Skip to main content

Advertisement

Log in

Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to conserve natural resources and prevent waste generation, effective utilization of industrial wastes and/or by-products for beneficial engineering applications becomes inevitable. In order to accomplish this, extensive research studies, exploring properties and new applications of waste materials in a sustainable and environmentally friendly manner, have been initiated worldwide. Red mud (RM, also known as bauxite residue) is one of the wastes generated by the aluminium industry and its disposal and utilization have been traditionally hindered due to the extreme alkalinity (pH about 10.5–13.5). To date, no comprehensive review on various properties of RM of different origin and associated challenges in using it as a beneficial engineering material has been performed. The objective of this study is first to critically appraise the current understanding of properties of RM through a comprehensive literature review and detailed laboratory investigations conducted on Indian RM by the authors, to assess and identify the potential engineering applications, and to finally discuss associated challenges in using it in practical applications. Physical, chemical, mineralogical and geotechnical properties of RMs of different origin and production processes are reviewed. Mechanisms behind the pozzolanic reaction of RM under different chemical and mineralogical compositional conditions are discussed. Environmental concerns associated with the use of RM are also raised. Studies relevant to leachability characteristics reveal that most of the measured chemical concentrations are within the permissible regulatory limits. Overall, the review shows that RM disposal and reuse is complicated by its extreme alkalinity, which is also noticed to be influencing multiple engineering properties. But with selected pH amendments, the treated RM is found to have significant potential to be used as an effective and sustainable geomaterial. The assessment is majorly based on the characteristics of Indian RMs; hence the adaptation of the findings to other RMs should be assessed on a case-by-case basis. Moreover, field studies demonstrating the performance of RM in various engineering applications are warranted.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c :

Cohesion (kPa)

CBR :

California bearing ratio

c c :

Compression index

CH :

Clay of high plasticity

CL :

Clay of low plasticity

C p :

Collapse potential

CVPD :

Commercial vehicles per day

d :

Diameter of a particle (mm)

e :

Void ratio

G s :

Specific gravity

GGBS :

Ground granulated blast furnace slag

HRS :

Hindalco red sand

k::

Hydraulic conductivity

MH :

Silt of high plasticity

ML :

Silt of low plasticity

MP :

Modified Proctor compaction test

NRS :

Nalco red sand

OPC :

Ordinary Portland cement

p :

Applied pressure (kPa)

PTE :

Potentially toxic elements

q u :

Unconfined compressive strength (kPa)

SEM/EDS :

Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy

SS1 :

Standard sand-1

SS2 :

Standard sand-2

SP :

Standard Proctor compaction test

TCA :

Tricalcium

TCLP :

Toxicity characteristic leaching procedure

UCS :

Unconfined compressive strength (kPa)

w :

Water content (%)

w L :

Liquid limit (%)

w opt :

Optimum water content (%)

w P :

Plastic limit (%)

w PI :

Plasticity index (%)

γd :

Dry unit weight (kN/m3)

γ dmax::

Maximum dry unit weight (kN/m3)

ϕ :

Angle of internal friction

θ :

Volumetric water content (%)

References

  1. Panda, I., Jain, S., Das, S.K., Jayabalan, R.: Characterization of red mud as a structural fill and embankment material using bioremediation. Int. Biodeterior. Biodegrad. 119, 368–376 (2017)

    Google Scholar 

  2. Rai, S., Wasewar, K.L., Mukhopadhyay, J., Yoo, C.K., Uslu, H.: Neutralization and utilization of red mud for its better waste management. Arch. Environ. Sci. 6, 13–33 (2012)

    Google Scholar 

  3. Bardossy, G.: Karst Bauxites, Bauxite Deposits on Carbonate Rocks, Developments in Economic Geology, vol 14, 1st edn, p. 441. Elsevier, Amsterdam (1982)

  4. Kehagia, F.: A successful pilot project demonstrating the re-use potential of bauxite residue in embankment construction. Resour. Conserv. Recycl. 54, 417–421 (2010)

    Google Scholar 

  5. Sun, C., Chen, J., Tian, K., Peng, D., Liao, X., Wu, X.: Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities. Int. J. Environ. Res. Public Health 16(7), 1297 (2019)

    Google Scholar 

  6. Banvoelgyi, G., Huan, T.M., Director, F.G.: De-watering, disposal and utilization of red mud: state of the art and emerging technologies. In: Proceedings of XVIII International Symposium of ICSOBA, Zhengzhou, China, pp. 431–443 (2010)

  7. Evans, K.: The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metall. 2(4), 316–331 (2016)

    Google Scholar 

  8. Wang, L., Hu, G., Lyu, F., Yue, T., Tang, H., Han, H., Yang, Y., Liu, R., Sun, W.: Application of red mud in wastewater treatment. Minerals 9(5), 281 (2019)

    Google Scholar 

  9. Power, G., Gräfe, M., Klauber, C.: Review of Current Bauxite Residue Management, Disposal and Storage: Practices, Engineering and Science. CSIRO Document, DMR-3608, pp. 3−4 (2009)

  10. Lima, M.S.S., Thives, L.P., Haritonovs, V., Bajars, K.: Red mud application in construction industry: review of benefits and possibilities. IOP Conf Ser Mater Sci Eng 251(1), 012033 (2017)

    Google Scholar 

  11. International Aluminum Institute (IAI): Opportunities for Use of Bauxite Residue in Portland Cement Clinker Production. World Alumina, p. 57 (2018a)

  12. European Environment Agency: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance) European Environment Agency (2008)

  13. CPCB: Guidelines on Environmental Management of Construction and Demolition (C and D) Wastes, p. 81. Central Pollution Control Board, Ministry of Environment, Forests and Climate Change (2017)

  14. USEPA: Sustainable Materials Management Program Strategic Plan. Fiscal Years 2017–2022, p. 8. United States Environmental Protection Agency (2015)

  15. Ruyters, S., Mertens, J., Vassilieva, E., Dehandschutter, B., Poffijn, A., Smolders, E.: The red mud accident in Ajka (Hungary): plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ. Sci. Technol. 45(4), 1616–1622 (2011)

    Google Scholar 

  16. Banvolgyi, G.: The lessons learnt from the failure of the embankment of the red mud reservoir at Ajka (Hungary). In: Proceedings of the International Conference and Exhibition on Aluminium (INCAL), Bhubaneswar, India, pp. 88–89 (2019)

  17. Mayes, W.M., Jarvis, A.P., Burke, I.T., Walton, M., Feigl, V., Klebercz, O., Gruiz, K.: Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary. Environ. Sci. Technol. 45(12), 5147–5155 (2011)

    Google Scholar 

  18. Mayes, W.M., Burke, I.T., Gomes, H.I., Anton, Á.D., Molnár, M., Feigl, V., Ujaczki, É.: Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. J. Sustain. Metall. 2(4), 332–343 (2016)

    Google Scholar 

  19. Gelencsér, A., Kováts, N., Turóczi, B., Rostási, Á., Hoffer, A., Imre, K., Nyirő-Kósa, I., Csákberényi-Malasics, D., Tóth, A., Czitrovszky, A., Nagy, A.: The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust. Environ. Sci. Technol. 45(4), 1608−1615 (2011)

  20. Reddy, N.G., Rao, B.H., Reddy, K.R.: Biopolymer amendment for mitigating dispersive characteristics of red mud waste. Geotech. Lett. 8(3), 201–207 (2018)

    Google Scholar 

  21. International Aluminum Institute (IAI): Sustainable Bauxite Mining Guidelines. World Alumina, p. 116 (2018b)

  22. Ding, X., Xu, G., Kizil, M., Zhou, W., Guo, X.: Lignosulfonate treating bauxite residue dust pollution: enhancement of mechanical properties and wind erosion behavior. Water Air Soil Pollut. 229(7), 214, 1−13

  23. Arulrajah, A., Piratheepan, J., Disfani, M.M., Bo, M.W.: Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J. Mater. Civ. Eng. 25(8), 1077–1088 (2012)

    Google Scholar 

  24. Correia, A.G., Winter, M.G., Puppala, A.J.: A review of sustainable approaches in transport infrastructure geotechnics. Transp. Geotech. 7, 21–28 (2016)

    Google Scholar 

  25. Bhagwan, J., Vittal, U.K.G.: Use of marginal materials for rural road construction—some recent initiatives. In: Proceedings of Indian Geotechnical Conference (IGC-2014), Kakinada, India, pp. 2478−2485 (2014)

  26. Qi, J.Z.: Experimental Research on Road Materials of Red Mud. University of Huazhong Science and Technology, Wuhan (2005)

    Google Scholar 

  27. Sundaram, R., Gupta, S.: Construction of foundation on red mud. In: Dutta, M., Srivastava R.K., Ramana G.V., Shahu J.T. (eds) 6th International Congress on Environmental Geotechnics, New Delhi, India, pp. 1172−1175 (2010)

  28. Reddy, N.G., Rao, B.H.: Compaction and consolidation behaviour of untreated and treated waste of Indian red mud. Geotech. Res. 5(2), 105–121 (2018)

    Google Scholar 

  29. Newson, T., Dyer, T., Adam, C., Sharp, S.: Effect of structure on the geotechnical properties of bauxite residue. J. Geotech. Geoenviron. Eng. 132(2), 143–151 (2006)

    Google Scholar 

  30. Kalkan, E.: Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol. 87, 220–229 (2006)

    Google Scholar 

  31. Rout, S.K., Sahoo, T., Das, S.K.: Design of tailing dam using red mud. Cent. Eur. J. Eng. 3(2), 316–328 (2013)

    Google Scholar 

  32. Reddy, N.G., Chandra, K.S., Rao, B.H.: Assessment of industrial wastes as a road construction material: a review. In: Proceedings of 1st International Conference on Recent Innovations in Engineering and Technology (ICREIAT-2016), 22−23 December, Hyderabad, India, pp. 28−34 (2016)

  33. Jitsangiam, P., Nikraz, H., Jamieson, E., Kitanovich, R., Siripun K.: Sustainable use of a bauxite residue (red sand) as highway embankment materials. In: 3rd International Conference on Sustainable Engineering and Science, 9 December, Auckland, New Zealand (2008)

  34. Paramguru, R.K., Rath, P.C., Misra, V.N.: Trends in red mud utilization—a review. Min. Process. Extr. Metall. Rev. 26(1), 1–29 (2005)

    Google Scholar 

  35. Oprčkal, P., Mladenovič, A., Zupančič, N., Ščančar, J., Milačič, R., Serjun, V.Z.: Remediation of contaminated soil by red mud and paper ash. J. Clean. Prod. 256, 120440 (2020)

    Google Scholar 

  36. Youssef, N.F., Shater, M.O., Abadir, M.F., Ibrahim, O.A.: Utilization of red mud in the manufacture of ceramic tiles. Key Eng. Mater. 206–213(Pt. 3, Euro Ceramics VII), 1775–1778 (2002)

    Google Scholar 

  37. Villar, L.F.S., Campos, T.M.P., Azevedo, R.F., Zornberg, J.G.: Influence of laboratory techniques on the geotechnical characterization of mining and industrial wastes. In: Proceedings of 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, pp. 186−189 (2009)

  38. ASTM: Standard Test Method D6907-05, Standard Practice for Sampling Contaminated Media with Hand-Operated Bucket Augers, ASTM International, West Conshohocken (2016)

  39. Reddy, N.G., Rao, B.H.: Evaluation of the Compaction Characteristics of Untreated and Treated Red Mud. Geotechnical Special Publication 272, Geo-Chicago, ASCE, pp. 23−32 (2016)

  40. Reddy, N.G., Rao, B.H.: Assessment of dispersion characteristics of red mud waste from physical tests. In: Proceedings of Indian Geotechnical Conference (GeoNEst), 14−16 December, p. 4. IIT, Guwahati (2017)

  41. Reddy, N.G., Rao, B.H.: Characterization of settled particles of the red mud waste exposed to different aqueous environment conditions. Indian Geotech. J. 48(3), 405–419 (2018)

    Google Scholar 

  42. Reddy, N.G., Rao, B.H.: Effect of additives on consistency limits of red mud waste: a comparative study. In: Zhan, L., Chen, Y., Bouazza, A. (eds) Proceedings of 8th International Congress on Environmental Geotechnics, Environmental Science and Engineering, p 3. Springer, Singapore (2019)

  43. Reddy, N.G., Rao, B.H., Reddy, K.R.: Chemical analysis procedures for determining the dispersion behaviour of red mud. In: Agnihotri, A., Reddy, K., Bansal, A. (eds.) Recycled Waste Materials. Lecture Notes in Civil Engineering, vol. 32, pp. 19–26. Springer, Singapore (2019)

    Google Scholar 

  44. Rao, B.H., Reddy, N.G.: Zeta potential and particle size characteristics of red mud waste. In: Babu, G.L.S., Reddy, K.R., De, A., Datta, M. (eds.) Geoenvironmental Practices and Sustainability, pp. 69–89. Springer, Singapore (2017)

    Google Scholar 

  45. Mishra, M.C., Babu, K.S., Reddy, N.G., Dey, P.P., Rao, B.H.: Performance of lime stabilization on extremely alkaline red mud waste under acidic environment. J. Hazard. Toxic Radioact. Waste 23(4), 04019012 (2019)

    Google Scholar 

  46. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice. Wiley, New York (1996)

    Google Scholar 

  47. Kumar, H., Cai, W., Lai, J., et al.: Influence of in-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal and nano-biochars. J. Soils Sediments 20, 1983–1996 (2020)

    Google Scholar 

  48. Das, S.K., Rout, S., Alam, S.: Characterization of red mud as a subgrade construction material, In: 3rd Conference of the Transportation Research Group of India, Kolkata, West Bengal (3rd CTRG), 17-20 December (2015)

  49. Rubinos, D., Spagnoli, G., Barral, M.T.: Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. Int. J. Min. Reclam. Environ. 29(6), 433–452 (2015)

    Google Scholar 

  50. Nath, H., Sahoo, P., Sahoo, A.: Characterization of red mud treated under high temperature fluidization. Power Technol. 269, 233–239 (2015)

    Google Scholar 

  51. Borra, C.R., Pontikes, Y., Binnemans, K., Gerven, T.V.: Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 76, 1–8 (2015)

    Google Scholar 

  52. Wagh, A.S.: Settling properties of dilute Bayer process muds of alumina industry in Jamaica. Part. Multiphase Process. 3, 461–469 (1987)

    Google Scholar 

  53. Wehr, J.B., Fulton, I., Menzies, N.W.: Revegetation strategies for bauxite refinery residue: a case study of Alcon Gove in Northern Territory, Australia. Environ. Manag. 27(3), 297–306 (2006)

    Google Scholar 

  54. Alam, S., Das, S.K., Rao, B.H.: Characterization of coarse fraction of red mud as civil engineering construction material. J. Clean. Prod. 168, 679–691 (2017)

    Google Scholar 

  55. Donoghue, A.M., Frisch, N., Olney, D.: Bauxite mining and alumina refining: process description and occupational health risks. J. Occup. Environ. Med. 56(5 Suppl), S12 (2014)

    Google Scholar 

  56. Pradhan, J., Das, S.N., Rao, J., Thakur, R.S.: Characterization of Indian red muds and recovery of their metal values. In: Hale, W. (ed.) Light Metals, pp. 87–92. TMS, Anaheim (1996)

    Google Scholar 

  57. Wang, P., Liu, D.: Physical and chemical properties of sintering red mud and Bayer red mud and the implications for beneficial utilization. Materials 5(10), 1800–1810 (2012)

    Google Scholar 

  58. Benson, C.H., Trast, J.M.: Hydraulic conductivity of thirteen compacted clays. Clays Clay Miner. 43, 669–681 (1995)

    Google Scholar 

  59. Daniel, D.E.: Summary review of construction quality control for earthen liners. In: Bonaparte, R. (ed.) Waste Containment Systems: Construction, Regulation, and Performance, vol. 26, pp. 175–189. ASCE, Reston (1990)

    Google Scholar 

  60. Benson, C.H., Othman, M.A.: Hydraulic and mechanical characteristics of a compacted municipal solid waste compost. Waste Manag. Res. 11(2), 127–142 (1993)

    Google Scholar 

  61. Tong, L., Wang, Y.H.: DEM simulation of shear modulus and damping ratio of sand with emphasis on the effect of particle number, particle shape and aging. Acta Geotech. 10, 117–130 (2015)

    Google Scholar 

  62. Zhuang, L., Nakata, Y., Kim, U.G., Kim, D.: Influence of relative density, particle shape, and stress path on the plane strain compression behavior of granular materials. Acta Geotech. 9, 241–255 (2014)

    Google Scholar 

  63. Jitsangiam, P., Nikraz, H.: Coarse bauxite residue for roadway construction materials. Int. J. Pavement Eng. 14(3), 265–273 (2013)

    Google Scholar 

  64. Arnepalli, D.N., Shanthakumar, S., Rao, B.H., Singh, D.N.: Comparison of methods for determining specific-surface area of fine-grained soils. Geotech. Geol. Eng. 26(2), 121–132 (2008)

    Google Scholar 

  65. Snars, K., Gilkes, J.R.: Evaluation of bauxite residue (red mud) of different origin for environmental applications. Appl. Clay Sci. 46(1), 13–20 (2009)

    Google Scholar 

  66. Gräfe, M., Power, G., Klauber, C.: Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 108(1–2), 60–79 (2011)

    Google Scholar 

  67. Alam, S., Das, B.K., Das, S.K.: Dispersion and sedimentation characteristics of red mud. J. Hazard. Toxic Radioact. Waste (2018). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000420

    Article  Google Scholar 

  68. Li, L.Y.: Properties of red mud tailings produced under varying process conditions. J. Environ. Eng. 124, 254–264 (1998)

    Google Scholar 

  69. Banvolgyi, G.: Opportunities within the alumina refineries to make bauxite residue easy to downstream use. In: Proceedings of the Bauxite Residue Valorization and Best Practices Conferences, Leuven, Belgium, pp. 89−100 (2015)

  70. Li, Y.C., Min, X.B., Ke, Y., Chai, L.Y., Shi, M.Q., Tang, C.J., Wang, Q.W., Liang, Y.J., Lei, J., Liu, D.G.: Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J. Hazard. Mater. 344, 343–349 (2017)

    Google Scholar 

  71. Liu, Z., Li, H.: Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy 155, 29–43 (2015)

    Google Scholar 

  72. Feret, F.: Selected Applications of Rietveld-XRD Analysis for Raw Materials of the Aluminium Industry. JCPDS-International Centre for Diffraction Data, Newtown Square (2013)

    Google Scholar 

  73. Pascual, J., Corpas, F.A., Lopez-Beceiro, J.: Thermal characterization of a Spanish red mud. J. Therm. Anal. Calorim. 96, 407–412 (2009)

    Google Scholar 

  74. Patel, S., Pal, B.K., Patel, R.K.: A novel approach in red mud neutralization using cow dung. Environ. Sci. Pollut. Res. 25(1–8), 12841–12848 (2018)

    Google Scholar 

  75. Serjun, V.Z., Mladenovic, A., Milacic, R., Scancar, J., Asler, A., Zupancic, N., Nikolic, I., Oprckal, P.: Red mud as an alternative material for the production of a geotechnical composite. In: 2nd Conference of Bauxite Residue Valorization and Best Practices (BR-2018), 7−10 May, Athens (2018)

  76. Santini, T.C.: Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings). Int. J. Miner. Process. 139, 1–10 (2015)

    Google Scholar 

  77. Liu, Y., Lin, C., Wu, Y.: Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J. Hazard. Mater. 146(1–2), 255–261 (2007)

    Google Scholar 

  78. CSIRO: Review of Bauxite Alkalinity and Associated Chemistry. CSIRO Document 3610, p. 60. National Research Flagship, CSIRO, Australian Government (2009)

  79. Castaldi, P., Silvetti, M., Santona, L., Enzo, S., Melis, P.: XRD, FTIR and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays Clay Miner. 56(4), 461–469 (2008)

    Google Scholar 

  80. Garau, G., Castaldi, P., Santona, L., Deiana, P., Melis, P.: Influence of red mud, zeolite and lime on heavy metals immobilization culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142(1–2), 47–57 (2007)

    Google Scholar 

  81. Hu, X., Peng, T., Sun, H., Zhao, E.: Synthetic mechanism of hydroxy sodalite. Kuei Suan Jen Hsueh Pao 44(8), 1200–1206 (2016)

    Google Scholar 

  82. Kumar, S., Prasad, A.: Parameters controlling strength of red mud–lime mix. Eur. J. Environ. Civ. Eng. (2017). https://doi.org/10.1080/19648189.2017.1304280

    Article  Google Scholar 

  83. Singh, M., Upadhyay, S.N., Prasad, P.M.: Preparation of special cements from red mud. Waste Manag. 16(8), 665–670 (1996)

    Google Scholar 

  84. Rubinos, D.A., Barral, M.T.: Fractionation and mobility of metals in bauxite red mud. Environ. Sci. Pollut. Res. 20(11), 7787–7802 (2013)

    Google Scholar 

  85. Pontikes, Y., Angelopoulos, G.N.: Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour. Conserv. Recycl. 73, 53–63 (2013)

    Google Scholar 

  86. ASTM: Standard Test Method C595/C595M, Standard Specification for Blended Hydraulic Cements. ASTM International, West Conshohocken (2019)

  87. Alam, S., Das, S.K., Rao, B.H.: Stabilization of red mud using low ash coal fly ash. In: Proceedings of Indian Geotechnical Conference. IIT, Guwahati (2017b)

  88. Addai-Mensah, J., Li, J., Zbik, M., Rosencrance, S.: Sodium aluminosilicate solid phase specific fouling behaviour. In: ECI Conference of Heat Exchanger Fouling and Cleaning. Fundamentals and Applications, Santa Fe, New Mexico, USA, Paper 11 (2003)

  89. Peng, H., Seneviratne, D., Vaughan, J.: Role of the amorphous phase during sodium aluminosilicate precipitation. Ind. Eng. Chem. Res. 57, 1408–1416 (2018)

    Google Scholar 

  90. Feret, F.R.: Red mud (bauxite residue). In: International Tables for Crystallography, Volume H, Chapter 7.6, pp. 785–787 (2019)

  91. Dobra, G., Kiselev, A., Filipescu, L., Alistarh, V., Anghelovici, N., Iliev, S.: Full analysis of Sierra Leone bauxite and possibilities of bauxite residue filtration. J. Sib. Fed. Univ. Eng. Technol. 9(5), 643–656 (2016)

    Google Scholar 

  92. Lin, C.: Bauxite residue (red mud) from the Pingguo alumina refined China: characteristics and potential uses. In: Pasamehmtoglu, A.G., Ozgenoglu, A., Yesilay, A.Y. (eds.) Proceedings of International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, p. 551. Atilim University, Ankara (2004)

  93. Sglavo, V.M., Campostrini, R., Maurina, S., Carturan, G., Monagheddu, M., Budroni, G., Cocco, G.: Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour. J. Eur. Ceram. Soc. 20(3), 235–244 (2000)

    Google Scholar 

  94. Atasoy, A.: The comparison of the Bayer process wastes on the base of chemical and physical properties. J. Therm. Anal. Calorim. 90(1), 153–158 (2007)

    Google Scholar 

  95. Pera, J., Boumaza, R., Ambroise, J.: Development of a pozzolanic pigment from red mud. Cem. Concr. Res. 27, 1513–1522 (1997)

    Google Scholar 

  96. Liu, X., Zhang, N.: Utilization of red mud in cement production: a review. Waste Manag. Res. 29(10), 1053–1063 (2011)

    Google Scholar 

  97. Ribeiro, D.V., Labrincha, J.A., Morelli, M.R.: Potential use of natural red mud as pozzolan for Portland cement. Mater. Res. 14(1), 60–66 (2011)

    Google Scholar 

  98. Subhashree, S.: Geo-engineering properties of lime treated plastic soils. Master’s Thesis, NIT, Rourkela (2014)

  99. Negussey, D., Wijewickreme, W.K.D., Vaid, Y.P.: Contact volume friction angle of granular materials. Can. Geotech. J. 25(1), 50–55 (1988)

    Google Scholar 

  100. Stark, N., Hay, A.E., Cheel, R., Ake, C.B.: The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach. Earth Surf. Dyn. 2(2), 469–480 (2014)

    Google Scholar 

  101. Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effect of grain morphology on critical state: a computational analysis. Acta Geotech. 11(3), 493–503 (2016)

    Google Scholar 

  102. Kirwan, L., Hartshorn, A., Mcmonagle, J.B., Fleming, L., Funnell, D.: Chemistry of bauxite residue neutralisation and aspects to implementation. Int. J. Miner. Process. (2013). https://doi.org/10.1016/j.minpro.2013.01.001

    Article  Google Scholar 

  103. Kushwaha, S.S., Kishan, D.: Stabilization of red mud by lime and gypsum and investigating its possible use in geoenvironmental engineering. In: Geo-Chicago, pp. 978−988 (2016)

  104. Gore, M.S., Gilbert, R.B., McMillan, I., Parks, S.L.I.: Geotechnical characterization of compacted bauxite residue for use in levees. In: Geo-Chicago, pp. 299−310 (2016)

  105. Pan, S.Y., Chung, T.C., Ho, C.C., Hou, C.J., Chen, Y.H., Chiang, P.C.: CO2 mineralization and utilization using steel slag for establishing a waste-to-resource supply chain. Sci. Rep. 7(1), 17227 (2017)

    Google Scholar 

  106. Bai, Y., Milestone, N.B., Yang, C.: Sodium sulphate activated GGBS/PFA and its potential as a nuclear waste immobilisation matrix. MRS Online Proc. Libr. Arch. (2006). https://doi.org/10.1557/PROC-932-38.1

    Article  Google Scholar 

  107. IRC SP 20: Rural roads manual. In: Indian Road Congress, New Delhi, India (2002)

  108. IRC SP 58: Guidelines for use of fly ash in road embankment. In: Indian Road Congress, New Delhi, India (2001)

  109. Babu, K.S.: Characteristics study of stabilized red mud waste as a resource material for pavement. Master’s Thesis, IIT, Bhubaneswar (2018)

  110. Kutle, A., Nad, K., Obhodas, J., Orescanin, V., Valkovic, V.: Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia. X-Ray Spectr. 33(1), 39–45 (2004)

    Google Scholar 

  111. Bartha, A.: Investigation of toxic and heavy metal content and mobility of the red mud in Ajka (Hungary). In: Presentation at the Colloquium Spectroscopicum Internationale XXXVII (CSI XXXVII), Buzios, Brazil (2011)

  112. Bánvölgyi, G.: The red mud pond dam failure at Ajka (Hungary) and subsequent developments. ICSOBA Newsl. 7, 14–23 (2012)

    Google Scholar 

  113. Hua, Y., Heal, K.V., Friesl-Hanl, W.: The use of red mud as an immobilizer for metal/metalloid-contaminated soil: a review. J. Hazard. Mater. 325, 17–30 (2017)

    Google Scholar 

  114. Tuazon, D., Corder, G.D.: Life cycle assessment of seawater neutralized red mud for treatment of acid mine drainage. Resour. Conserv. Recycl. 52(11), 1307–1314 (2008)

    Google Scholar 

  115. Palmer, S.J., Frost, R.L.: Characterization of bauxite and seawater neutralized bauxite residue using XRD and vibrational spectroscopic techniques. J. Mater. Sci. 44(1), 55–63 (2009)

    Google Scholar 

  116. Khaitan, S., Dzombak, D.A., Lowry, G.V.: Neutralization of bauxite residue with acidic fly ash. Environ. Eng. Sci. 26(2), 431–440 (2009)

    Google Scholar 

  117. Khaitan, S., Dzombak, D.A., Swallow, P., Schmidt, K., Fu, J., Lowry, G.V.: Field evaluation of bauxite residue neutralization by carbon dioxide, vegetation, and organic amendments. J. Environ. Eng. 136(10), 1045–1053 (2010)

    Google Scholar 

  118. Cusack, P.B., Healy, M.G., Ryan, P.C., Burke, I.T., O’Donoghue, L.M.T., Ujaczki, E., Courtney, R.: Enhancement of bauxite residue as a low-cost adsorbent for phosphorus in aqueous solution, using seawater and gypsum treatments. J. Clean. Prod. 179, 217–224 (2018)

    Google Scholar 

  119. Barrow, N.J.: Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soil. Aust. J. Agric. Res. 33, 285–295 (1982)

    Google Scholar 

  120. Courtney, R., Mullen, G., Harrington, T.: An evaluation of revegetation success on bauxite residue. Restor. Ecol. 17(3), 350–358 (2009)

    Google Scholar 

  121. Clark, M.W., Johnston, M., Reichelt-Brushett, A.J.: Comparison of several different neutralisations to a bauxite refinery residue: potential effectiveness environmental ameliorants. Appl. Geochem. 56, 1–10 (2015)

    Google Scholar 

  122. Abel, J.S., Stangle, G.C.: Sedimentation in flocculating colloidal suspensions. J. Mater. Res. 9(2), 451–461 (1994)

    Google Scholar 

  123. Martinez, E.L.: Investigation of sedimentation behaviour of microcrystalline cellulose. Master’s Thesis, Chalmers University of Technology (2012)

  124. USEPA/600/4-90/027F: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. USEPA (1993)

  125. USEPA: Health Effects Assessment Summary Tables (HEAST). U.S. Environmental Protection Agency, Washington, DC (1997)

  126. USEPA: Drinking Water Standards and Health Advisories EPA 822-F-18. USEPA, Washington, DC (2018)

  127. Kolencsik-Tóth, A., Gonda, N., Fekete, Z., Tóth, M., Székely, I., Zákányi, B., Móricz, F., Kovács, B.: Physical and chemical characterization of red mud in terms of its environmental effects. Geosci. Eng. 3(5), 129–137 (2014)

    Google Scholar 

  128. Qu, Y., Lian, B., Mo, B., Liu, C.: Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 136, 71–77 (2013)

    Google Scholar 

  129. Mohapatra, B.K., Rao, M.B.S., Rao, R.B., Paul, A.K.: Characteristics of red mud generated at NALCO Refinery, Damanjodi, India. In: Light Metals, Proceedings of Sessions, TMS Annual Meeting, Warrendale, Pennsylvania, USA (2000)

  130. Li, J., Feng, S., Chen, H., Wang, H.: Chemical and geotechnical properties of red mud at Liulin, China. In: Proceedings of GeoShanghai, pp. 405–414 (2018)

  131. Chandra, K.S., Krishnaiah, S.: A detailed geotechnical investigation on red mud and chemical analysis of its leachate. In: Indian Geotechnical Conference, p 10. SVNIT, Surat (2019)

  132. Urík, M., Bujdoš, M., Milová-Žiaková, B., Mikušová, P., Slovák, M., Matúš, P.: Aluminium leaching from red mud by filamentous fungi. J. Inorg. Biochem. 152, 154–159 (2015)

    Google Scholar 

  133. Ghosh, I., Guha, S., Balasubramaniam, R., Kumar, A.R.: Leaching of metals from fresh and sintered red mud. J. Hazard. Mater. 185(2–3), 662–668 (2011)

    Google Scholar 

  134. Zhang, J., Liu, S., Yao, Z., Wu, S., Jiang, H., Liang, M., Qiao, Y.: Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Constr. Build. Mater. 180, 605–613 (2018)

    Google Scholar 

  135. Kim, S.Y., Jun, Y., Jeon, D., Oh, J.E.: Synthesis of structural binder for red brick production based on red mud and fly ash activated using Ca(OH)2 and Na2CO3. Constr. Build. Mater. 147, 101–116 (2017)

    Google Scholar 

  136. Gray, D.H., Somogyi, F.: Engineering Properties and Dewatering Characteristics of Red Mud Tailing. DRDA Project 340364, Ann Arbor (1974)

  137. Hussain, M., Dash, S.K.: Influence of lime on plasticity behaviour of soils. In: Proceedings of Indian Geotechnical Conference, GEOtrendz, 16–18 December. IIT, Bombay (2010)

  138. Li, Y.C., Min, X.B., Ke, Y., Chai, L.Y., Shi, M.Q., Tang, C.J., Wang, Q.W., Liang, Y.J., Lei, J., Liu, D.G.: Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J. Hazard. Mater. 344, 343–349 (2018)

    Google Scholar 

  139. Gore, M.S.: Geotechnical characterization of bauxite residue (red mud), Doctoral Thesis, The University of Texas, Austin (2015)

  140. Grimshaw, R.W.: The Chemistry and Physics of Clays and Other Ceramic Materials. Wiley, New York (1980)

    Google Scholar 

  141. Kola, N., Das, S.K.: Lateral earth pressure due to red mud using numerical analysis. In: Proceedings of Indian Geotechnical Conference, 22–24 December, Roorkee, India, p 4 (2013)

  142. Hildebrando, E.A., Souza, J.A.D.S., Angelica, R.S., Neves, R.D.F.: Application of bauxite waste from Amazon region in the heavy clay industry. Mater. Res. 16(6), 1418–1422 (2013)

    Google Scholar 

  143. Chen, F.H.: Foundations on Expansive Soils. Elsevier Scientific Publishing Company, Amsterdam (1988)

    Google Scholar 

  144. Reddy, P.V.S., Rao, K.M., Rani, C.H.S.: Identification of expansive soils and assessment of expansion potential by fuzzy approach. Electron. J. Geotech. Eng. 14, 1–10 (2009)

    Google Scholar 

  145. Pinnock, W.R., Gordon, J.N.: Assessment of strength development in Bayer-process residues. J. Mater. Sci. 27(3), 692–696 (1992)

    Google Scholar 

  146. Daniel, D.E.: Geotechnical Practice for Waste Disposal. Chapman and Hall, London (1993)

    Google Scholar 

  147. Kaniraj, S.R., Havanagi, V.G.: Correlation analysis of laboratory compaction of fly ashes. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 5(1), 25–32 (2001)

    Google Scholar 

  148. Garg, A., Huang, H., Kushvaha, V., et al.: Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. 68, 207–217 (2019)

    Google Scholar 

  149. IRC: 37: Guidelines for the design of flexible pavements. In: Indian Road Congress, New Delhi, India (2012)

  150. Reddy, N.G., Singh, N.R., Rao, B.H.: Application of biopolymers for improving strength characteristics of red mud waste. Environ. Geotech. (2020). https://doi.org/10.1680/jenge.19.00018

    Article  Google Scholar 

  151. Jain, S.: Red mud as a construction material by using bioremediation. Master’s Thesis, NIT Rourkela (2014)

  152. Vogt, M.F.: Development studies on dewatering of red mud. In: Proceedings of 103rd Annual Meeting of AIME, Dallas, Texas, pp. 73–91(1974)

  153. Arora, K.R.: Soil Mechanics and Foundation Engineering. Standard Publishers Distributors, New Delhi (2004)

    Google Scholar 

  154. Srivastava, R.K.: Geotechnical aspects of soil–industrial waste interaction behavior. In: Proceedings of the International Symposium on Engineering Geology and the Environment, Athens, Greece, vol 2, pp. 23–27 (1997)

  155. USEPA 440/5-86-001: Quality Criteria for Water. Office of Water Regulations and Standards, Washington, DC (1986)

  156. Somogyi, F., Gray, D.H.: Engineering properties affecting disposal of red mud. In: Proceedings of Conference on Geotechnical Practice for Disposal of Solid Waste Materials, pp. 1−22. ASCE, Ann Arbor (1977)

  157. Nikraz, H.R., Bodley, A.J., Cooling, D.J., Kong, P.Y.L., Soomro, M.: Comparison of physical properties between treated and untreated bauxite residue mud. J. Mater. Civ. Eng. 19(1), 2–9 (2007)

    Google Scholar 

  158. Deelwal, K., Dharavath, K., Kulshreshtha, M.: Evaluation of characteristic properties of red mud for possible use as a geotechnical material in civil construction. Int. J. Adv. Eng. Technol. 7(3), 1053–1059 (2014)

    Google Scholar 

  159. Mukiza, E., Zhang, L., Liu, X., Zhang, N.: Utilization of red mud in road base and sub grade materials: a review. Resour. Conserv. Recycl. 141, 187–199 (2019)

    Google Scholar 

  160. Deelwal, K., Dharavath, K., Kulshreshtha, M.: Stabilization of red mud by lime, gypsum and investigating its possible use as a geotechnical material in the civil construction. Int. J. Adv. Eng. Technol. 7(4), 1238–1244 (2014)

    Google Scholar 

  161. Umesh, T., Dinesh, S., Sivapullaiah, P.V.: Characterization of dispersive soils. Mater. Sci. Appl. 2, 629–633 (2011)

    Google Scholar 

  162. Hardie, M.: Dispersive Soils and Their Management: A Technical Reference Manual, p. 41. Department Primary Industries and Water (2009)

  163. Chen, R., Zhang, L., Budhu, M.: Biopolymer stabilization of mine tailings. J. Geotech. Geoenviron. Eng. 139(10), 1802–1807 (2013)

    Google Scholar 

  164. Rout, S.K., Sahoo, T., Das, S.K.: Utility of red mud as an embankment material. Int. J. Earth Sci. Eng. 5(6), 1645–1651 (2012)

    Google Scholar 

  165. Houston, S.L., Houston, W.N., Zapata, C.E., Lawrence, C.: Geotechnical engineering practice for collapsible soils. Geotech. Geol. Eng. 19(3–4), 333–355 (2001)

    Google Scholar 

  166. Kalantari, B.: Foundations on collapsible soils: a review. Forensic Eng. 166(FE2), 57–63 (2013)

    Google Scholar 

  167. ASTM: Standard Test Method D5333, Measurement of Collapse Potential of Soils. ASTM International, West Conshohocken (2003)

  168. Main Roads Western Australia: Specification 501 Pavements Document 04/10110-04 (2012)

  169. Taha, M.R., Kabir, M.H.: Tropical residual soil as compacted soil liners. Eng. Geol. 47(3), 375–381 (2005)

    Google Scholar 

  170. Kajita, L.S.: An improved contaminant resistant clay for environmental clay liner applications. Clay Clay Miner. 45(5), 609–617 (1997)

    Google Scholar 

  171. Zhu, L.L., Kexin, M., Zipeng, X.: Fluoride removal from liquid phase by Fe–Al–La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J. Mol. Liq. 237, 164–172 (2017)

    Google Scholar 

  172. Mitchell, J., Hooper, D., Campanella, R.: Permeability of compacted clay. J. Soil Mech. Found. Div. 91, 41–66 (1965)

    Google Scholar 

  173. IRC 36: Recommended practice for the construction of earth embankments for road works. In: Indian Road Congress, New Delhi, India (1970)

  174. MoRTH: Specifications for road and bridge works, 3rd revision. In: Indian Road Congress, New Delhi, India (2000)

  175. BS 3921: Specification for Clay Bricks. London (1985)

  176. Sahoo, S.S., Mohanty, C.: Construction of road sub-base by using industrial waste. Int. J. Eng. Sci. Manag. Res. 3, 77–83 (2016)

    Google Scholar 

  177. Rao, C.H.V.H., Naidu, P.G., Satyanyarana, P.V.V., Adiseshu, S.: Application of GGBS stabilized red mud in road construction. IOSR J. Eng. 2(8), 14–20 (2012)

    Google Scholar 

  178. Zhu, X., Li, W., Guan, X.: An active dealkalization of red mud with roasting and water leaching. J. Hazard. Mater. 286, 85–91 (2015)

    Google Scholar 

  179. Rivera, R.M., Ounoughene, G., Borra, C.R., Binnemans, K., Van Gerven, T.: Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Miner. Eng. 112, 92–102 (2017)

    Google Scholar 

  180. Li, H., Wen, Y., Cao, A., Huang, J., Zhou, Q., Somasundaran, P.: The influence of additives (Ca2+, Al3+, and Fe3+) on the interaction energy and loosely bound extracellular polymeric substances (EPS) of activated sludge and their flocculation mechanisms. Bioresour. Technol. 114, 188–194 (2012)

    Google Scholar 

  181. Deihimi, N., Irannajad, M., Rezai, B.: Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal. J. Environ. Manag. 206, 266–275 (2018)

    Google Scholar 

  182. Chen, S., Fang, L., Zhu, Q., Li, L., Xing, Z.: Bromate removal by Fe(II)-akaganeite (β-FeOOH) modified red mud granule material. RSC Adv. 6(34), 28257–28262 (2016)

    Google Scholar 

  183. López, E., Soto, B., Arias, M., Nú Ez, A., Rubinos, D., Barral, M.T.: Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 32, 1314–1322 (1998)

    Google Scholar 

  184. Nadaroglu, H., Kalkan, E., Demir, N.: Removal of copper from aqueous solution using red mud. Desalination 251, 90–95 (2010)

    Google Scholar 

  185. Chaddha, M.J., Rai, S., Goyal, R.N.: National Seminar on Environmental Concern and Remedies in Alumina Industry at NALCO, Damanjodi, India (2007)

  186. Sahu, R.C., Patel, R.K., Ray, B.C.: Neutralization of red mud using CO2 sequestration cycle. J. Hazard. Mater. 179, 28–34 (2010)

    Google Scholar 

  187. Meher, S.N., Rout, A.K., Padhi, B.K.: Recovery of Al and Na values from red mud by BaO–Na2CO3 sinter process. Eur. J. Chem. 8, 1387–1393 (2011)

    Google Scholar 

  188. Mišík, M., Burke, I.T., Reismüller, M., Pichler, C., Rainer, B., Mišíková, K., Mayes, W.M., Knasmueller, S.: Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Sci. Total Environ. 493, 883–890 (2014)

    Google Scholar 

  189. Burke, I.T., Mayes, W.M., Peacock, C.L., Brown, A.P., Jarvis, A.P., Gruiz, K.: Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka Spill Site, Hungary. Environ. Sci. Technol. 46(6), 3085–3092 (2012)

    Google Scholar 

  190. Di Carlo, E., Boullemant, A., Courtney, R.: A field assessment of bauxite residue rehabilitation strategies. Sci. Total Environ. 663, 915–926 (2019)

    Google Scholar 

  191. Gruiz, K., Feigl, V., Klebercz, O., Anton, A., Vaszita, E.: Environmental risk assessment of red mud contaminated land in Hungary. In: GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, pp. 4156−4165 (2012)

  192. Higgins, D., Curtin, T., Pawlett, M., Courtney, R.: The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth. Environ. Sci. Pollut. Res. 23(23), 24305–24315 (2016)

    Google Scholar 

  193. NSF/ANSI 61: Drinking Water System Components-Health Effects (2016)

  194. Parekh, B.K., Goldberger, W.M.: An Assessment of Technology for Possible Utilization in Bayer Process Muds. EPA-600/2-76-301, p. 154 (1976)

  195. IS 1498: Classification and Identification of Soils for General Engineering Purposes. Bureau of Indian Standards, New Delhi (2007)

  196. IRC: SP: 72: Guidelines for the design of flexible pavement for low volume rural roads. In: Indian Road Congress, New Delhi, India (2007)

  197. IS 1498: Classification and Identification of Soils for General Engineering Purposes. Bureau of Indian Standards, New Delhi (1997)

  198. MoRD: Specifications for Rural Roads. Ministry of Rural Development, Government of India, New Delhi (2014)

  199. IRC: 36: Recommended Practice for Construction of Earth Embankments and Subgrade for Road Works, Indian Road Congress, New Delhi, India (2010)

  200. Bhumij, R.K.: Compaction characteristics of red mud and pond ash mix as filling and embankment material. Doctoral Dissertation (2015)

  201. Jitsangiam, P., Chummuneerat, S., Nikraz, H.: Engineering characteristics of cement modified base course material for Western Australian pavements. Aust. J. Civ. Eng. 11(1), 13–21 (2013)

    Google Scholar 

  202. Liu, S., Li, Z., Li, Y., Cao, W.: Strength properties of Bayer red mud stabilized by lime-fly ash using orthogonal experiments. Constr. Build. Mater. 166, 554–563 (2018)

    Google Scholar 

  203. Consoli, N.C.: Comparison of the measured and predicted performance of tailings sedimentation. Proc. Inst. Civ. Eng. Geotech. Eng. 125, 179–187 (1997)

    Google Scholar 

  204. Somogyi, F.: Dewatering and drainage of red mud tailings. Doctoral Dissertation, University of Michigan (1976)

  205. Kehagia, F.O.: Construction of an unpaved road using industrial by-products (bauxite residue). WSEAS Trans. Environ. Dev. 10, 2224–3496 (2014)

    Google Scholar 

  206. Kirkpatrick, D.B.: Red Mud Product Development. Minerals, Metals and Materials Society, Warrendale (1996)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Ministry of Human Resources Development under SPARC Project titled “A Novel Biotreatment of Bauxite Residue for Conversion into Sustainable Geomaterial”, the Slovenian Research Funding’s P2-0273, Z1-1858, and Department of Science and Technology (DST), Government of India (Sanction Order SB/FTP/ETA-0297/2013). Thanks are due to György (George) Bánvölgyi for very helpful comments on the manuscript. Authors are grateful to current and past students of IIT Bhubaneswar for performing laboratory studies on characterization of the red mud. Authors sincerely thank Dr. B. K. Satpathy, NALCO, and Mr. Shubhendu Sekhar Panda, Vedanta Limited for providing the red mud samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bendadi Hanumantha Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.S., Reddy, N.G., Serjun, V. et al. Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs. Waste Biomass Valor 12, 1185–1217 (2021). https://doi.org/10.1007/s12649-020-01089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01089-z

Keywords

Navigation