Skip to main content
Log in

Effects of Using Different Co-binders and Fibers on Mechanical and Durability Performances of Alkali-Activated Soapstone Binders (AAS)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The development of alkali-activated magnesium aluminosilicate binders with the use of only soapstone leads to obtaining low strength and unacceptable durability properties. In this paper, the mechanical and durability properties of these binders enhanced through using co-binders as soapstone replacement and adding fiber reinforcement to the mixture. The addition of a mix of various chemical components through the addition of selected co-binders could have multifarious effects on the mechanical strength and durability properties of the mixture. This paper studies the effects of replacing 20% (in wt%) of the soapstone with four different co-binders (metakaolin, lime, stone wool, and silica fume) on the material’s properties. In addition, the study investigates the effect of added fiber reinforcement by adding various fiber types (basalt and micro-steel) of different volume fractions (0.5 and 1 in vol%). The changes in material properties were investigated by ultrasonic pulse velocity, mechanical strength (compressive and flexural strength), drying shrinkage, efflorescence rate, and durability (acid attack, high temperature, carbonation, water absorption by immersion and capillary action). Moreover, the effects of the replacement of soapstone with different co-binders were analyzed by thermogravimetric analysis and X-ray diffraction. The results showed that co-binders play a critical role in the hardened state properties of alkali activated soapstone binders (AAS) with metakaolin exhibiting the greatest influence on improving the hardened state properties. Moreover, the addition of fibers to AAS generally enhances the mechanical strength and durability properties and reduces the drying shrinkage and efflorescence rates. Finally, based on the hardened state properties, it is proposed that the developed fiber reinforced AAS incorporating various co-binders have acceptable properties for being used as a construction material.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Worrell, E., Price, L., Martin, N., Hendriks, C., Ozawa, M.L.: Carbon dioxide emission from the global cement industry. Annu. Rev. Environ. Resour. 26, 303–329 (2001)

    Google Scholar 

  2. Provis, J.: Alkali-activated materials. Cem. Concr. Res. 114, 40–48 (2018)

    Article  Google Scholar 

  3. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., Illikainen, M.: One-part alkali-activated materials: a review. Cem. Concr. Res. 103, 21–34 (2018)

    Article  Google Scholar 

  4. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Alkali-activated binders: a review Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 22, 1305–1314 (2008)

    Article  Google Scholar 

  5. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S.: Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 22, 1315–1322 (2008)

    Article  Google Scholar 

  6. Juenger, M.C.G., Winnefeld, F., Provis, J., Ideker, J.H.: Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243 (2011)

    Article  Google Scholar 

  7. Mastali, M., Kinnunen, P., Dalvand, A., Mohammadi, F.R., Illikainen, M.: Drying shrinkage in alkali-activated binders – a critical review. Constr. Build. Mater. 190, 533–550 (2018)

    Article  Google Scholar 

  8. MacKenzie, K.J.D., Bradley, S., Hanna, J.V., Smith, M.E.: Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals. J. Mater. Sci. 48, 1787–1793 (2013)

    Article  Google Scholar 

  9. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Mastali, M., Kinnunen, P., Illikainen, M.: Alkali-activated soapstone waste - mechanical properties, durability, and economic prospects. Sustain. Mater. Technol. (2019). https://doi.org/10.1016/j.susmat.2019.e00118

    Article  Google Scholar 

  10. Abdollahnejad, Z., Luukkonen, T., Mastali, M., Kinnunen, P., Illikainen, M.: Development of alkali-activated magnesium aluminosilicate binders from soapstone. Sustainable Materials, Systems and Structures, Rovinj, Croatia (2019)

  11. Chen, L., Wang, Z., Wang, Y., Feng, J.: Preparation and properties of alkali activated metakaolin-based geopolymer. Materials 9, 1–12 (2016). https://doi.org/10.3390/ma9090767

    Article  Google Scholar 

  12. Rovnanik, P.: Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24, 1176–1183 (2010)

    Article  Google Scholar 

  13. Chen, C.H., Huang, R., Wu, J.K., Yang, C.C.: Waste E-glass particles used in cementitious mixtures. Cem. Concr. Res. 36, 449–456 (2006)

    Article  Google Scholar 

  14. Ramachandran, V.S., Beaudoin, J.J.: Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications, 1st edn. William Andrew, Amsterdam (2001)

    Google Scholar 

  15. Alzaza, A., Mastali, M., Kinnunen, P., Korat, L., Abdollahnejad, Z., Ducman, V., Illikainen, M.: Production of lightweight alkali activated mortars using mineral wools. Materials 12(10), 1695 (2019). https://doi.org/10.3390/ma12101695

    Article  Google Scholar 

  16. ASTM C78/C78M-18, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA, 2018, www.astm.org.

  17. ASTM C116-90, Test Method for Compressive Strength of Concrete Using Portions of Beams Broken in Flexure (Withdrawn 1999), ASTM International, West Conshohocken, PA, 1990, www.astm.org.

  18. ASTM C157/C157M-17, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM International, West Conshohocken, PA, 2017, www.astm.org.

  19. ASTM C1585-04, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, West Conshohocken, PA, 2004, www.astm.org

  20. BS EN 1015-18:2002, Methods of test for mortar for masonry. Determination of water absorption coefficient due to capillary action of hardened mortar, BSI, UK.

  21. Mastali, M., Abdollahnejad, Z., Pacheco-Torgal, F.: Fly ash alkaline-based mortars containing waste glass and recycled aggregates submitted to accelerated carbon dioxide curing. Resour. Conserv. Recycl. 129, 12–19 (2018)

    Article  Google Scholar 

  22. Abdollahnejad, Z., Pacheco-Torgal, F., Aguiar, J.B.: Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications. J. Eur. J. Environ. Civ. Eng. (2016). https://doi.org/10.1080/19648189.2015.1125392

    Article  Google Scholar 

  23. Abdollahnejad Z., Mastali M., Mohammad Shaad K., Luukkonen T., Illikainen M.: Durability of the reinforced one-part alkali-activated slag mortars with different fibers, Waste and Biomass Valorization, Submitted (2019)

  24. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33, 1607–1611 (2003)

    Article  Google Scholar 

  25. Sharp, J.H., Wilburn, F.W., McIntosh, R.M.: The effect of procedural variables on TG, DTG and DTA curves of magnesite and dolomite. J. Therm. Anal. 37, 2021–2029 (1991)

    Article  Google Scholar 

  26. Shaikh, F.U.A., Supit, S.W.M.: Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)

    Article  Google Scholar 

  27. Huang, G., Ji, Y., Li, J., Hou, Z., Jin, C.: Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GBFS geopolymer concrete against carbonation. Constr. Build. Mater. 166, 290–300 (2018)

    Article  Google Scholar 

  28. Mastali, M., Alzaza, A., Mohammad Shaad, K., Kinnunen, P., Abdollahnejad, Z., Woof, B., Illikainen, M.: Using carbonated BOF slag aggregates in alkali-activated concretes. Materials 12(8), 1288 (2019). https://doi.org/10.3390/ma12081288

    Article  Google Scholar 

  29. Mastali, M., Shaad Mohammad, K., Abdollahnejad, Z., Falah, M., Kinnunen, P., Illikainen, M.: Towards sustainable bricks made with fiber-reinforced alkali-activated desulfurization slag mortars incorporating carbonated basic oxygen furnace aggregates. Constr. Build. Mater. 232, 117258 (2020)

    Article  Google Scholar 

  30. Abdollahnejad, Z., Pacheco-Torgal, F., Aguiar, J.B., Jesus, C.: Durability performance of fly ash based one-part geopolymer mortars. Key Eng. Mater. 634, 113–120 (2014)

    Article  Google Scholar 

  31. Mastali, M., Abdollahnejad, Z., Pacheco-Torgal, F.: Carbon dioxide sequestration on fly ash/waste glass alkaline-based mortars with recycled aggregates: Compressive strength, hydration products, carbon footprint and cost analysis. In: Pacheco-Torgal, S. (ed.) Carbon Dioxide Sequestration based Cementitious Construction Materials, pp. 1–15. Woodhead, Cambridge (2018)

    Google Scholar 

  32. Mastali, M., Dalvand, A., Sattarifard, A.R., Abdollahnejad, Z., Nematollahi, B., Sanjayan, J.G., Illikainen, M.: A comparative study on using pozzolanic binders in hardened-state properties of high strength cementitious compositions reinforced with waste tire. J. Compos. B Eng. 162, 34–153 (2018)

    Google Scholar 

  33. Aiken, T.A., Kwasny, J., Sha, W., Soutsos, M.N.: Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cem. Concr. Res. 111, 23–40 (2018)

    Article  Google Scholar 

  34. Abdollahnejad, Z., Kheradmand, M., Pacheco-Torgal, F.: Short-term compressive strength of fly ash and waste glass alkali-activated cement based binder (AACB) mortars with two biopolymers. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920

    Article  Google Scholar 

  35. Abdollahnejad, Z., Dalvand, A., Mastali, M., Luukkonen, T., Illikainen, M.: Effects of waste glass and calcium hydroxide on crystallinity and strength of alkali-activated fly ash mortars. Mag. Concr. Res. (2018). https://doi.org/10.1680/jmacr.18.00300

    Article  Google Scholar 

  36. Kani, E., Allahverdi, A., Provis, J.: Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34, 25–33 (2012)

    Article  Google Scholar 

  37. Zhang, Z., Provis, J., Reid, A., Wang, H.: Fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 64, 30–41 (2014)

    Article  Google Scholar 

  38. Longhi, M.A., Zhang, Z., Rodríguez, E.D., Kirchheim, P., Wang, H.: Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: a critical analysis. Front. Mater. (2019). https://doi.org/10.3389/fmats.2019.00089

    Article  Google Scholar 

  39. Cota, T.G., Reis, E.L., Lima, R.M.F., Cipriano, R.A.S.: Incorporation of waste from ferromanganese alloy manufacture and soapstone powder in red ceramic production. Appl. Clay Sci. 161, 274–281 (2018)

    Article  Google Scholar 

  40. Souza, H.N., Reis, E.L., Lima, R.M.F., Cipriano, R.A.S.: Using soapstone waste with diesel oil adsorbed as raw material for red ceramic products. Ceram. Int. 42, 16205–16211 (2016)

    Article  Google Scholar 

  41. ASTM C597-09, Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, 2009, www.astm.org

  42. Mastali, M., Dalvand, A., Fakharifar, M.: Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete. Comput. Concr. 18, 113–124 (2016)

    Article  Google Scholar 

  43. Cunha Vítor, M.C.F., Joaquim, B.A.O., Sena-Cruz, M.J.: Pullout behaviour of hooked-end steel fibres in self-compacting concrete, Report 07-DEC/E06. Minho University, Portugal (2007)

    Google Scholar 

  44. Mastali, M., Dalvand, A., Sattarifard, A.R., Abdollahnejad, Z., Illikainen, M.: Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibres. Composite B 151, 186–200 (2018)

    Article  Google Scholar 

  45. Temuujin, J., Rickard, W., Lee, M., van Riessen, A.: Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non-Cryst. Solids 357, 1399–1404 (2011)

    Article  Google Scholar 

  46. Muñiz-Villarreal, M.S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., RamónGasca-Tirado, J., Reyes-Araiza, J.L., Rubio-Ávalos, J.C., Pérez-Bueno, J.J., Apatiga, L.M., Zaldivar-Cadena, A., Amigó-Borrás, V.: The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater. Lett. 65, 995–998 (2011)

    Article  Google Scholar 

  47. Cartwright, C., Rajabipour, F.: Shrinkage characteristics of alkali-activated slag cements. J. Mater. Civ. Eng. 27, 4014007 (2014)

    Google Scholar 

  48. Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)

    Article  Google Scholar 

  49. Farina, I., Modano, M., Zuccaro, G., Goodall, R., Colangelo, F.: Improving flexural strength and toughness of geopolymer mortars through additively manufactured metallic rebars. Composites B 145, 155–161 (2018)

    Article  Google Scholar 

  50. Guo, L., Wu, Y., Xu, F., Song, C., Ye, J., Duan, P., Zhang, Z.: Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Composites B 183, 107689 (2020)

    Article  Google Scholar 

  51. Puertas, F., Varga, C., Alonso, M.M.: Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem. Concr. Compos. 53, 279–288 (2014)

    Article  Google Scholar 

  52. Mastali, M., Ghasemi, N.M., Naghipour, M., Rabiee, S.M.: Experimental assessment of functionally graded reinforced concrete (FGRC) slabs under drop weight and projectile impacts. Constr. Build. Mater. 95, 296–311 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study has received financial supports from GEOBIZ project by Grant ID: 1105/31/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mastali.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahnejad, Z., Mastali, M., Wille, K. et al. Effects of Using Different Co-binders and Fibers on Mechanical and Durability Performances of Alkali-Activated Soapstone Binders (AAS). Waste Biomass Valor 13, 2375–2397 (2022). https://doi.org/10.1007/s12649-021-01622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01622-8

Keywords

Navigation