Skip to main content

Advertisement

Log in

Enhancing Anaerobic Degradation of Lignocellulose-Rich Reed Straw by Adopting Grinding Pretreatment and High Temperature

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Reed straw is a widely existing lignocellulosic material in non-cultivated lands with a high potential for methane production, however, its complex structure limits the efficient biodegradability. This study investigated the effect of grinding pre-treatment on anaerobic biodegradation (AD) of reed straw under mesophilic and thermophilic conditions. The obtained results found both daily and accumulate methane yield were higher in thermophilic compared to mesophilic AD. Lignin was reduced by 31% in fine particle size (≤ 0.13 mm) when comparing with largest size (0.6–0.9 mm). Different particle sizes did not significantly change the methane yields (p > 0.05) under the two AD conditions, however, particle size of ≤ 0.13 mm was positively correlated with fast degradation rates. The highest methane yield (333 ± 0.8 mL-gVSadded−1) and rate (15.4 ± 1.1 mL-gVSadded d−1) was achieved with this size under thermophilic condition. The low acidogenesis/methanogenesis efficiencies (< 50%) were observed regardless particle sizes, however, their values were slightly higher when decreasing the size of particle. The results obtained in this study prove the possibility of efficient use of natural lignocellulose resources to produce biogas and methane for energy, achieve sustainable management.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Das Ghatak, M., Ghatak, A.: Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates. Fuel 232, 178–89 (2018). https://doi.org/10.1016/j.fuel.2018.05.051

    Article  Google Scholar 

  2. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010). https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  3. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G., Morgan, T.J.: An overview of the organic and inorganic phase composition of biomass. Fuel 94, 1–33 (2012). https://doi.org/10.1016/j.fuel.2011.09.030

    Article  Google Scholar 

  4. Zheng, Y., Zhao, J., Xu, F., Li, Y.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35–53 (2014). https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  5. Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G.: Biomethane production by anaerobic digestion of organic waste. Fuel 103, 1003–1009 (2013). https://doi.org/10.1016/j.fuel.2012.07.070

    Article  Google Scholar 

  6. Hwangbo, M., Tran, J.L., Chu, K.H.: Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes. Sci. Total Environ. 647, 806–813 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.066

    Article  Google Scholar 

  7. Croce, S., Wei, Q., D’Imporzano, G., Dong, R., Adani, F.: Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 34, 1289–1304 (2016). https://doi.org/10.1016/j.biotechadv.2016.09.004

    Article  Google Scholar 

  8. Koupaie, E.H., Dahadha, S., Lakeh, A.A.B., Azizi, A., Elbeshbishy, E.: Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—a review. J. Environ. Manag. 233, 774–784 (2019). https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  Google Scholar 

  9. Paul, S., Dutta, A.: Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 130, 164–174 (2018). https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  10. Risén, E., Gregeby, E., Tatarchenko, O., Blidberg, E., Malmström, M.E., Welander, U., et al.: Assessment of biomethane production from maritime common reed. J. Clean. Prod. 53, 186–194 (2013). https://doi.org/10.1016/j.jclepro.2013.03.030

    Article  Google Scholar 

  11. Lizasoain, J., Rincón, M., Theuretzbacher, F., Enguídanos, R., Nielsen, P.J., Potthast, A., et al.: Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 95, 84–91 (2016). https://doi.org/10.1016/j.biombioe.2016.09.021

    Article  Google Scholar 

  12. Motte, J.C., Escudié, R., Bernet, N., Delgenes, J., Steyer, J., Dumas, C.: Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresour. Technol. 144, 141–148 (2013)

    Article  Google Scholar 

  13. Dumas, C., Ghizzi, G., Barakat, A., Carrère, H., Steyer, J., Rouau, X., et al.: Effects of grinding processes on anaerobic digestion of wheat straw. Ind. Crops Prod. 74, 450–456 (2015)

    Article  Google Scholar 

  14. Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., et al.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag. 33, 2653–2658 (2013)

    Article  Google Scholar 

  15. Raud, M., Tutt, M., Olt, J., Kikas, T.: Dependence of the hydrolysis efficiency on the lignin content in lignocellulosic material. Int. J. Hydrogen Energy 41, 16338–16343 (2016)

    Article  Google Scholar 

  16. Shi, X., Guo, X., Zuo, J., Wang, Y., Zhang, M.: A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts. Waste Manag. 75, 261–269 (2018). https://doi.org/10.1016/j.wasman.2018.02.004

    Article  Google Scholar 

  17. Li, Q., Qiao, W., Wang, X., Takayanagi, K., Shofie, M., Li, Y.Y.: Kinetic characterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and waste activated sludge. Waste Manag. 36, 77–85 (2015). https://doi.org/10.1016/j.wasman.2014.11.016

    Article  Google Scholar 

  18. APHA: Standard Methods for the Examination of Water, Sewage, and Industrial Wastes. American Public Health Association, New York (2005)

    Google Scholar 

  19. Algapani, D.E., Qiao, W., Ricci, M., Bianchi, D.M., Wandera, S., Adani, F., et al.: Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renew. Energy 130, 1108–1115 (2019). https://doi.org/10.1016/j.renene.2018.08.079

    Article  Google Scholar 

  20. Kratky, L., Jirout, T.: Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 34, 391–399 (2011). https://doi.org/10.1002/ceat.201000357

    Article  Google Scholar 

  21. Cardoen, D., Joshi, P., Diels, L., Sarma, P.M., Pant, D.: Agriculture biomass in India: part 1. Estimation and characterization. Resour. Conserv. Recycl. 102, 39–48 (2015). https://doi.org/10.1016/j.resconrec.2015.06.003

    Article  Google Scholar 

  22. Djafari Petroudy, S.R., Ranjbar, J., Rasooly Garmaroody, E.: Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr. Polym. 197, 565–75 (2018). https://doi.org/10.1016/j.carbpol.2018.06.008

    Article  Google Scholar 

  23. Yao, Y., Bergeron, A.D., Davaritouchaee, M.: Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew. Energy 115, 139–148 (2018). https://doi.org/10.1016/j.renene.2017.08.038

    Article  Google Scholar 

  24. Shi, J., Wang, Z., Stiverson, J.A., Yu, Z., Li, Y.: Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour. Technol. 136, 574–581 (2013). https://doi.org/10.1016/j.biortech.2013.02.073

    Article  Google Scholar 

  25. Li, Y., Zhang, R., He, Y., Liu, X., Chen, C., Liu, G.: Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover. Energy Fuels 28, 3759–3765 (2014). https://doi.org/10.1021/ef5005495

    Article  Google Scholar 

  26. Huang, Y.F., Chiueh, P., Lo, S.L.: A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 26, 103–109 (2016)

    Article  Google Scholar 

  27. Mirmohamadsadeghi, S., Karimi, K., Zamani, A., Amiri, H., Horváth, I.: Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. BioMed. Res. Int. 2014, 6 (2014)

    Article  Google Scholar 

  28. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., et al.: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46, 12217–12225 (2012)

    Article  Google Scholar 

  29. Shah, F.A., Mahmood, Q., Rashid, N., Pervez, A., Raja, I.A., Shah, M.M.: Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 42, 627–642 (2015). https://doi.org/10.1016/j.rser.2014.10.053

    Article  Google Scholar 

  30. Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour. Technol. 102, 4726–4733 (2011). https://doi.org/10.1016/j.biortech.2011.01.052

    Article  Google Scholar 

  31. Li, Y., Park, S.Y., Zhu, J.: Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 15, 821–826 (2011). https://doi.org/10.1016/j.rser.2010.07.042

    Article  Google Scholar 

  32. Das Ghatak, M., Mahanta, P.: Kinetic assessment of biogas production from lignocellulosic biomasses. Int. J. Eng. Adv. Technol. 3, 244–9 (2014)

    Google Scholar 

  33. Pohl, M., Mumme, J., Heeg, K., Nettmann, E.: Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour. Technol. 124, 321–327 (2012)

    Article  Google Scholar 

  34. Yue, Z., Ma, D., Peng, S., Zhao, X., Chen, T., Wang, J.: Integrated utilization of algal biomass and corn stover for biofuel production. Fuel 168, 1–6 (2016). https://doi.org/10.1016/j.fuel.2015.11.079

    Article  Google Scholar 

  35. Fu, S.F., Chen, K.Q., Sun, W.X., Zhu, R., Zheng, Y., Zou, H.: Improved methane production of corn straw by the stimulation of calcium peroxide. Energy Convers. Manag. 164, 36–41 (2018). https://doi.org/10.1016/j.enconman.2018.02.070

    Article  Google Scholar 

  36. Hassan, M., Umar, M., Mamat, T., Muhayodin, F., Talha, Z., Mehryar, E., et al.: Methane enhancement through sequential thermochemical and sonication pretreatment for corn stover with anaerobic sludge. Energy Fuels 31, 6145–6153 (2017). https://doi.org/10.1021/acs.energyfuels.7b00478

    Article  Google Scholar 

  37. Lianhua, L., Dong, L., Yongming, S., Longlong, M., Zhenhong, Y., Xiaoying, K.: Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. Int. J. Hydrogen Energy 35, 7261–7266 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.074

    Article  Google Scholar 

  38. Chandra, R., Takeuchi, H., Hasegawa, T.: Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl. Energy 94, 129–140 (2012). https://doi.org/10.1016/j.apenergy.2012.01.027

    Article  Google Scholar 

  39. Roj-Rojewski, S., Wysocka-Czubaszek, A., Czubaszek, R., Kamocki, A., Banaszuk, P.: Anaerobic digestion of wetland biomass from conservation management for biogas production. Biomass Bioenergy 122, 126–132 (2019). https://doi.org/10.1016/j.biombioe.2019.01.038

    Article  Google Scholar 

  40. Lindmark, J., Leksell, N., Schnürer, A., Thorin, E.: Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Appl. Energy 97, 498–502 (2012). https://doi.org/10.1016/j.apenergy.2011.12.066

    Article  Google Scholar 

  41. Liu, C., Li, H., Zhang, Y., Si, D., Chen, Q.: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 216, 87–94 (2016). https://doi.org/10.1016/j.biortech.2016.05.048

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of Beijing Municipality (6182017) and State Administration of Foreign Experts Affairs P.R.China. (Project No. WQ20180011 & P18U11008). The first author (Mahmoud Abdalla) and the second author (Run Fan) equally contributed to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.A., Fan, R., Song, Y. et al. Enhancing Anaerobic Degradation of Lignocellulose-Rich Reed Straw by Adopting Grinding Pretreatment and High Temperature. Waste Biomass Valor 12, 6067–6079 (2021). https://doi.org/10.1007/s12649-021-01450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01450-w

Keywords

Navigation