzed and condensed in an acidic condition. Since the evap-
oration of water would cause cracks and shrinkage to the 
gel due to the capillary force, solvent exchange was carried 
out to replace water by solvents with low critical point such 
as alcohol and propane. These solvents were then removed 
by drying over their critical point to avoid the liquid–vapor 

Fig. 2   Schematic diagram of fabrication of aerogels using waste as raw materials
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interface and achieve the aerogel with a reserved polymer 
network.

Gradually, more advanced gel drying techniques are intro-
duced to modify the direct supercritical drying of Kistler, 
including supercritical CO2 (scCO2) drying, ambient pres-
sure drying, and freeze-drying. The scCO2 drying utilize 
the high solubility of scCO2 to extract the solvent with no 
liquid–vapor interface, reserving the highly porous and tex-
tural structure of the liquid gel. One significant advantage 
of ScCO2 is its low-temperature critical points (304 K, 7.4 
MPa) compared to other solvents such as ethanol (517 K, 
6.4 MPa) and hexane (507 K, 3.03 MPa), thus the scCO2 is 
less energy-intensive [23]. In the ambient pressure drying, 
the surface of silica aerogel is hydrophobically modified to 
eliminate terminal silanol group (Si-

OH), and the solvent is exchanged into a low-surface-
energy solvent such as hexane to minimize the shrinkage. 
Ambient pressure drying allows to considerably reduce 
the equipment and energy cost. However, scCO2 drying 
and ambient pressure drying usually requires amounts of 
organic volatile solvents for solvent exchange steps, making 
these two techniques non-eco-friendly and time-consuming. 
This disadvantage can be avoided in the freeze-drying tech-
nique, in which the ice crystals in the frozen hydrogel are 
removed by sublimation at low pressure. Freeze-drying does 
not require solvent modifications; thus, no waste chemicals 
are generated. It is noted that generally the resultant gels 
that forms out of ambient pressure drying is termed xerogels 
while gels that are formed out of freeze-drying is termed 
cryogels [24]. However, in this review, the term aerogel will 
be used throughout as an indication to the porous material 
obtained from each of the gel drying method.

Compared to pure aerogel precursors, the composition 
of waste is complex and varied by sources. For example, 
cellulose from leaves and trees are usually found within a 
lignin shell, while cellulose from paper waste can be impure 
by sizing materials, fillers and pigments. The composition 
of the cellulose fibers in a specific species, such as pineap-
ple, also depends on the maturity, the location and the fibers 
extraction conditions [25]. Therefore, pretreatment such as 
washing, grinding or thermal treating is usually conducted 
to remove the impurities and extract the desired components. 
Organic waste can be calcinated to serve as a source of car-
bon. Sometimes, solvent extraction is performed to obtain 
precursors such as sodium silicate from fly ash and rice husk 
ash.

After pretreatment, the precursor is dissolved into appro-
priate solvents to obtain a sol or dispersed with the support 
of binders to form a suspension. The former approach is 
the sol-gel process, which is mostly applicable for sodium 
silicate and metal powders. Polymeric materials are gener-
ally difficult to be dissolved in common solvents. For exam-
ple, dissolving of cellulose requires the use of concentrated 

NaOH/urea solution or ionic liquid. In these cases, the latter 
approach using polymers as binders is more favorable. When 
dispersing solid precursors in a polymer solution, it is impor-
tant to obtain a stable suspension. According to Stokes’ law, 
the settling velocity of the particle can be calculated by:

where ω is the settling velocity; ρp , ρf are the density of 
particle and fluid, respectively; d is the diameter of the par-
ticle; μ is the velocity and g is the gravitational accelera-
tion. To maintain a stable dispersion, the settling velocity 
should be kept minimum to prevent sedimentation. This is 
usually done by either increasing the viscosity of the poly-
mer solution or reducing the size of raw materials. Anti-
settling agents such as carboxymethyl cellulose (CMC) can 
be employed to facilitate this step. Subsequently, the sol or 
the suspension is transformed into a gel by the formation 
of crosslinks between polymer chains. The nature of the 
crosslinks can be chemical (mostly covalent bond), or phys-
ical (mostly hydrogen bond). Some hydrophilic polymers 
can be self-assembled to form a gel at appropriate tempera-
ture. Their self-crosslinking ability is due to the presence of 
hydrophilic functional groups such as hydroxyl or carboxylic 
acid, which form hydrogen bonds between polymer chains. 
To further strengthen the 3-dimension scaffold, chemical 
crosslinkers can be introduced, such as epichlohydrin [26] 
or Kymene [27] in the gelation of cellulose hydrogel.

The gel is then converted into the corresponding aero-
gels using the mentioned drying methods. It should be noted 
that supercritical drying and ambient pressure drying are 
accompanied by solvent exchange steps, and freeze-drying 
technique requires the gel to be frozen. Post-treatment such 
as hydrophobic coating, impregnation or carbonization can 
be conducted on the obtained aerogel to better serve for cer-
tain applications.

Aerogels from Municipal Solid Waste

Figure 3 describes main components of municipal solid 
waste, including food, green, paper, plastic, rags, metal, 
glass and other wastes. Food waste and green waste are 
dominant types of municipal solid waste, which accounts 
for 44% of the total. However, the utilization of food waste in 
advanced materials is limited due to its complex and unsta-
ble composition. In this review, various types of food waste 
such as coffee grounds, okara, sugarcane bagasse and banana 
peels are classified as agricultural waste and discussed their 
utilization to make aerogels in Sect. 4. Preparation, proper-
ties and applications of some aerogels from municipal solid 
waste are tabulated in Table 1.

(1)ω =

(

ρp − ρf

)

gd2

18μ
,
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Aerogel from Paper Waste

Paper and cardboard are the second most abundant types 
of municipal solid waste, making up 17% of the total. 
Approximately 419.7 million tons of paper and cardboard 
were produced in 2017, mainly for packaging and graphic 
usages [51]. Waste papers consist of approximately 
40–80% of cellulose, 5–15% of hemicellulose and amounts 
of lignin and proteins [52]. In 2013, Nguyen et al. [28] 
introduced cellulose aerogels from paper waste. With an 
oil absorption capacity of 24 g/g and its biodegradability, 
the cellulose aerogel from used paper is a potential candi-
date for oil spill cleaning. However, the aerogel takes up to 
7 days to prepare with many stages, including dispersion 
of the fibers in NaOH and urea, freeze gelation, coagula-
tion in ethanol, solvent exchange to water, freeze-drying 
and hydrophobic coating. In 2014, Feng et al. [27] sim-
plified the preparation of cellulose aerogels from paper 
by employing Kymene as a crosslinker. Compared to the 
NaOH/urea method, this new approach reduces the syn-
thesis duration from 7 days to 3 days and eliminates toxic 
chemicals in the procedure. Moreover, the resulting aero-
gels have an oil absorption capacity of 95 g/g, 4 times 
higher than the previously reported cellulose aerogels [28]. 
The oil absorption of the fabricated aerogels exhibits pH 
insensitivity under different simulated conditions with 
a mixture of oil and water at pH 3, 5, 7, and 9. This is 
because the high porosity of the aerogels and oil viscosity 
are independent of the environmental pH values. It is wit-
nessed that the aerogels absorb oil quickly in only 7 min 
when they are placed on the top of the oil-contaminated 
seawater (Fig. 4).

Different types of paper are utilized in the fabrication of 
cellulose aerogels such as newspapers [36, 37], cardboards 
[33] and office papers [35] with various applications includ-
ing fire retardant, oil and solvent absorption and pollutant 
removal. Besides, paper can replace toxic organic precursors 
to prepare carbon aerogels. Li et al. [32] reported elasti-
cally compressible and conductive carbon aerogels from 
waste paper using “oxidization–oven drying–carbonization” 
method, which is superior to the freeze-drying approach. In 
this work, waste paper pulp is oxidized by sodium chlorite, 
filtrated and oven dried to form the sodium chlorite/waste 
paper aerogels and pyrolyzed at 1000 °C to form carbon 
aerogels. These works show high potential of paper and 
cardboard waste for being used as a source of carbon and 
cellulose.

Aerogel from Plastic Waste

Plastic waste accounts for 12% of the total municipal 
solid waste. Over 300 million tons of plastic are pro-
duced annually, in which at least 8 million tons end up 
in water and deep-sea sediments [53]. It is not surpris-
ing that single-use plastics are one of the most common 
items found on beaches all over the world. Plastic produc-
tion is expected to reach 8.3 billion tons by 2050 [54]. 
During the COVID-19 crisis in the first half of 2020, 
a growing reliance on food delivery services created a 
jump of plastic waste from 5,500 tons to 6,300 tons per 
day in Thailand [55]. However, recycling rates of plastic 
are relatively low, at around 30% in developed countries 
and close to 0% in developing countries [54]. Recycling 
plastic waste by remelting and reforming, downgrades 
the quality of plastics due to thermal degradation of poly-
mer chains and thus low-grade and low-value secondary 
plastics are obtained. In 2018, recycled polyethylene tere-
phthalate (rPET) aerogels from plastic bottles were intro-
duced. The aerogel network is formed by hydrogen bonds 
between rPET fiber and poly(vinyl alcohol) (PVA), and 
acetal bonds between rPET fiber and glutaraldehyde [38]. 
The rPET aerogels show a hydrophobicity with water con-
tact angles of 120.7°–149.8°, and a high elasticity with 
a low compressive Young’s modulus (1.16–2.87 kPa). 
They have a low thermal conductivity (35–38 mW/mK) 
and a high acoustic absorption with a noise reduction 
coefficient (NRC) of 0.45, higher than that of the com-
mercial acoustic foam absorber with the same thickness. 
After coating with methyltrimethoxysilane (MTMS), the 
rPET aerogels can then be used as an oil and organic 
solvent absorber [39] (Fig. 5). The MTMS-coated rPET 
aerogel with 1.0 wt% rPET fiber and 0.10 wt% PVA has a 
high oil absorption capacity of 80 times of its weight and 
takes around 10 s to reach its maximum absorption capac-
ity, demonstrating its potential use in oil spill cleaning 

Fig. 3   Composition of municipal solid waste (%) [2]
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Table 1   Preparation and application of aerogels from municipal solid waste

No. Waste materials Type of aerogels Fabrication process Properties/applicationsa References

1 Paper Cellulose Dispersion
Gelation
Solvent exchange
Freeze-drying
Silanization

Oil absorption: 24 g crude oil/g [28]

2 Paper Cellulose Dispersion
Gelation
Solvent exchange
Freeze-drying

Water absorption: 19 g/g
Thermal insulation: 29–32 mW/

mK

[29]

3 Paper Cellulose Dispersion
Freeze-drying
Crosslinking
Silanization

Oil absorption: 95 g motor oil/g
Thermal insulator

[27, 30]

4 Paper Carbon Dispersion
Freeze-drying
Pyrolysis

Oil and solvent absorption: 
188 g pump oil/g; 70 g 
tetrachloromethane/g

Emulsion separation
Sensors and pressure-sensitive 

electronics

[31, 32]

5 Paper and cardboard Cellulose Mixing with flame retardant 
agent

Dispersion
Freeze-drying

Fire retardant [33]

6 Cardboard Cellulose/sodium alginate Dispersion
Crosslinking
Freeze-drying
Stearic acid modification

Oil and solvent absorption: 
47 g tetrachloroethane/g; 34 g 
kerosene/g

[34]

7 Office paper Cellulose/chitosan Dispersion
Freeze-drying

Metal ion adsorption:156.3 mg 
Cu2+/g

[35]

8 Newspaper Cellulose Ink and glue removal
Dispersion
Freeze-drying

Dye absorption [36]

9 Newspaper Cellulose Ink and glue removal
Dispersion
Freeze-drying
Silanization

Oil and solvent absorption: 44 g 
chloroform/g; 33 g kerosene/g

Lampblack filtration

[37]

10 Plastic bottle Polyethylene-terephthalate Dispersion
Freeze-drying

Thermal insulation: 35–38 mW/
mK

Acoustic insulation

[38]

11 Plastic bottle Polyethylene-terephthalate Dispersion
Freeze-drying
Silanization

Oil absorption: 79.4 g oil/g [39]

12 Plastic bottle Polyethylene-terephthalate/Silica Dispersion
Gelation
Solvent exchange
Silylation
Ambient pressure drying

Thermal insulation: 37–47 mW/
mK

[40]

13 Rubber tire Rubber Dispersion
Freeze-drying
Silanization

Thermal insulation: 35–49 mW/
mK

Acoustic insulation NRC = 0.41–
0.56

Oil absorption: 19.3–25 g oil/g

[41–43]

14 Cotton fabrics Cellulose Dispersion
Freeze-drying
Crosslinking

Stopping liquid leakage [44]

15 Cotton fabrics Cellulose/Mg(OH)2 Dispersion
Freeze-drying
Crosslinking

Thermal insulation: 56–81 mW/
mK

[45]
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applications. After being used for oil spill cleaning, the 
PET aerogel can release the absorbed oil by a simple 
squeezing method without any significant decrease in 
its absorption capacity after five absorption–recollection 
cycles. Recycling water bottles into PET aerogels not only 
encourages a circular economy, but also offers sustainable 
solutions for technical challenges such as heat and sound 
insulation and oil absorption.

Aerogel from Rubber Waste

Due to the growing transport demand, over 1.7 billion new 
tires are produced per year. The figure for waste tires gen-
erated per year is over 1 billion, of which only 3–15% are 
recycled [56]. The car tires are mainly composed of syn-
thetic polymers including nylon 6, nylon 6-6, dacron and 
rayon. The polymer contents in the car tires are difficult to 

a Specifications to illustrate for applications: absorption capacity (for absorption), adsorption capacity (for adsorption), thermal conductivity (for 
thermal insulation)

Table 1   (continued)

No. Waste materials Type of aerogels Fabrication process Properties/applicationsa References

16 Cotton fabrics Carbon/carbon oxide Dispersion
Dehydrating
Drying
Pyrolysis
Oxidizing

Pollutant absorption: 1519 mg 
methylene blue/g

Metal ion adsorption: 111.1 mg 
Pb2+/g

[46]

17 Denim Cellulose Dissolving in ionic liquid
Regeneration
Drying

Not mentioned [47]

18 Cigarette filter Carbon Graphene oxide coating
Ambient pressure drying
Carbonization
Polypyrrole coating
Ambient pressure drying

Electromagnetic wave absorption [48]

19 Bamboo chopstick Carbon Carbonization
Dispersion
Freeze-drying
Pyrolysis

Oil and solvent adsorption: 129 g 
pump oil/g; 80 g chloroform/g

[49]

20 Aluminum foil Aluminum hydroxide Dispersion
Precipitation
Gelation
Freeze-drying

Thermal insulation: 28–32 mW/
mK

[50]

Fig. 4   Oil absorption per-
formance of paper aerogel in 
artificial seawater environment.  
Reprinted from Feng et al. [30], 
Copyright (2015) with permis-
sion from Elsevier
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dissolve with green solvents. One strategy to obtain the gel 
mixture of rubber is employing crosslinkers namely acetone, 
PVA and glutaraldehyde. Briefly, car tire fibers were dis-
persed into acetone/PVA/glutaraldehyde/water, followed by 
heat curing and freeze-drying to create durable aerogels as 
shown in Fig. 6 [41]. Functional groups on polymer chains 
of rubber are utilized to form crosslinks with acetone, PVA 
and glutaraldehyde via hydrogen bonds. The developed 
rubber aerogels are both flexible and durable with a high 
Young’s modulus up to 965.6 kPa, allowing them to spring 
back to their original shape instead of being deformed plasti-
cally after compression. The high elasticity of rubber aero-
gels is significantly useful compared to the brittleness of 
the conventional silica aerogels in terms of functioning in 

harsh environments with high mechanical impacts. Multiple 
applications of the rubber aerogels are demonstrated, such as 
thermal insulation (K = 35–47 mW/mK), sound insulation 
(NRC = 0.41) and oil absorption (up to 25.0 g/g). The rub-
ber aerogels’ maximum oil absorption is approximately 1.7 
and 2.8 times higher than that of commercial polypropylene 
mats and nonwoven polypropylene, respectively [56].

Aerogel from Textile Waste

Recycled textiles are another abundant precursor for cellu-
lose-based aerogels. With the rapid development of “fast 
fashion” involving the mass production of low-cost clothing 
with short lifetime, the global production of cotton reached 

Fig. 5   Recycling of PET fibers 
into hydrophobic rPET aerogel 
for oil spill cleaning.  Reprinted 
from Le et al. [39], Copyright 
(2020) with permission from 
Elsevier

Fig. 6   Fabrication and proper-
ties of rubber aerogels from car 
tire waste.  Reprinted from Thai 
et al. [41], Copyright (2019) 
with permission from Elsevier
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27.3 million tons in 2018 [57]. To utilize used clothing and 
leftover materials from textile industry, Han et al. [45] pre-
pared hybrid cellulose/magnesium hydroxide nanoparticles 
aerogels from waste cotton fabric. The magnesium hydrox-
ide nanoparticles are synthesized in situ in the gel structure, 
which enhance the flame retardancy of the composite aero-
gels. Duong et al. [44] developed compressed hybrid cotton 
aerogels from cotton and cellulose fibers using Kymene as 
a crosslinker. With the ability to volumetrically expand 16 
times within 4.5 s, the aerogels possess potential applica-
tions in hemostatic devices, oil-spill cleaning and personal 
care. The better mechanical handleability of the cotton aero-
gels in contrast to aerogels from paper waste is attributed to 
the higher mechanical properties of cotton fibers compared 
to the delignificated wood fibers [58]. With good mechanical 
strength, high cellulose content and relatively long fibers, 
cotton fibers from fabric waste can be utilized to assemble 
aerogel scaffolds for multiple applications. Similar to the 
mentioned textile wastes, wool waste fibers were recycled 
into advanced aerogels to minimize their disposal and incin-
eration. The aerogels were fabricated by using PVA to bind 
the wool waste fibers, freeze-drying and surface modifica-
tion with methyltriethoxysilane. The prepared aerogels show 
a significantly high oil absorption capacity of 136.2 g/g that 
was 15 times greater than commercial polypropylene absor-
bents [59].

Aerogels from Agricultural Waste

Agricultural waste is defined as non-product outputs of the 
agricultural processing and production. They can be gen-
erated from cultivation activities, livestock production, 
aquaculture and food processing [60]. Conventionally, agri-
cultural waste is managed by open burning or landfilling, 
resulting in harmful gases and organic substances released. 
Despite being considered low-value by-products, agricul-
tural wastes are abundant sources of raw materials such as 
cellulose [61, 62], silica [63] and bioactive compounds [64]. 
Therefore, many works of utilizing agricultural waste as pre-
cursors for aerogels have been conducted.

Aerogels from Rice Husk Ash

Worldwide rice production is estimated to be 700 million 
tons in 2015, releasing approximately 140 million tons 
of rice husks during the milling process. Chemical com-
position of the rice husks includes cellulose (50%), lignin 
(25%–30%), silica (15%–20%), and moisture (10%–15%) 
[65]. Burning of rice husk results in rice husk ash contain-
ing around 90% of silica, which can be used as a precursor 
for silica aerogels [66]. Remarkably, Green Earth Aerogels 
Technologies (Spain) successfully produced commercial 

silica aerogels from rice husk ash [67]. Table 2 shows some 
approaches to silica aerogels with various morphologies 
from rice husk ash. Generally, rice husk ash is converted 
into sodium silicate by reacting with hot NaOH solution. The 
resulting mixture is gelated by an acid and aged to obtain 
a silica hydrogel. Subsequently, water in the gel is replaced 
by other volatile solvents. Finally, the aerogel is obtained by 
supercritical drying or ambient pressure drying. The density, 
pore volume, pore size and surface area of aerogels from rice 
husk ash are comparable to those of aerogels prepared by 
traditional methods [68]. As can be seen, the pore volume, 
pore size and surface area of the supercritical-dried silica 
aerogels are slightly larger than those of the ambient pres-
sure dried ones [69]. It can be explained by the elimination 
of surface tension during supercritical drying, compared to 
the partial reduction of surface tension by silylation in ambi-
ent pressure drying technique.

Aerogels from Fruit and Vegetable Waste

Fruit and vegetable harvesting and processing release vari-
ous residues including pods, peel, pulp, stones, and seeds. 
These residues mainly contain soluble sugars, hydrolysable 
materials and fibers [77]. Common utilizations of fruit and 
vegetable waste are chemical production by extraction or 
fermentation and adsorption in waste water treatment [78]. 
Furthermore, fruit and vegetable waste have been utilized to 
prepare aerogels as shown in Table 3.

As seen, cellulose and carbon aerogels are the two most 
popular types of aerogels from these biomass residues. 
Cellulose aerogels can be obtained from pineapple leaves, 
sugarcane bagasse or coconut shells. Because of numerous 
hydroxyl groups on the cellulose chains of pineapple leaf 
fibers, PVA binder is used to create the hydrogen bonding 
between the fibers in the first pineapple aerogels developed 
by Luu et al. [95] and Do et al. [80] (Fig. 7a). The synthe-
sized aerogels exhibit a low thermal conductivity (30–34 
mW/mK) and can be used as fillers in thermal jackets to 
maintain the water temperature. The results show that the 
developed thermal jacket from pineapple aerogels can keep 
ice slurry from – 3 °C below 0 °C for 6 h, and hot water 
from 90 °C above 40 °C for 2.5 h, which is about three times 
better than a commercial product in terms of thermal insula-
tion (Fig. 7b). Moreover, the 190-g thermal jacket shows the 
great potential to replace expensive and heavy 900-g vacuum 
thermos flasks. Functionalized pineapple leaf-derived aero-
gels with the presence of activated carbon show their ability 
in fruit preservation with ethylene gas adsorption capacity 
of 1.08 mmol/g at atmospheric pressure. The aerogels after 
coating with diethylenetriamine are also applied in treatment 
of contaminated wastewater with the maximum nickel ion 
adsorption uptake of 0.835 mmol/g [81]. Wan et al. [83] 
prepared cellulose aerogels from coconut shell for dealing 
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with chemical leaks and oil spills. By surface modification 
with methyltrichlorosilane, the aerogels can adsorb solvents 
and oil of the amount as high as 296–669 times of their own 
weight, which is significantly higher than the oil absorption 
capacity of the hydrophobic pineapple aerogels (37.9 times) 
[79]. The high tensile strength and relatively long cellulose 
chains give plant fibers the ability to assemble into flexible 
aerogel sheets, which can be easily rolled up for transporta-
tion, storage, and usage in different situations.

Organic substances from fruit and vegetable residues such 
as bagasse, peels and leaves can be used as inexpensive and 
abundant carbon sources for carbon aerogels. Zhu et al. [56] 
prepared carbon aerogels from pomelo peels via a three-step 
procedure including hydrothermal carbonization, freeze-
drying and pyrolysis. The aerogels possess a high specific 
area of 466.0–759.7 m2/g and a high absorption capacity up 
to 36 times of their weight for various oil and organic sol-
vents. Carbon aerogels from fruits and vegetables waste can 
be also designed for electronic devices such as capacitors 
and batteries. For instance, Cai et al. [86] reported carbon 
aerogels from cabbage leaves with a superior capacitance 

of 291 F/g and large capacitance retention of 96.76% over 
10,000 cycles.

Interestingly, sugarcane bagasse can be processed in dif-
ferent pathways to obtain cellulose aerogels, carbon aerogels 
or silica aerogels. Dispersing sugarcane fibers in PVA, fol-
lowed by freeze-drying and heat curing results in cellulose 
aerogels [82]. The aerogels after modification with MTMS 
have high hydrophobicity without affecting their porosity. 
A low thermal conductivity of 31–42 mW/mK and an oil 
absorption capacity of 25 g/g indicate potential applications 
of the aerogels in spill cleaning and heat insulation. Hao 
et al. prepared cellulose aerogels from bagasse via a freeze-
drying approach, then pyrolyzed and activated the result-
ing aerogels to obtain carbon aerogels [85]. These carbon 
aerogels possess a comparable high specific capacitance of 
142.1 F/g and an excellent capacitance retention of 93.9% 
over 5000 cycles, which are suitable for supercapacitor elec-
trodes. Nazriati et al. utilized the bagasse ash in sugarcane 
factories as a silica source for the preparation of hydro-
phobic silica aerogels [89]. This approach involves surface 
modification of wet gels and ambient pressure drying. The 

Table 2   Preparation and physical properties of silica aerogels from rice husk ash

No. Type of silica aerogels Fabrication process Density
(g/cm3)

Pore volume (cm3/g) Pore size (nm) Surface area (m2/g) Referencess

1 Monolith Silicate extraction
Silylation by TMOS
Gelation by acid
Solvent exchange with 

ethanol
Ambient drying

0.32–0.33 0.78–3.31 5–60 315–500 [70, 71]

2 Monolith Silicate extraction
Gelation by acid
Solvent exchange with 

ethanol
Silylation by TEOS
Solvent exchange with 

n-hexane
Ambient drying

0.67 3.1 10–40 273 [72]

3 Monolith Silicate extraction
Gelation by resin/acid
Solvent exchange with 

ethanol
ScCO2 drying

0.038–0.071 3.39–8.65 10–60 598–730 [73, 74]

4 Bead Silicate extraction
Gelation by acid
Solvent exchange with 

ethanol
Silylation
Ambient pressure drying

0.055 N/A N/A 773 [75]

5 Microsphere Silicate extraction
Emulsification with sur-

factants
Settling
Solvent exchange with 

ethanol
ScCO2 drying

N/A 1.7 20 340 [76]
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Table 3   Preparation and application of aerogels from fruits and vegetables waste

a Specifications to illustrate for applications: Absorption capacity (for Absorption), Adsorption capacity (for Adsorption), Thermal conductivity 
(for Thermal insulation)

No. Waste materials Type of aerogels Fabrication process Properties/applicationsa References

1 Pineapple
leaves

Cellulose Dispersion
Freeze-drying
Silanization

Oil absorption: 37.9 g/g [79]

2 Pineapple
leaves

Cellulose Dispersion
Freeze-drying

Thermal insulation: 30–34 mW/mK
Acoustic insulation

[80]

3 Pineapple leaves Cellulose Dispersion
Gelation
Freeze-drying

Gas adsorption: 1.08 mmol ethylene/g
Metal ion adsorption: 0.835 mmol 

Ni2+/g

[81]

4 Sugarcane bagasse Cellulose Dispersion
Freeze-drying
Silanization

Oil absorption: 25 g/g
Thermal insulation: 31–42 mW/mK

[82]

5 Coconut shell Cellulose Dispersion
Solvent exchange to t-BuOH
Gelation
Freeze-drying
Silanization

Oil and solvent adsorption: 669 g motor 
oil/g, 425 g t-BuOH/g

[83]

6 Durian shell Carbon Carbonization
Freeze-drying
Pyrolysis

Oil and solvent adsorption: 19.5 g sun-
flower oil/g, 18.6 g formic acid/g

[84]

7 Sugarcane bagasse Carbon Dispersion
Freeze-drying
Pyrolysis
Activation

Energy storage [85]

8 Cabbage leaves Carbon Carbonization
Freeze-drying
Pyrolysis

Energy storage
Oil and solvent absorption: 202 g pump 

oil/g; 165 g cyclohexane/g

[86]

9 Banana peels Carbon-Cellulose Dispersion
Freeze-drying
Pyrolysis

Oil and solvent absorption: 115 g pump 
oil/g, 86 g chloroform/g

Emulsion separation

[87]

10 Pomelo peels Carbon Carbonization
Freeze-drying
Pyrolysis

Oil and solvent absorption: 36 g sun-
flower oil/g, 31 g formic acid/g

[56]

11 Pomelo peels Nitrogen/boron/
carbon

Carbonization
Freeze-drying
Impregnating
Freeze-drying
Pyrolysis

Energy storage [88]

12 Sugarcane bagasse ash Silica Dissolving
Silylation
Dispersion
Gelation
Ambient pressure drying

Pore volume: 0.75–2.16 cm3/g
Pore size: 3.39–7.38 nm
Surface area: 450–1114 m2/g

[89]

13 Coffee grounds Coffee-cellulose Dispersion
Freeze-drying
Silanization

Thermal insulation: 37–45 mW/mK
Oil absorption: 16 g oil/g

[90]

14 Jackfruit and durian Carbon Carbonization
Freeze-drying
Pyrolysis

Energy storage [91]

15 Watermelon Carbon Carbonization
Freeze-drying

Energy storage [92]

16 Wheat straw and okara Konjac glucomannan-based Dispersion
Freeze-drying

Filtration [93]

17 Peanut hull Peanut hull/graphene Dispersion
Carbonization
Freeze-drying

Oil and solvent absorption: 58 g pump 
oil/g, 79 g chloroform/g

Emulsion separation

[94]
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surface area and pore volume achieved can be up to 1114 
m2/g, and 2.16 cm3/g, respectively.

Aerogels from Industrial Waste

The amount of industrial waste generated per day is approxi-
mately 17 times higher than that of the municipal waste from 

our daily activities [2]. Industrial waste is usually generated 
in massive amounts and requires further treatment before 
releasing to the environment. There have been some works 
on utilizing industrial waste into construction materials 
such as concrete [96], cement [97], and for water treatment 
[98]. Studies of aerogels from industrial waste is currently 
restricted to some certain types of waste. It might be due to 

Fig. 7   a Fabrication of the pineapple fibers aerogel from pineapple leaves. Reprinted from Luu et al. [95]; b heat insulation performance of the 
thermal jacket made of pineapple aerogel. Reprinted from Do et al. [80], Copyright (2020) with permission from Elsevier
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the presence of hazardous substances such as alkali, acid, 
fluoride, cyanide, arsenic and heavy metal ions, making 
the pretreatment of raw materials costly and complex [99]. 
Some types of aerogels from industrial waste are tabulated 
in Table 4.

Aerogels from Fly Ash

Released from factories and thermal power plants, fly ash 
is an abundant source of silica, alumina and other metal 
oxides. It is estimated that 800 million tons of fly ash are 
generated in the world annually [115]. Fly ash can be con-
verted into sodium silicate by hydrothermal reaction and 
then used as a precursor for silica aerogels, which consider-
ably increases the economic value of the fly ash. Based on 
this concept, many studies on silica aerogels from fly ash 
have been conducted. A typical synthesis of silica aerogel 
from fly ash begins when fly ash is hydrothermally reacted 
with an acid and then filtrated. The residue is dissolved in 
hot NaOH solution to obtain sodium silicate solution. From 
this resulting solution, silica gel is prepared by adjusting 
pH with an acid or an ion exchange resin. After aging, the 
gel is immersed in anhydrous ethanol for solvent exchange. 
The hydrophilic surface can be modified by silylation via 
the reaction of the gel with trimethylchlorosilane in hexane/
ethanol. Finally, the gel is washed with hexane and dried 
at ambient pressure to achieve silica aerogels. The fly ash 
aerogels obtained via this approach possess a high water 
contact angle (140°–151°), a large surface area (850–900 
m2/g) and a large pore size (12–24 nm), suggesting their 
potential applications in oil and organic pollutant removal. 
In addition, silica aerogels can also be prepared from coal 
gangue, dislodged sludge and gold mine waste. For instance, 
Zhu et al. [107] reported silica aerogels from coal gangue 
achieving a light weight (0.19 g/cm3), a high specific surface 
area (above 600 m2/g), a high porosity (> 90%) and a low 
thermal conductivity (20–25 mW/mK) as a potential candi-
date for thermal insulation. Duong et al. [105] developed a 
novel method to fabricate aerogels by using highly viscous 
and eco-friendly binders without the need for chemical pre-
treatment on fly ash. A stable and porous structure is created 
via hydrogen bonds between oxide particles in fly ash and 
hydroxyl groups on PVA chains (Fig. 8). Because of the high 
molecular weight of 89,000–90,000 and viscosity of 11.6-
15.4 cP (4% in H2O at 20°C), PVA can prevent fly ash parti-
cles from settling and distribute them evenly in the aerogels.

Another approach by Do et al. [106] was carried out by 
using a combination of industrial PVA with low viscosity 
and CMC as an anti-settlement agent to bind fly ash into 
a monolithic gel, followed by sublimation to obtain light-
weight aerogels with porosity of 94.94–95.78%. Both 
fabricated fly ash aerogels exhibited heat insulation with 
poor thermal conductivity (40-50 mW/mK). Following 

the previous study, Do et al. [116] synthesized a multi-
functional composite aerogel by consolidating two waste 
sources of fly ash and recycled plastic fibers. The novelty 
in this study is the use of xanthan gum at a low concentra-
tion of 0.4 wt% as a binder to adhere fly ash particles to 
the framework of plastic fibers and an anti-settling agent to 
avoid the sedimentation of fly ash. The as-fabricated com-
posite aerogels are both excellent heat and sound insulation. 
Interestingly, although fly ash contains metal oxides, when 
it is converted into the composite aerogels, the heat conduc-
tivity of the materials is only from 34 to 39 mW/mK along 
with their ultra-lightweight properties proved by their den-
sity and porosity of 0.026–0.062 g/cm3 and 95.69–98.42%, 
respectively. The addition of rPET fibers is found to enhance 
the compressive strength of the aerogels. Compared to the 
previous fly ash-based aerogels [105, 106], the developed 
composite aerogels are 5 times lighter and 1.5 times better 
in heat insulation at ambient condition. Overall, these works 
represent green methods to utilize 100% of fly ash without 
any chemical treatment, increasing the atom efficiency of the 
process and thus reducing the amount of waste generated.

Aerogel from Leather Waste

Leather industry releases around 6 million tons of solid 
waste annually [117]. Processing one ton of raw hides and 
skins produces 50 kg of raw trimmings, which contains 
approximately 20% collagen [118]. Utilizing skin trimming 
wastes, Mekonnen et al. [113] fabricated collagen-polypyr-
role hybrid aerogels. The skin trimmings are pretreated to 
yield hide powder, dissolved in acetic acid solution to form 
a collagen solution and mixed with pyrrole. The mixture is 
undergone an oxidative polymerization by FeCl3 and sodium 
anthraquinone-2-sulfonate and then freeze-dried to obtain 
aerogels. The flexibility, brittleness, thermal stability, poros-
ity, biocompatibility and electrical conductivity can be con-
trolled by varying the concentration of polypyrrole in the 
aerogel matrix. It is suggested that the collagen-polypyrrole 
hybrid aerogels are potential candidates for various appli-
cations such as biosensor, tissue engineering, electrostatic 
discharge protection and electromagnetic interference 
shielding.

Aerogel from Metal Waste

Recycling metal waste into metal hydroxide aerogel is 
an advanced approach introducing by Yam et al. [114] 
(Fig.  9). Magnesium chips generated routinely in the 
machining process of casting are recycling into mag-
nesium hydroxide aerogels. This fabrication employs 
PVA as a biodegradable binder and using freeze-drying 
method to obtain the aerogels. The Mg(OH)2 particles 
are formed in situ through dissolving magnesium metal 
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Table 4   Preparation and application of aerogels from industrial waste

a Specifications to illustrate for applications: absorption capacity, g/g (for absorption), adsorption capacity, mg/g (for adsorption), thermal con-
ductivity, mW/mK (for thermal insulation)

No. Waste materials Type of aerogels Fabrication process Properties/applicationsa References

1 Fly ash Silica Calcination
Gelation
Solvent exchange to ethanol
Silylation
Ambient pressure drying

Pore volume: 2.92–4.875 cm3/g
Pore size: 4.875 nm
Surface area: 362.2–907.9 m2/g

[100, 101]

3 Fly ash acid sludge Silica Dissolving
Ion exchange
Gelation
Solvent exchange to ethanol
Silylation
Ambient pressure drying

Pore volume: 3.29–3.49 cm3/g
Pore size: 10.7–12.6 nm
Surface area: 700–850 m2/g

[102, 103]

4 Fly ash Titan dioxide/Silica–Alumina Calcination
Gelation
Solvent exchange to ethanol
Silylation
Ambient pressure drying
TiO2 impregnation

Photocatalyst support [104]

5 Fly ash Fly ash Dispersion
Freeze-drying

Pore size: 2–5 nm
Thermal insulation: 40–50 mW/

mK
Acoustic insulation

[105, 106]

6 Coal gangue Silica Calcination
Gelation
Solvent exchange to ethanol
Silylation
Ambient pressure drying

Pore size: 20–27.5 nm
Pore volume: 4.81 cm3/g
Surface area: 600–690 m2/g
Thermal insulation: 20–26.5 

mW/mK

[107, 108]

7 Dislodged sludge Silica Dissolving
Ion exchange
Gelation
Solvent exchange to ethanol and 

hexane
Silylation
Ambient pressure drying

Pore volume: 1.53–3.56 cm3/g
Surface area: 381–433 m2/g
Pore size: 7.07–23.40 nm
Thermal insulation: 30–32 mW/

mK

[109]

8 Gold mine waste Silica Dissolving
Silylation
Dispersion
Gelation
Ambient pressure drying

Pore volume: 0.45 cm3/g
Pore size: 2–100 nm
Surface area: 284 m2/g

[110]

9 Wood fibers Cellulose Steam explosion
Dispersion
Freeze-drying
Silanization

Oil absorption: 19.5 g/g [111]

10 Red mud Cellulose/red mud Ball milling
Dispersion
Freeze-drying
Crosslinking

Pollutant absorption: 30 g 
2,4-dichlorophenol/g

Thermal insulation: 17–23 W/
mK

Acoustic insulation

[112]

11 Animal skin trimmings Collagen/polypyrrole Dissolving
Dispersion
Polymerization
Freeze-drying

Bioelectronics [113]

12 Magnesium chips Magnesium hydroxide Dispersion
Precipitation
Gelation
Freeze-drying

Thermal insulation: 30–42 mW/
mK

Acoustic insulation

[114]
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Fig. 8   Fabrication and binding mechanism of aerogels from fly ash.  Reprinted from Duong et al. [105], Copyright (2021) with permission from 
Elsevier

Fig. 9   Appearance, SEM image and crosslinking mechanism of the magnesium hydroxide aerogels from magnesium chips.  Reprinted from Yam 
et al. [114], Copyright (2020) with permission from Elsevier
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into hydrochloric acid (HCl) solution and reprecipitation 
by NaOH solution. The Mg(OH)2 particles and the PVA 
chains are linked by hydrogen bonds. It is proved that the 
presence of the Mg(OH)2 particles enhances the thermal 
stability and mechanical properties of the aerogels. The 
magnesium hydroxide aerogels can withstand up to 800 °C 
with approximately 50% of mass loss. Although 50% of 
mass loss is still relatively high, this work suggests a 
method to fabricate metal-based aerogels for high-temper-
ature resistance. Most of the mass loss can be attributed to 
the thermal decomposition of the binders. Should binders 
with higher thermal stability be employed, the overall ther-
mal stability of the aerogels will be significantly improved.

Discussion and Prospective

Various types of municipal solid, agricultural and industrial 
wastes have been converted into aerogels with a wide range 
of applications ranging from heat and sound insulation to 
energy storage. Remarkably, various multi-functional aero-
gels have been developed such as coffee grounds aerogels, 
cotton aerogels and red mud aerogels, which can serve dif-
ferent purposes. The properties of these aerogels, such as 
low thermal conductivity or high sorption capacity are com-
parable to the commercial materials, as shown in Fig. 10 
[119–126]. By using low-cost, abundant starting materials, 
they can become sustainable choices for engineering appli-
cations such as thermal insulation or oil spill cleaning. For 
example, producing 1 m2 of rubber aerogel with 1 cm of 

Fig. 10   a Thermal conductivity 
and b oil sorption capacity of 
aerogels from waste and other 
materials
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thickness from car tire costs less than 14 USD and takes less 
than 13 h, making the rubber aerogel competitive with the 
commercial insulators and sorbents [127].

Besides easing the burden on landfills and incinerators, 
these works also offer numerous green pathways to mitigate 
the waste and energy used in the fabrication. For example, 
Do et al. prepared cellulose aerogels from pineapple fibers 
without employing any organic solvents [79]. PVA as a bio-
degradable binder is being commonly consumed to fabricate 
a stable structure of aerogels from agricultural waste, making 
the obtained aerogels completely biodegradable. The cost-
effective freeze-drying method has been frequently applied 
in numerous works to create a three-dimensional porous net-
work of aerogels. Compared to scCO2 drying, freeze-drying 
offers various advantages such as less operation time, lower 
equipment and operation cost, reducing solvent exchange 
steps in the synthesis procedure, and safer process because 
of non-requirement of high pressure gas [128]. Especially 
if environmental impacts are carefully considered, freeze-
drying is probably the best choice. Moreover, the manufac-
turing cost of a freeze-dried aerogel is estimated at 42 USD/
m2 at laboratory scale, which is even competitive with the 
cost of the corresponding scCO2-dried aerogel at industrial 
scale (21–70 USD/m2) [129]. Besides, conventional batch-
wise freeze-drying has many disadvantages such as high 
time and energy consumption, uncontrolled freezing step, 
inefficient use if loading below maximum capacity, and 
sample-to-sample variation due to inhomogeneous energy 
distribution [130, 131]. These drawbacks can be overcome 
by using continuous freeze-drying. This approach has been 
investigated in pharmaceuticals production and found to 
improve the drying efficiency and the product uniformity 
[132]. Other promising techniques have been studied for the 
mass and continuous production of aerogels, such as nonwo-
ven [133], continuous solvent exchange [134], fluidized bed 
drying [135] and continuous scCO2 drying [136].

Waste, especially municipal waste, usually appears as a 
mixture with complex composition. If waste is not carefully 
classified from sources, the pretreatment process becomes 
extremely challenging. Pretreatment of raw materials comes 
with difficulties such as high cost in chemicals used, time-
consuming process and release of toxic chemicals into the 
environment. For instance, the removal of ink and glue in 
newspapers to fabricate cellulose aerogels involves treating 
the waste newspapers with NaOH solution and acidified 
sodium chlorite (NaClO2) solution, dispersing the mixture in 
1-allyl-3-methylimidazolium chloride (AmimCl) and rinsing 
the mixture with ethanol at least six times [37]. Accordingly, 
alkali solutions, strong oxidants and organic solvents are 
released, requiring more cost for waste treatment and reduc-
ing the sustainability of the recycling process. Therefore, 
appropriate measures to pretreat the raw materials should 
be carefully chosen regarding to desired applications to 

minimize the detrimental effects of the fabrication to the 
environment and ecosystem.

With the rapidly development of technology, e-waste has 
attracted a great deal of attention. Technical innovations 
have shortened the lifespan of electrical devices, leading to 
the fast rate of e-waste generation. In 2018, 50 million tons 
of e-waste were generated worldwide. This figure may reach 
up to 120 million tons by 2050 [137]. Unlike other types of 
municipal electronic waste, e-waste contains both high value 
and hazardous materials such as polycyclic aromatic hydro-
carbons (PAHs), polychlorinated biphenyls (PCB), heavy 
metals and rare earth elements [138]. The mentioned work 
of Yam et al. [114] about metal-based aerogel from metal 
waste suggests a new way to recycle metals in e-waste into 
high-value aerogels. If utilized properly, e-waste can become 
a promising source of precursor for metal-based aerogels in 
the future.

With multiple extraordinary properties such as ultra-
lightweight, ultralow thermal conductivity, high surface area 
and high modifiability, aerogels are able to fulfill stringent 
requirements of military and aerospace [139]. These fields 
involve situations that requires the insulators or sorbents to 
withstand extreme conditions, such as fire hazards or in polar 
regions. Through decades of development, the thermal and 
mechanical stability of the current aerogels are significantly 
improved than those of the first silica aerogels. However, to 
withstand such harsh environments, aerogels are expected 
to have a higher resistivity to environmental impacts. It is 
expected that advanced properties such as self-cleaning, 
self-healing, temperature resistance, and fire retardant will 
be focused to maintain the performance of aerogels under 
different working conditions. Inspired by the self-cleaning 
ability of lotus leaves, Cai et al. [140] prepared functional-
ized cellulose aerogels with a durable superhydrophobicity 
and anti-icing properties. The aerogels remain completely 
clean after pouring coffee, milk, and juice. Moreover, sand 
powders are easily removed from the aerogel surface by 
water rushing. This approach will reduce the cleaning and 
maintenance cost of aerogels insulators for building surfaces 
or pine line walls. To protect materials from damage and 
environmental conditions, making self-healable materials 
is an attractive approach. This class of materials can restore 
their original structure, properties and functionality after 
being damaged. There have been some works of self-heal-
able aerogels such as chitosan/itaconic acid aerogels [141] 
and MXene−graphene composite aerogels [142], suggest-
ing their potential applications in long-life insulators and 
devices. In addition, aerogels with ultralow or ultrahigh tem-
perature resistivity are developed for both thermal insulation 
and oil absorption applications. Zhen et al. [143] synthe-
sized the carbon nanofiber aerogels that can maintain high 
oil absorption capacity up to 139 g/g under a wide range 
of temperature, from liquid nitrogen temperature up to 400 
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°C, suggesting an absorbent for harsh scenarios such as oil 
spillage in Arctic. It is of worthy notice that conventional 
sorbents such as polyurethane or polyethylene cannot work 
above 200 °C while becoming brittle at low temperature. 
Feng et al. [144] developed carbon aerogels with a low ther-
mal conductivity of 61 mW/mK at 2000 °C under 0.15 MPa 
argon, which is promising for space vehicles and military 
vehicles. Besides, fire-retardant aerogels have been con-
cerned due to their ability to slow down the burning when 
fire occurs. Fire-retardant phenol-formaldehyde-resin/silica 
aerogels reported by Yu et al. [145] can resist up to 1300 ºC 
flame without disintegration and prevents the temperature 
on the non-exposed side to increase above 350 ºC. Simi-
larly, graphene aerogels prepared by Wang et al. [146] can 
withstand an alcohol flame even heated to glowing. With a 
good fire-retardant ability, the applications of these aerogels 
can be extended to building protective layers or firefighter 
clothes. There have been few works about investigating these 
mentioned properties on the aerogels from waste. If these 
outstanding properties are successfully developed for the 
aerogels from waste, their values and potentials will be sig-
nificantly improved.

Conclusions

The preparation of aerogels from waste has become a novel 
trend in material science and technology. Waste, with its 
low cost and abundance, has become a potential precur-
sor for the sustainable syntheses of aerogels, encouraging 
the conversion of a linear economy to circular economy. 
Numerous types of municipal solid waste, agricultural 
waste and industrial waste are upcycled into aerogels with 
various applications. Those aerogels possess outstanding 
properties and can compete with commercially available 
materials in many diverse fields such as thermal insula-
tion and oil spill cleaning. Noticeably, green fabrication 
methods such as eliminating organic solvents or using bio-
degradable binders have been more focused by research-
ers worldwide to create sustainable solutions for waste 
recycling. However, complex composition of waste, envi-
ronmental impacts and scalability are current challenges 
for researchers to overcome. In the future, it is expected 
that more types of waste can be recycled into aerogels 
by more eco-friendly methods to create new value from 
waste and partially combat the increasing waste genera-
tion. Moreover, environmental resistivity of the aerogels 
should be developed to expand their applications in dif-
ferent conditions.
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