Skip to main content
Log in

Product Removal Strategy and Fouling Mechanism for Cellulose Hydrolysis in Enzymatic Membrane Reactor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

One of the critical problems in enzymatic membrane reactor for lignocellulosic biomass conversion is the decline in the performance due to membrane fouling. In this study, cellulose hydrolysis was carried out in an enzymatic membrane reactor with different substrate concentrations (5–20 g/L) and different product removal strategies in order to investigate their effects on the fouling mechanism, membrane performance, and the product yield. The membrane flux decline was less severe in the intermittent product removal at 24 h interval than the product removal at 4 h interval. The cellulose conversion was more than 80% and the productivity of 9.1 g reducing sugar/ g cellulase was achieved. The cellulose conversion decreased from 88.48 to 61.43% with increasing substrate concentration and the flux also declined from 23.92 to 15.15 L/m2 h. The membrane surface roughness increased with increasing substrate concentration, with the highest at 38.50 nm at 20 g/L. The cake formation model was the predominant fouling mechanisms at all substrate concentrations. Our study indicates that the product removal strategies and substrate concentrations have significant impact on the separation process and membrane fouling during enzymatic hydrolysis of cellulose.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lynd, L.R., Laser, M.S., Bransby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wayman, C.E.: How biotech can transform biofuels. Biotechnology 26, 169–172 (2008)

    Google Scholar 

  2. Sofia, B., Rodrigues, S.: Production and purification of new microbial cellulases. J Gerontol Ser A 69, 773–775 (2014)

    Google Scholar 

  3. Nguyenhuynh, T., Nithyanandam, R., Chong, C.H., Krishnaiah, D.: A review on using membrane reactors in enzymatic hydrolysis of cellulose. J. Eng. Sci. Technol. 12, 1129–1152 (2017)

    Google Scholar 

  4. Rios, G.M., Belleville, M.P., Paolucci, D., Sanchez, J.: Progress in enzymatic membrane reactors—a review. J. Membr. Sci. 242, 189–196 (2004)

    Google Scholar 

  5. Pino, M.S., Rodríguez-Jasso, R.M., Michelin, M., Flores-Gallegos, A.C., Morales-Rodriguez, R., Teixeira, J.A., Ruiz, H.A.: Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem. Eng. J. 347, 119–136 (2018)

    Google Scholar 

  6. Ghazali, N.F., Pahlawi, Q.A., Hanim, K.M., Makhtar, N.A.: Enzymatic hydrolysis of oil palm empty fruit bunch using membrane reactor. Chem. Eng. Trans. 56, 1543–1548 (2017)

    Google Scholar 

  7. Xiao, Z.Z., Zhang, X., Gregg, D.J., Saddler, J.N.: Effects of sugar inhibition on cellulases and β-Glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 113–116, 1115–1126 (2004)

    Google Scholar 

  8. Gomes, D., Rodrigues, A.C., Domingues, L., Gama, M.: Cellulase recycling in biorefineries-Is it possible? Appl. Microbiol. Biotechnol. 99, 4131–4143 (2015)

    Google Scholar 

  9. Weiss, N., Börjesson, J., Pedersen, L.S., Meyer, A.S.: Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol. Biofuels 6, 1–14 (2013)

    Google Scholar 

  10. Gan, Q., Allen, S.J., Taylor, G.: Design and operation of an integrated membrane reactor for enzymatic cellulose hydrolysis. Biochem. Eng. J. 12, 223–229 (2002)

    Google Scholar 

  11. Andrić, P., Meyer, A.S., Jensen, P.A., Dam-Johansen, K.: Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw. Appl. Biochem. Biotechnol. 160, 280–297 (2010)

    Google Scholar 

  12. Zain, M.M., Mohammad, A.W., Hairom, N.H.H.: Flux and permeation behaviour of ultrafiltration in sugaring out cellulose hydrolysate solution: A membrane screening. J. Phys. Sci. 28, 25–38 (2017)

    Google Scholar 

  13. Yang, S., Ding, W.Y., Chen, H.Z.: Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor. Biomass Bioenerg. 33, 332–336 (2009)

    Google Scholar 

  14. Malmali, M., Stickel, J., Wickramasinghe, S.R.: Investigation of a submerged membrane reactor for continuous biomass hydrolysis. Food Bioprod. Process. 96, 189–197 (2015)

    Google Scholar 

  15. Nguyenhuynh, T., Nithyanandam, R., Chong, C.H., Krishnaiah, D.: Configuration modification of a submerged membrane reactor for enzymatic hydrolysis of cellulose. Biocatal. Agric. Biotechnol. 12, 50–58 (2017)

    Google Scholar 

  16. Qi, B., Luo, J., Chen, G., Chen, X., Wan, Y.: Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Biores. Technol. 104, 466–472 (2012)

    Google Scholar 

  17. Frank, L.: Membrane process opportunities and challenges in the bioethanol industry. Desalination 250, 1067–1069 (2010)

    Google Scholar 

  18. Bilad, M.R., Li, Y.B., Vankelecom, I.F.G.: Application of a magnetically induced membrane vibration (MMV) system for lignocelluloses hydrolysate filtration. J. Membr. Sci. 452, 165–170 (2014)

    Google Scholar 

  19. Gurram, R.N., Menkhaus, T.J.: Continuous enzymatic hydrolysis of lignocellulosic biomass with simultaneous detoxification and enzyme recovery. Appl. Biochem. Biotechnol. 173, 1319–1335 (2014)

    Google Scholar 

  20. Rodrigues, A.C., Felby, C., Gama, M.: Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Biores. Technol. 156, 163–169 (2014)

    Google Scholar 

  21. Lozano, P., Bernal, B., Jara, A.G., Belleville, M.P.: Enzymatic membrane reactor for full saccharification of ionic liquid-pretreated microcrystalline cellulose. Biores. Technol. 151, 159–165 (2014)

    Google Scholar 

  22. Andric, P., Meyer, A.S., Jensen, P.A.: Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis. II. quantification of inhibition and suitability of membrane reactors. Biotechnol. Adv. 28, 407–425 (2010)

    Google Scholar 

  23. Nguyen, L.T., Neo, K.R.S., Yang, K.-L.: Continuous hydrolysis of carboxymethyl cellulose with cellulase aggregates trapped inside membranes. Enzyme Microb. Technol. 78, 34–39 (2015)

    Google Scholar 

  24. Abdelrasoul, A., Doan, H., Lohi, A.: Fouling in membrane filtration and remediation methods. In H. Nakajima (ed) Mass Transfer: Advances in Sustainable Energy and Environment Oriented Numerical Modeling. E-Books (2013)

  25. Hermia, J.: Constant pressure blocking filtration laws- application to power-law non-newtonian fluids. Trans. Inst. Chem. Eng. 60, 183–187 (1982)

    Google Scholar 

  26. Mores, W.D., Knutsen, J.S., Davis, R.H.: Cellulase recovery via membrane filtration. Appl. Biochem. Biotechnol. Part A (2001). https://doi.org/10.1385/ABAB:91-93:1-9:297

    Article  Google Scholar 

  27. Sueb, M.S.M., Luo, J., Meyer, A.S., Jørgensen, H., Pinelo, M.: Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors. Sep. Purif. Technol. 178, 154–162 (2017)

    Google Scholar 

  28. Jørgensen, H., Pinelo, M.: Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod. Biorefining (2017). https://doi.org/10.1002/bbb.1724

    Article  Google Scholar 

  29. Su, Z., Luo, J., Pinelo, M., Wan, Y.: Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor. Food, Pharmaceutical and Bioengineering Division 2017—Core Programming ... Forum 2018—Core Programming Area at the 2018 AIChE Annual Meeting. https://doi.org/10.1016/j.memsci.2018.03.062 (2018)

  30. Mohammad, A.W., Zain, M.M.: Clarification of glucose from cellulose hydrolysate by ultrafiltration with polyethersulfone membrane. Int. J. Biomass Renew. 5, 14–18 (2016)

    Google Scholar 

  31. Mandels, M., Andreotti, R., Roche, C.: Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp. 6, 21–33 (1976)

    Google Scholar 

  32. Miller, G.L.: Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  33. Bradford, M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Chem. 72, 248–254 (1976)

    Google Scholar 

  34. Muttalib, N.A.A., Zaidel, D.N.A., Nazrul, M., Alam, H.Z.: Effect of impeller design on the rate of reaction of hydrolysis in batch reactor. Chem. Eng. Trans. 56, 1423–1428 (2017)

    Google Scholar 

  35. Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J., Wan, Y.: Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Biores. Technol. 116, 366–371 (2012)

    Google Scholar 

  36. Sun, Z.H., Chen, F.: Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc. Int. J. Biol. Macromol. 91, 143–150 (2016)

    Google Scholar 

  37. Fang, Y.M., Duranceau, S.J.: Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity. Membranes 3, 196–225 (2013)

    Google Scholar 

  38. Qu, P., Tang, H.W., Gao, Y., Zhang, L.P., Wang, S.: Polyethersulfone composite membrane blended with cellulose fibrils. BioResource 5, 2323–2336 (2010)

    Google Scholar 

  39. Rahman, M.M., Al-Sulaimi, S., Farooque, A.M.: Characterization of new and fouled SWRO membranes by ATR/FTIR spectroscopy. Appl. Water Sci. 8, 183 (2018)

    Google Scholar 

  40. Malmali, M.: Application of membrane processes for concentration and separation of sugar streams in biofuel production. (2014)

  41. Gavlighi, H.A., Meyer, A.S., Mikkelsen, J.D.: Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal. Biotech. Lett. 35, 205–212 (2013)

    Google Scholar 

  42. Sarkar, B.: A combined complete pore blocking and cake filtration model during ultrafiltration of polysaccharide in a batch cell. J. Food Eng. 116, 333–343 (2013)

    Google Scholar 

  43. Sahai, R.: Membrane separations: Filtration. Encyclopedia of Membrane Science and Technology, pp. 1717–1724. Elsevier, New York (2000)

    Google Scholar 

  44. Yang, S., Ding, W., Chen, H.: Enzymatic hydrolysis of rice straw in a tubular reactor coupled with UF membrane. Process Biochem. 41, 721–725 (2006)

    Google Scholar 

  45. Mussatto, S.I., Dragone, G., Fernandes, M., Milagres, A.M.F., Roberto, I.C.: The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain. Cellulose 15, 711–721 (2008)

    Google Scholar 

  46. Sakinah, A.M.M., Ismail, A.F., Illlias, R.M., Zularisam, A.W., Hassan, O., Matsuura, T.: Effect of substrate and enzyme concentration on cyclodextrin production in a hollow fibre membrane reactor system. Sep. Purif. Technol. 124, 61–67 (2014)

    Google Scholar 

  47. Chen, G., Song, W., Qi, B., Lu, J., Wan, Y.: Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration. Biores. Technol. 144, 186–193 (2013)

    Google Scholar 

  48. Bélafi-Bakó, K., Koutinas, A., Nemestóthy, N., Gubicza, L., Webb, C.: Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor. Enzyme Microbial Technol. 38, 155–161 (2006)

    Google Scholar 

  49. Powell, L.C., Hilal, N., Wright, C.J.: Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination 404, 313–321 (2017)

    Google Scholar 

  50. Khongnakorn, W., Youravong, W.: Concentration and recovery of protein from tuna cooking juice by forward osmosis. J. Eng. Sci. Technol. 11, 962–973 (2016)

    Google Scholar 

  51. Poletto, M., Pistor, V., Zeni, M., Zattera, A.J.: Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym. Degrad. Stab. 96, 679–685 (2011)

    Google Scholar 

  52. Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J., Imam, S.H.: Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd. Polym. 81, 83–92 (2010)

    Google Scholar 

  53. Fackler, K., Stevanic, J.S., Ters, T., Hinterstoisser, B., Schwanninger, M., Salmén, L.: FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 65, 411–420 (2011)

    Google Scholar 

  54. Xu, F., Yu, J.M., Tesso, T., Dowell, F., Wang, D.H.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 104, 801–809 (2013)

    Google Scholar 

  55. Hospodarova, V., Singovszka, E., Stevulova, N.: Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am. J. Anal. Chem. 9, 303–310 (2018)

    Google Scholar 

  56. Poletto, M., Ornaghi, H., Zattera, A., Poletto, M., Ornaghi, H.L., Zattera, A.J.: Native cellulose: Structure, characterization and thermal properties. Materials (Basel). 7, 6105–6119 (2014)

    Google Scholar 

  57. Belfer, S., Fainchtain, R., Purinson, Y., Kedem, O.: Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J. Membr. Sci. 172, 113–124 (2000)

    Google Scholar 

  58. Vela, M.C.V., Blanco, S.Á., García, J.L., Rodríguez, E.B.: Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Sep. Purif. Technol. 62, 489–498 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support research grant UTM-TDR 31.2 (T2): Separation and Purification of Sugars from Biomass Hydrolysate (06G42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazlee Faisal Ghazali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.Y., Ghazali, N.F. Product Removal Strategy and Fouling Mechanism for Cellulose Hydrolysis in Enzymatic Membrane Reactor. Waste Biomass Valor 11, 5575–5590 (2020). https://doi.org/10.1007/s12649-020-01020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01020-6

Keywords

Navigation