Skip to main content
Log in

Bacterial Diversity and Chemical Properties of Wheat Straw-Based Compost Leachate and Screening of Cellulase Producing Bacteria

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2020

This article has been updated

Abstract

The aim of this study was to identify and investigate the diversity of culturable bacteria of leachate and screen potential cellulolytic bacteria. Some chemical characteristics of wheat straw based compost leachate was measured and the enumeration of bacteria in leachate performed. Cellulolytic bacteria were screened on plate containing carboxymethyl cellulose based medium through halo creation around the colonies which followed by assessing the isolates potential to produce enzyme in broth culture with cellulose powder and carboxymethyl cellulose. The obtained results showed that leachate was rich in nitrogen, potassium and iron with pH 7.76 and BOD5/COD ratio of 0.169. The enumeration of heterotrophic bacteria indicated the high population of bacteria (1.3 × 107 CFU mL−1) in the leachate. Isolation of the most prominent bacteria exhibited the variety of bacteria in compost leachate including both Gram positive and Gram negative bacteria which belonged to the phylum Actinobacteria, Gammaproteobacteria and Firmicutes consisted of genera Corynebacterium, Acinetobacter, Brevibacillus, Pseudomonas, Bacillus, Paenibacillus, Streptomyces, Cellulosimicrobium. About 7 isolates were screened on carboxymethyl cellulose containing plates which belonged to the genera Ochrobacterium, Acinetobacter, Psedoxanthomonas, Paenibacillus, Stenotrophomonas and Comamonas. The isolated bacteria Paenibacillus cellulosilyticus indicated higher enzyme activity of 0.27 and 0.17 IU mL−1 of CMCase and endoluoconase, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Acharya, S., Chaudhary, A.: Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS21 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz. Arch. Biol. Technol. 55, 497–503 (2012)

    Google Scholar 

  2. APHA-AWWA-WEF: Standard Methods for the Examination of Water and Wastewater. American Public Health Association Press, Baltimore (2005)

    Google Scholar 

  3. Bhalla, B., Saini, M.S., Jha, M.K.: Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: a comparative study. Int. J. Eng. Res. Appl. 2(6), 732–745 (2013)

    Google Scholar 

  4. Bhat, M.K., Bhat, S.: Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15(3–4), 583–620 (1997)

    Google Scholar 

  5. Brown, K., Ghoshdastidar, A.J., Hanmore, J., Frazee, J., Tong, A.Z.: Membrane bioreactor technology: a novel approach to the treatment of compost leachate. Waste Manag. 33(11), 2188–2194 (2013)

    Google Scholar 

  6. Chandna, P., Nain, L., Singh, S., Kuhad, R.C.: Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol. 13(1), 1–11 (2013)

    Google Scholar 

  7. Chatterjee, N., Flury, M., Hinman, C., Cogger, C.G.: Chemical and physical characteristics of compost leachates. A Review Report prepared for the Washington State Department of Transportation. Washington State University (2013)

  8. de Figueirecirc, V.R., Martos, E.T., Gonccedil, F., Maciel, W.P., da Silva, R., Rinker, D.L., Dias, E.S.: Microbial inoculation during composting improves productivity of sun mushroom (Agaricus subrufescens Peck). Afr. J. Microbiol. Res. 7(35), 4430–4434 (2013)

    Google Scholar 

  9. De Guardia, A., Brunet, S., Rogeau, D., Matejka, G.: Fractionation and characterisation of dissolved organic matter from composting green wastes. Bioresour. Technol. 83(3), 181–187 (2002)

    Google Scholar 

  10. Dees, P.M., Ghiorse, W.C.: Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35(2), 207–216 (2001)

    Google Scholar 

  11. Dias, E.S.: Mushroom cultivation in Brazil: challenges and potential for growth. Ciênc. Agrotecnol. 34(4), 795–803 (2010)

    Google Scholar 

  12. Du, R., Yan, J.B., Li, S.Z., Zhang, L., Zhang, S.R., Li, J.H., Zhao, G., Qi, P.L.: Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis. Biotechnol. Biofuels 8(1), 1–10 (2015)

    Google Scholar 

  13. Eiland, F., Klamer, M., Lind, A.M., Leth, M., Bth, E.: Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb. Ecol. 41(3), 272–280 (2001)

    Google Scholar 

  14. Ekperigin, M.M.: Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp. Afr. J. Biotechnol. 6(1), 28–33 (2007)

    Google Scholar 

  15. Elouaqoudi, F.Z., Fels, L., Amir, S., Merlina, G., Meddich, A., Lemee, L., Ambles, A., Hafidi, M.: Lipid signature of the microbial community structure during composting of date palm waste alone or mixed with couch grass clippings. Int. Biodeterior. Biodegrad. 97, 75–84 (2015)

    Google Scholar 

  16. Gaur, R., Tiwari, S.: Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnol. 15(1), 1–12 (2015)

    Google Scholar 

  17. Gautam, S.P., Bundela, P.S., Pandey, A.K., Awasthi, M.K., Sarsaiya, S.: Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int. J. Microbiol. 1, 1–12 (2012)

    Google Scholar 

  18. Gyalai-Korpos, M., Nagy, G., Mareczky, Z., Schuster, A., Réczey, K., Schmoll, M.: Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC. Res. notes. 3(1), 1–10 (2010)

    Google Scholar 

  19. Hou, L., Jiang, J., Xu, Z., Zhou, Y., Leung, F.C.C.: Complete genome sequence of Pseudoxanthomonas suwonensis strain J1, a cellulose-degrading bacterium isolated from leaf-and wood-enriched soil. Genome Announc 3(3), 614–615 (2015)

    Google Scholar 

  20. Insam, H., De Bertoldi, M.: Microbiology of the composting process. In: L.F. Diaz, M. de Bertoldi, W. Bidlingmaier, E. Stentinford (Eds.), Compost Science and Technology Waste Management Series, Elsevier, Amsterdam, pp. 25–48(2007)

  21. Ishii, K., Fukui, M., Takii, S.: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J. Appl. Microbiol. 89(5), 768–777 (2012)

    Google Scholar 

  22. Jalak, J., Kurašin, M., Teugjas, H., Väljamäe, P.: Endo-exo synergism in cellulose hydrolysis revisited. J. Biol. Chem. 287(34), 28802–28815 (2012)

    Google Scholar 

  23. Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008)

    Google Scholar 

  24. Kertesz, M., Safianowicz, K., Bell, T.: New insights into the microbial communities and biological activities that define mushroom compost. Sci. Cultiv. Edib. Fungi 19, 161–165 (2016)

    Google Scholar 

  25. Kertesz, M.A., Thai, M.: Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl. Microbiol. Biotechnol. 102(4), 1639–1650 (2018)

    Google Scholar 

  26. Khianngam, S., Pootaengon, Y., Techakriengkrai, T., Tanasupawat, S.: Screening and identification of cellulase producing bacteria isolated from oil palm meal. J. Appl. Pharm. Sci. 4(4), 90–96 (2014)

    Google Scholar 

  27. Kim, J.Y., Hur, S.H., Hong, J.H.: Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol. Lett. 27(5), 313–316 (2005)

    Google Scholar 

  28. Kumar, M., Revathi, K., Khanna, S.: Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydr. Polym. 134, 761–766 (2015)

    Google Scholar 

  29. Kutu, F.R., Mokase, T.J., Dada, O.A., Rhode, O.H.J.: Assessing microbial population dynamics, enzyme activities and phosphorus availability indices during phospho-compost production. Int. J. Recycl. Org. Waste Agric. 8(1), 87–97 (2019)

    Google Scholar 

  30. Ladeira, S.A., Cruz, E., Delatorre, A.B., Barbosa, J.B., Martins, L.: M.L.: Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electron. J. Biotechnol. 18(2), 110–115 (2015)

    Google Scholar 

  31. Liang, Y.L., Zhang, Z., Wu, M., Wu, Y., Feng, J.X.: Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed. Res. Int. 10, 1–13 (2014)

    Google Scholar 

  32. Lu, Y., Wu, X., Guo, J.: Characteristics of municipal solid waste and sewage sludge co-composting. Waste Manag. 29(3), 1152–1157 (2009)

    Google Scholar 

  33. Lynd, L.R., Weimer, P.J., Van Zyl, W.H., Pretorius, I.S.: Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3), 506–577 (2002)

    Google Scholar 

  34. Mandels, M., Reese, E.T.: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73(2), 269–278 (1975)

    Google Scholar 

  35. Marco, ÉG., Heck, K., Martos, E.T., Van Der Sand, S.T.: Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. An. Acad. Bras. Ciên. 89(3), 2359–2370 (2017)

    Google Scholar 

  36. Marjamaa, K., Toth, K., Bromann, P.A., Szakacs, G., Kruus, K.: Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microbl. Technol. 52(6–7), 358–369 (2013)

    Google Scholar 

  37. Martins, L.F., Kolling, D., Camassola, M., Dillon, A.J.P., Ramos, L.P.: Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99(5), 1417–1424 (2008)

    Google Scholar 

  38. Mass, E.V.: Crop salt tolerance. Agricultural salinity assessment and management manual. Tanji, K.K. (ed.). ASCE, New York. pp. 262–304(1990)

    Google Scholar 

  39. Meng, Q., Yang, W., Men, M., Bello, A., Xu, X., Xu, B., Deng, L., Jiang, X., Sheng, S., Wu, X., Han, Y.: Microbial community succession and response to environmental variables during cow manure and corn straw composting. Front. Microbial. 10, 1–13 (2019)

    Google Scholar 

  40. Ming, L., Xuya, P., Youcai, Z., Wenchuan, D., Huashuai, C., Guotao, L., Zhengsong, W.: Microbial inoculum with leachate recirculated cultivation for the enhancement of OFMSW composting. J. Hazard. Mater. 153(1–2), 885–891 (2008)

    Google Scholar 

  41. Nakazawa, K., Kitamura, K.: Purification and some properties of a cellulase active on crystalline cellulose from Cellulomonas uda. J. Ferment. Technol. 61, 379–382 (1983)

    Google Scholar 

  42. Partanen, P., Hultman, J., Paulin, L., Auvinen, P., Romantschuk, M.: Bacterial diversity at different stages of the composting process. BMC Microbiol. 10(1), 1–11 (2010)

    Google Scholar 

  43. Pavan Kumar, A., Devendra kumar, C., Prakash, A., Johri, B.N.: Bacterial diversity in a bagasse-based compost prepared for the cultivation of edible mushrooms Agaricus bisporus. J. Agr. Technol. 7(5), 1303–1311 (2011)

    Google Scholar 

  44. Pérez-Avalo, O., Sánchez-Herrera, L.M., Salgado, T.A.: Ponce-Noyola: bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol. 57(1), 39–44 (2008)

    Google Scholar 

  45. Pierre, G., Maache-Rezzoug, Z., Sannier, F., Rezzoug, S.A., Maugard, T.: High-performance hydrolysis of wheat straw using cellulase and thermomechanical pretreatment. Process Biochem. 46(11), 2194–2200 (2011)

    Google Scholar 

  46. Queipo-Ortuño, M.I., Colmenero, J.D.D., Macias, M., Bravo, M.J., Morata, P.: Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clin. Vaccine. Immunol. 15(2), 293–296 (2008)

    Google Scholar 

  47. Rastogi, G., Muppidi, G.L., Gurram, R.N., Adhikari, A., Bischoff, K.M., Hughes, S.R., Apel, W.A., Bang, S.S., Dixon, D.J., Sani, R.K.: Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J. Ind. Microbiol. Biotechnol. 36(4), 585–598 (2009)

    Google Scholar 

  48. Romero, C., Ramos, P., Costa, C., Márquez, M.C.: Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. J. Clean Prod. 59, 73–78 (2013)

    Google Scholar 

  49. Roy, D., Azaïs, A., Benkaraache, S., Drogui, P., Tyagi, R.D.: Composting leachate: characterization, treatment, and future perspectives. Rev. Environ. Sci. Biotechnol. 17(2), 323–349 (2018)

    Google Scholar 

  50. Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., Swings, J.: A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53(4), 349–410 (2003)

    Google Scholar 

  51. Sadana, C., Lachke, A.H., Patil, R.V.: Endo-(1→ 4)-β-d-glucanases from Sclerotium rolfsii. Purification, substrate specificity, and mode of action. Carbohydr. Res. 133(2), 297–312 (1984)

    Google Scholar 

  52. Sadana, J.C., Patil, R.V.: 1, 4-β-d-Glucan cellobiohydrolase from Sclerotium rolfsii. In Methods in Enzymology. Vol. 160, pp. 307–314. Academic Press, New York (1988)

  53. Safianowicz, K., Bell, T.L., Kertesz, M.A.: Bacterial population dynamics in recycled mushroom compost leachate. Appl. Microbial. Biotechnol. 102(12), 5335–5342 (2018)

    Google Scholar 

  54. Saini, A., Aggarwal, N.K., Yadav, A.: Isolation and screening of cellulose hydrolyzing bacteria from different ecological niches. Bioeng. Biosci. 5(1), 7–13 (2017)

    Google Scholar 

  55. Schwarz, W.: The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbial. Biotechnol. 56(5–6), 634–649 (2001)

    Google Scholar 

  56. Song, B.C., Kim, K.Y., Yoon, J.J., Sim, S.H., Lee, K., Kim, Y.S., Kim, Y.K., Cha, C.J.: Functional analysis of a gene encoding endoglucanase that belongs to glycosyl hydrolase family 12 from the brown-rot basidiomycete Fomitopsis palustris. Microbiol. Biotechnol. 18(3), 404–409 (2008)

    Google Scholar 

  57. Székely, A.J., Sipos, R., Berta, B., Vajna, B., Haj dú, C., Márialigeti, K.: DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb. Ecol. 57(3), 522–533 (2009)

    Google Scholar 

  58. Vajna, B., Szili, D., Nagy, A., Marialigeti, K.: An improved sequenceaided T-RFLP analysis of bacterial succession during oyster mushroom substrate preparation. Microb. Ecol. 64(3), 702–713 (2012)

    Google Scholar 

  59. Velázquez-Cedeño, M., Farnet, A.M., Mata, G., Savoie, J.M.: Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Bioresour. Technol. 99(15), 6966–6973 (2008)

    Google Scholar 

  60. Villar, I., Alves, D., Garrido, J., Mato, S.: Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Manag. 54, 83–92 (2016)

    Google Scholar 

  61. Vishan, I., Sivaprakasam, S., Kalamdhad, A.: Isolation and identification of bacteria from rotary drum compost of water hyacinth. Int. J. Recycl. Org. Waste Agric 6(3), 245–253 (2017)

    Google Scholar 

  62. Yoon, M.H., Choi, W.Y.: Characterization and action patterns of two beta-1,4-glucanases purified from cellulomonas uda CS1-1. J. Microbiol. Biotechnol. 17(8), 1291–1299 (2007)

    Google Scholar 

  63. Zainudin, M.H.M., Hassan, M.A., Tokura, M., Shirai, Y.: Indigenous cellulolytic and hemicellulolytic bacteria enhanced rapid co-composting of lignocellulose oil palm empty fruit bunch with palm oil mill effluent anaerobic sludge. Bioresour. Technol. 147, 632–635 (2013)

    Google Scholar 

  64. Zhang, X., Zhong, Y.H., Yang, S.D., Zhang, W.X., Xu, M.Q., Ma, A.Z., Zhuang, G.Q., Chen, G.J., Liu, W.F.: Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour. Technol. 170, 183–195 (2014)

    Google Scholar 

  65. Zhang, Y.H.P., Hong, J., Ye, X.: Cellulase assays. Methods Mol. Biol. 581, 213–231 (2009)

    Google Scholar 

  66. Zhang, Y.H.P., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioengin. 88(7), 797–824 (2004)

    Google Scholar 

Download references

Acknowledgements

Authors would like to Thank Deputy of Research and Technology of Shahid Chamran University of Ahvaz (GN. SCU.AS98.248) and Jolgeh-y-Sabz Company for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeimeh Enayatizamir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadipour, Z., Enayatizamir, N., Ghezelbash, G. et al. Bacterial Diversity and Chemical Properties of Wheat Straw-Based Compost Leachate and Screening of Cellulase Producing Bacteria. Waste Biomass Valor 12, 1293–1302 (2021). https://doi.org/10.1007/s12649-020-01119-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01119-w

Keywords

Navigation