Skip to main content
Log in

Corylus avellana L. Husks an Underutilized Waste but a Valuable Source of Polyphenols

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bioactive potential of hazelnut husks was determined as a function of their cultivar source and extraction solvent. Hazelnut husks from four hazelnut cultivars (Butler, Grada de Viseu, Lansing and Morell) were picked in a hazelnut orchard at harvest and extracted with five solvents with different polarity: water, methanol, acetone, ethyl acetate and hexane. Phenolics were identified by HPLC–DAD and antioxidant activity was determined by three complementary methods: DPPH, FRAP and inhibition of lipid peroxidation. A total of 11 phenolics were identified in studied cultivars and grouped in five main classes namely, ellagitannin (ellagic acid), benzoic acids (gallic acid, protocatechuic acid and vanillic acid), flavonols (kaempferol-3,7-O-diglucoside, kaempferol-3-O-[6-acetylglucoside]-7-O-glucoside, kaempferol-3-O-[6acetylglucoside]-7-O-rhamnoside and quercetin-3-O-rutinoside), flavone (luteolin-7-O-rutinoside) and flavan-3-ol (epicatechin). Cultivar and extraction solvent influenced significantly (p < 0.001) the extraction yield. ‘Grada de Viseu’ husks presented the highest content of individual phenolics identified, particularly in methanol extracts whilst ‘Lansing’ showed the lowest levels. Similar pattern was found for antioxidant activities. Methanolic husk extracts exhibited the greatest antioxidant potentials followed by water and acetone. The valorization of hazelnuts by-products gives an important contribution for the isolation and purification of bioactive molecules that can be used for both medicinal and industrial purposes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Molnar, T.J., Goffreda, J.C., Funk, C.R.: Developing hazelnuts for the eastern United States. Acta Hortic. 686, 609–618 (2005)

    Article  Google Scholar 

  2. Lopez-Calleja, I.M., Cruz, S.D., La Pegels, N., Gonzalez, I., Garcia, T., Martin, R.: High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods. Food Chem. 141, 1872–1880 (2005)

    Article  Google Scholar 

  3. Shahidi, F., Alasalvar, C., Liyana-Pathirana, C.M.: Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 55, 1212–1220 (2007)

    Article  Google Scholar 

  4. Bacchetta, L., Rovira, M., Tronci, C., Aramini, M., Drogoudi, P., Silva, A.P., Solar, A., Avanzato, D., Botta, R., Valentini, N., Boccacci, P.: A multidisciplinary approach to enhance the conservation and use of hazelnut Corylus avellana L. genetic resources. Genet. Resour. Crop Evol. 62, 649–663 (2005)

    Article  Google Scholar 

  5. FAO. Agricultural Production Crops—Hazelnut. Food and Agriculture Organization of the United Nations. Access online: https://faostat.fao.org. (2016)

  6. Uzuner, S., Cekmecelioglu, D.: Hydrolysis of hazelnut shells as a carbon source for bioprocessing applications and fermentation. Int. J. Food Eng. 10, 799–808 (2014)

    Article  Google Scholar 

  7. Çöpür, Y., Güler, C., Akgül, M., Taşçioǧlu, C.: Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ. 42, 2568–2572 (2007)

    Article  Google Scholar 

  8. Guney, M.S.: Utilization of hazelnut husk as biomass. Sustain. Energy Technol. Assess. 4, 72–77 (2013)

    Google Scholar 

  9. Masullo, M., Cerulli, A., Mari, A., de Souza, S.C.C., Pizza, C., Piacente, S.: LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 101, 180–187 (2017)

    Article  Google Scholar 

  10. Yuan, B., Lu, M., Eskridge, K.M., Isom, L.D., Hanna, M.A.: Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 244, 7–15 (2018)

    Article  Google Scholar 

  11. Li, A.N., Li, S., Zhang, Y.J., Xu, X.R., Chen, Y.M., Li, H.B.: Resources and biological activities of natural polyphenols. Nutrients 6, 6020–6047 (2014)

    Article  Google Scholar 

  12. Li, F., Li, S., Li, H.B., Deng, G.F., Ling, W.H., Wu, S., Xu, X.R., Chen, F.: Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods 5, 1298–1309 (2013)

    Article  Google Scholar 

  13. Bouayed, J., Bohn, T.: Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev. 3, 228–237 (2010)

    Article  Google Scholar 

  14. Ignat, I., Volf, I., Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126, 1821–1835 (2011)

    Article  Google Scholar 

  15. Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F.: World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15(3), 259–263 (2006)

    Article  Google Scholar 

  16. John, K.M.M., Harnly, J., Luthri, D.: Influence of direct and sequential extraction methodology on metabolic profiling. J. Chromatogr. B 1073, 34–42 (2018)

    Article  Google Scholar 

  17. Singleton, V.L., Rossi, J.A.: Colorometry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  18. Dewanto, V., Wu, X., Adom, K.K., Liu, R.H.: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50, 3010–3014 (2002)

    Article  Google Scholar 

  19. Lichtenthaler, H.K., Wellburn, A.R.: Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biol. Soc. Trans. 11, 591–592 (1983)

    Article  Google Scholar 

  20. Aires, A., Carvalho, R., Rosa, E.A.S., Saavedra, M.J.: Phytochemical characterization and antioxidant properties of organic baby-leaf watercress produced under organic production system. CyTA-J. Food. 11, 343–351 (2013)

    Article  Google Scholar 

  21. Siddhraju, P., Becker, K.: Antioxidant properties of various solvents extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam) leaves. J. Agric. Food Chem. 51, 2144–2155 (2003)

    Article  Google Scholar 

  22. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)

    Article  Google Scholar 

  23. Ruberto, G., Baratta, M.T., Deans, S.G., Dorman, H.J.D.: Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 66, 687–693 (2000)

    Article  Google Scholar 

  24. Shaidi, F., Alasalvar, C., Liyana-Pathirana, C.M.: Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 55, 1212–1220 (2007)

    Article  Google Scholar 

  25. Rusu, M.E., Fizeșan, I., Pop, A., Gheldiu, A.-M., Mocan, A., Crișan, G., Vlase, L., Loghin, F., Popa, D.-S., Tomuta, I.: Enhanced recovery of antioxidant compounds from hazelnut (Corylus avellana L.) involucre based on extraction optimization: phytochemical profile and biological activities. Antioxidants 8, 460 (2019)

    Article  Google Scholar 

  26. Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., Madani, K.: Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind. Crops Prod. 49, 668–674 (2013)

    Article  Google Scholar 

  27. Fanali, C., Tripodo, G., Russo, M., Della, P.S., Pasqualetti, V., De Gara, L.: Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel. Electrophoresis 39(13), 1683–1691 (2018)

    Article  Google Scholar 

  28. Aires, A.: Phenolics in foods: extraction, analysis and measurements. In: Soto-Hernandez, M., Tenango, M.P., Rosario Garcia-Mateos, M. (eds.) Phenolic Compounds—Natural Sources, Importance and Applications, pp. 61–88. IntechOpen, London, SE19SG-United Kingdom. ISBN 978-953-51-2958-5 (2017)

  29. Nobossé, P., Fombang, E.N., Mbofung, C.M.F.: Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci. Nutr. 6, 2188–2198 (2018)

    Article  Google Scholar 

  30. Elfalleh, W., Kirkan, B., Sarikurkcu, C.: Antioxidant potential and phenolic composition of extracts from Stachys tmolea: an endemic plant from Turkey. Ind. Crops Prod. 27, 212–216 (2019)

    Article  Google Scholar 

  31. Chang, Y., Chou, D.-S., Sheu, J.-R., Chen, W.-F., Lin, K.-H., Hsieh, C.-Y., Lin, L.-J., Chang, C.-C.: Novel bioactivity of ellagic acid in inhibiting human platelet activation. Evid. Based Complement. Altern. Med. 2013, 1–9 (2013)

    Google Scholar 

  32. Farbood, Y., Sarkaki, A., Dianat, M., Khodadadi, A., Haddad, M.K., Mashhadizadeh, S.: Ellagic acid prevents cognitive and hippocampal long-term potentiation deficits and brain inflammation in rat with traumatic brain injury. Life Sci. 124, 120–127 (2015)

    Article  Google Scholar 

  33. Punithavathi, V.R., Prince, P.S.M., Kumar, R., Selvakumari, J.: Antihyperglycaemic antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur. J. Pharmacol. 650, 465–471 (2011)

    Article  Google Scholar 

  34. Huang, W.W., Tsai, S.C., Peng, S.F., Lin, M.W., Chiang, J.H., Chiu, Y.J., Fushiya, S., Tseng, M.T., Yang, J.S.: Kaempferol induces autophagy through AMPK and AKT signalling molecules and causes G 2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol. 42, 2069–2077 (2013)

    Article  Google Scholar 

  35. Kashafi, E., Moradzadeh, M., Mohamadkhani, A., Erfanian, S.: Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother. 89, 573–577 (2017)

    Article  Google Scholar 

  36. Labbé, D.P., Zadra, G., Ebot, E.M., Mucci, L.A., Kantoff, P.W., Loda, M., Brown, M.: Role of diet in prostate cancer: the epigenetic link. Oncogene 34, 4683–4691 (2015)

    Article  Google Scholar 

  37. Yap, S.: Reversing breast cancer in a premenopausal woman: a case for phyto-nutritional therapy. Int. J. Biotechnol. Wellness Ind. 4, 25–39 (2015)

    Article  Google Scholar 

  38. Esposito, T., Sansone, F., Franceschelli, S., Del Gaudio, P., Picerno, P., Aquino, R.P., Mencherini, T.: Hazelnut (Corylus avellana L.) shells extract: phenolic composition, antioxidant effect and cytotoxic activity on human cancer cell lines. Int. J. Mol. Sci. 18, 392 (2017)

    Article  Google Scholar 

  39. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., Yangsabai, A.: Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel, Switzerland) 5, 93 (2018)

    Google Scholar 

Download references

Acknowledgements

The author Sandra Cabo acknowledges the financial support by the Portuguese Foundation for Science and Technology (FCT) (PB/BD/113615/2015) under the Doctoral Programme “Agricultural Production Chains—from fork to farm” (PD/00122/2012). The authors also acknowledge the financial support provided by National Funds from FCT, under the project UID/AGR/04033/2019. The authors acknowledge the financial support of INTERACT project “Integrative Research in Environment, Agro-Chains and Technology”, no. NORTE‐01‐0145‐FEDER‐000017, in its line of research entitled ISAC, co‐financed by the European Regional Development Fund (ERDF) through NORTE 2020 (North Regional Operational Program 2014/2020) and Project IBERPHENOL, Project Number 0377_IBERPHENOL_6_E, co-financed by European Regional Development Fund (ERDF) through POCTEP 2014-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Cabo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabo, S., Aires, A., Carvalho, R. et al. Corylus avellana L. Husks an Underutilized Waste but a Valuable Source of Polyphenols. Waste Biomass Valor 12, 3629–3644 (2021). https://doi.org/10.1007/s12649-020-01246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01246-4

Keywords

Navigation